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® Goal: Evaluate f(xi, ..., Xn) when input is split among p players:

X] ..
How much communication is required to evaluate f?
Consider randomized, blackboard, one-way, multi-round, ...

® How important is the split?

Is f hard for many splits or only hard for a few bad splits?

Previous work on worst and best partitions.
[Aho, Uliman, Yannakakis '83] [Papadimitriou, Sipser ’84]

® Consider random partitions:

Define error probability over coin flips and random split.
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® Goal: Evaluate f(xi, ..., Xn) given sequential access:
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X| X2 X3 X4 X5 ... «ee Xn

How much working memory is required to evaluate f?
Consider randomized, approximate, multi-pass, etc.

® Random-order streams: Assume f is order-invariant;

Upper Bounds: e.g., stream of i.i.d. samples.

Lower Bounds: is a “hard” problem hard in practice?

[Munro, Paterson '78] [Demaine, Lopez-Ortiz, Munro ’02]
[Guha, McGregor '06,’07a,’07b] [Chakrabarti, Jayram, Patrascu '08]

® Randome-partition-CC bounds give random-order bounds




Results

t-party Set-Disjointess: Any protocol for (Q(t?)-player random-
partition requires (Q(n/t) bits communication.

2-approx. for k™ freq. moments requires Q(n'-3%) space.

Median: Any p-round protocol for p-player random-
partition requires Q(m®)) where f(p)=1/3P

Polylog(m)-space algorithm requires ()(log log m) passes.

Gap-Hamming: Any one-way protocol for 2-player random-
partition requires ()(n) bits communicated.

(1+¢€)-approx. for Fo or entropy requires ()(¢2) space.

Index: Any one-way protocol for 2-player random-partition
(with duplicates) requires {)(n) bits communicated.

Connectivity of a graph G=(V, E) requires €)(|V|) space.
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® Naive reduction from fixed-partition-CC:

|. Players determine random partition, send necessary data.
2. Simulate protocol on random partition.

Problem: Seems to require too much communication.

Consider random input and public coins:

Issue #1: Need independence of input and partition.
Issue #2: Generalize information statistics techniques.
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and define,DISJ, : = \/. AND¢(x1,i, ..., X¢.i)

Unique intersection: Each column has weight 0, |, or t and at
most one column has weight t.

Thm: C)(n/t) bound if t-players each get a row.
[Kalyanasundaram, Schnitger ’92] [Razborov '92]
[Chakrabarti, Khot, Sun ’03] [Bar-Yossef, Jayram, Kumar, Sivakumar ’04]

Thm: Q(n/t) bound for random partition for Q)(t?) players.
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Generalize Information Statistics Approach...
[Chakrabarti, Shi,Wirth,Yao ’01] [Chakrabarti, Khot, Sun '03] [Bar-Yossef, Jayram, Kumar, Sivakumar ’04]

e [1(X) is transcript of 0-error protocol 1 on random input X~p.

® |nformation Cost: icost(I1)= I(X: [1(X))
Lower bound on the length of the protocol

Amenable to direct-sum results...

/icost(ﬂ)zzjl(XJ:H(X)) /I(XJ:I'I(X))Zicost(I'I’) g icost(MN’) > Q(1/t)

where X/ is jt column where [T is “best” d-error || assuming [’ is private-coin,
of matrix X protocol for AND; one-way protocol

® Necessary Generdlization:
Step |: Condition “icost” on public coins.

Step 2: Error of [T is best d+Birthday(t,p) error protocol.
Step 3: Generalize result for public-coin protocols.
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Frequency Moments

Define: Fx(S) = > .(freq. of i)

Reduction from set-disjointness: [Alon, Matias, Szegedy *99]
S=1{i:x;=1}

t* if DISJ, «(X) =1

n if DISJ, :(X) =0

Fr(S)

>
Fr(S) <
Thm: Q(n'-3k) space bound for random order streams.

Proof: Set t<=2n to prove Q(n'-'¥) total communication
Per-message communication is Q(n'-"k/p)= Q(n'-3k)

Open Problem: Q(n'-?%) bound for random order?
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Selection in Streams

Find median of stream of m values in polylog(m) space.

Thm: For adversarial-order stream, O(lg m / Ig Ilg m) pass
[Munro, Paterson '78] [Guha, McGregor ’073]

Thm: For random-order stream, O(lg Ig m) pass
[Guha, McGregor '06] [Chakrabarti, Jayram, Patrascu '08]

Our result: Using random-partition-CC techniques we get
simpler and tighter pass/space trade-offs...
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Reduction from TPJ to Median...

With each node v associate two values x(v) < B(v) such
that a(v) < a(u) < B(u) < B(v) for any descendent u of v.

For each node: Generate multiple copies of a(v) and B(v)
such that median of values corresponds to TP] solution.

Relationship between t and # copies determines bound.
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Simulating Random-Partition Protocol...

Consider node v where f(v) is known to Bob.

Creating Instance of Random-Partition Median Finding:
|) Using public coin, players determine partition of tokens
and set half to « and half to B.

2) Bob “fixes” balance of tokens under his control.

Thm: Partition looks random if total number of tokens is
greater than (max bias)?. Hence, m = exp(2° Ig t).




Summary

Introduced notion of Robust Lower Bounds

Tight communication bounds for disjointness, indexing,
gap-hamming, and improved selection bound.

Data streams bounds including frequency moments,
connectivity, entropy, Fo, quantile estimation, ...

Many open problems... Thanks!




