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The Problem

“’ Center for Disease Control (CDC)
"~ has massive amounts of data on
disease occurrences and their
locations.

“How correlated is your zip code to the
diseases you’ll catch this year?”

® Sample (sub-linear time):
How many are required to distinguish independence from
“e-far” from independence! [Batu et al.’01], [Alon et al.’07], [Valiant '08]

® Stream (sub-linear space):
Access pairs sequentially or “online” and limited memory.
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Formulation

Stream of m pairs in [n] x [n]:
(3:2), (5:3), (2,7), 3,4), (7,1), (1,2), (3,9), (6,6), ...

Define “empirical” distributions:

Marginals: (p1, ..., pn), (q1, .., Gn)
Joint: (ri1, ri2, ..., I'nn)

Product: (SI Iy S12, ooy Snn) where Sij equals pi q

® (uestion: How correlated are first and second terms!?
Eg,  Li(s—r)=2_;lsi—rjl
Lo(s —r) =/ 22 (s — ryj)°
I(s,r) = H(p) — H(plq)

Previous work: Can estimate L; and L; between marginals.

[Alon, Matias, Szegedy '96], [Feigenbaum et al.’99], [Indyk ’00],
[Guha, Indyk, McGregor '07], [Ganguly, Cormode ’07]
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Our Results

® FEstimating Ly(s-r):

(1+€)-factor approx. in O(e2ln &) space.
“Neat” result extending AMS sketches

® FEstimating L(s-r):

O(In n)-factor approx. in O(In &') space.

Sketches of sketches and sketches/embeddings
® QOther Results:

Li(s-r): Additive approximations
Mutual Information: Additive but not (| +e¢)-factor approx.

Distributed Model: Pairs are observed by different parties.
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First Attempt

Random Projection: Let z € {—1,1}"*" where zj; are
unbiased 4-wise independent. [Alon, Matias, Szegedy *96]

Estimator: Suppose we can compute estimator:

T = (2 — 2.5)°

Correct in expectation and has small variance:

— Ei1,j1,i2,j2E[z’i1j1 z’i2j2]ai1j1 Aigjy = (LQ(T o S))2

(aij = 7rij — 5i5)
E[T?]
Eil ,J1,22,72,%3,73,%4,74 E [Ziljl Rijo 1331474 ] Ay g1 Qi o AizjzsQiygy

< E[T)?

Repeating O(e?2In &') times and take the mean.




Computing Estimator




Computing Estimator

® Need to compute: z.r and z.s




Computing Estimator

® Need to compute: z.r and z.s

® Good News: First term is easy
1) Let A =0
2) For each stream element:
2.1) If stream element = (i,j) then A <A + zi5/m




Computing Estimator

® Need to compute: z.r and z.s

® Good News: First term is easy
1) Let A =0
2) For each stream element:
2.1) If stream element = (i,j) then A <A + zi5/m

® Bad News: Can’t compute second term!




Computing Estimator

Need to compute: z.r and z.s

Good News: First term is easy
1) Let A =0
2) For each stream element:
2.1) If stream element = (i,j) then A <A + zi5/m

Bad News: Can’t compute second term!

Good News: Use bilinear sketch: If z;; = x;y, for x,y € {—1,1}"

2.8 =) ;5 Zijsij = (2.p)(y-q)

i.e., product of sketches is sketch of product.




Computing Estimator

Need to compute: z.r and z.s

Good News: First term is easy
1) Let A =0
2) For each stream element:
2.1) If stream element = (i,j) then A <A + zi5/m

Bad News: Can’t compute second term!

Good News: Use bilinear sketch: If z;; = x;y, for x,y € {—1,1}"

2.8 =) ;5 Zijsij = (2.p)(y-q)

i.e., product of sketches is sketch of product.

Bad News: z is no longer 4-wise independent even if x and
y are fully random, e.g.,

211212221222 = (71)%(72)%(y1)%(y2)? = 1
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Still Get Low Variance

Lemma: Variance has at most tripled.

M / r1Y1 To2Yq ce N %A \

L1Y2 T2Y2 ... cee Inl2

\ :z:l.yn CEQ.yn a:n.yn )

Product of four entries is biased iff entries lie in rectangle

2
Hence,Var[T] < Z iy gy Qiggo QizjsAiygjy < SE[T]
(i17j1)7(i27j2)7

(23,793),(14,74)
in rectangle

since a rectangle is uniquely specified by a diagonal and
2 2
2aJiljl Wi o Big o Qigjy < (ailjl a’izjz) + (ai3j3ai4j4)

Less independence useful for range-sums. [Rusu, Dobra '06]




Summary of L, Result

® Thm: (1+€)-factor approx. (w/p 1-8) in O(e2 In &) space.

® Proof Ideas:

|) First attempt: Use AMS technique.

2) Road block: Can’t sketch product distribution.

3) Bilinear sketch: Product of sketches was sketch of product!
4) PANIC: No longer 4-wise independence.

5) Relax: We didn’t need full 4-wise independence.
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L, Result

® Thm: O(In n)-factor approx. of Li(s-r) in O(In ') space.

® Why not (|+ €)-factor using Indyk’s p-stable technique!?
[Indyk, '00]
® Review of L sketching:
Let entries of z be Cauchy(0, 1)
Compute estimator |z.a|
Repeat k=O(e?In 5°') times with different z.
Take the median and appeal to concentration lemmas.

® N.B. If median were mean we’d have a dimensionality
reduction result that doesn’t exist. [Brinkman, Charikar 03]
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Sketching Sketches

® To sketch product distribution need z = y M,

(

M

Inner Sketch Outer Sketch
an —_ R?’L
a — M_,a

® The Problem:

Need to take median of multiple inner sketches before
taking outer sketch.

The size of the inner sketch is large.
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L, Result

® Thm: O(In n)-factor approx. of Li(s-r) in O(In &') space.
® Proof:
Outer sketch: Entries y are Cauchy(0, 1)

Inner sketch: Entries x are “truncated” Cauchy(0, )

Pr [9(1) < Mol o O(logn)} > 9/10

Repeat O(In &') times and take median.
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® Mutual Information:
Can’t (| +€)-factor approximate in o(n) space

Can € using algorithms for approx. entropy.
[Chakrabarti, Cormode, McGregor '07]

® Distributed Model:
Player | sees (3,), (5,), (2,), (3,), (7,), (1,), (3,), (6,), ...

Player 2 sees (-5), (,3), (,7), (,4), (1), (;2), (,9), (;6), --.

Very hard in general, e.g., can’t check if L (s-r)=0

® Additive Abproximation for L(s-r):

Li(p—q) = >2; pili(q — ')
where q' is q conditioned on first term equals i.

[Guha, McGregor, Venkatasubramanian '06]




Main Results

Can estimate Ly(r-s) well using neat
extension of AMS sketch.

Can estimate Li(r-s) up to O(log n)
factor using p-stable distributions.

Can estimate mutual information
additively using entropy algorithms.

Questions?




