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• Stream (sub-linear space):
Access pairs sequentially or “online” and limited memory. 
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• Marginals: (p1, ..., pn), (q1, ..., qn)

• Joint: (r11, r12, ..., rnn)

• Product: (s11, s12, ..., snn) where sij equals pi qj

• Question: How correlated are first and second terms? 

• E.g., 

• Previous work: Can estimate L1 and L2 between marginals.
• [Alon, Matias, Szegedy ’96], [Feigenbaum et al. ’99], [Indyk ’00], 
• [Guha, Indyk, McGregor ’07], [Ganguly, Cormode ’07] 
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Our Results
• Estimating L2(s-r):

• (1+ε)-factor approx. in Õ(ε-2 ln δ-1) space.

• “Neat” result extending AMS sketches

• Estimating L1(s-r):

• O(ln n)-factor approx. in Õ(ln δ-1) space.

• Sketches of sketches and sketches/embeddings

• Other Results:

• L1(s-r): Additive approximations 

• Mutual Information: Additive but not (1+ε)-factor approx. 

• Distributed Model: Pairs are observed by different parties.
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First Attempt

• Random Projection: Let                       where zij are 
unbiased 4-wise independent.        [Alon, Matias, Szegedy ’96]

• Estimator:  Suppose we can compute estimator:

• Correct in expectation and has small variance:

• Repeating O(ε-2 ln δ-1) times and take the mean. 

z ∈ {−1, 1}n×n

T = (z.r − z.s)2

(aij = rij − sij)
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Computing Estimator 
• Need to compute:         and 

• Good News: First term is easy
1) Let A = 0

2) For each stream element:

2.1) If stream element = (i,j) then A ← A + zij/m

• Bad News: Can’t compute second term!  

• Good News: Use bilinear sketch: If                  for                           

• i.e., product of sketches is sketch of product.         

• Bad News: z is no longer 4-wise independent even if x and 
y are fully random, e.g.,

z.s =
∑

ij zijsij = (x.p)(y.q)

x, y ∈ {−1, 1}nzij = xiyj

z11z12z21z22 = (x1)2(x2)2(y1)2(y2)2 = 1

z.r z.s
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• Lemma: Variance has at most tripled.

• Proof: 

• Product of four entries is biased iff entries lie in rectangle 

• Hence, 

• since a rectangle is uniquely specified by a diagonal and

• Less independence useful for range-sums.   [Rusu, Dobra ’06]

z =





x1y1 x2y1 . . . . . . xny1

x1y2 x2y2 . . . . . . xny2
...

...
...

x1yn x2yn . . . . . . xnyn





2ai1j1ai2j2ai3j3ai4j4 ≤ (ai1j1ai2j2)
2 + (ai3j3ai4j4)

2

Var[T ] ≤
∑

(i1,j1),(i2,j2),
(i3,j3),(i4,j4)

in rectangle

ai1j1ai2j2ai3j3ai4j4 ≤ 3E[T ]2



Summary of L2 Result

• Thm: (1+ε)-factor approx. (w/p 1-δ) in Õ(ε-2 ln δ-1) space.

• Proof Ideas:

1) First attempt: Use AMS technique.

2) Road block: Can’t sketch product distribution.

3) Bilinear sketch: Product of sketches was sketch of product!

4) PANIC: No longer 4-wise independence.

5) Relax: We didn’t need full 4-wise independence.
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• Thm: O(ln n)-factor approx. of L1(s-r) in Õ(ln δ-1) space.

• Why not (1+ ε)-factor using Indyk’s p-stable technique?
• [Indyk, ’00]

• Review of L1 sketching:

• Let entries of z be Cauchy(0,1)

• Compute estimator |z.a| 

• Repeat k=O(ε-2 ln δ-1) times with different z. 

• Take the median and appeal to concentration lemmas.

• N.B. If median were mean we’d have a dimensionality 
reduction result that doesn’t exist.  [Brinkman, Charikar ’03]
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Sketching Sketches
• To sketch product distribution need 

• Sketch:                 Inner Sketch                 Outer Sketch

• The Problem:

• Need to take median of multiple inner sketches before 
taking outer sketch.

• The size of the inner sketch is large.

z = ( y )︸ ︷︷ ︸
n
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• Thm: O(ln n)-factor approx. of L1(s-r) in Õ(ln δ-1) space.

• Proof:

• Outer sketch: Entries y are Cauchy(0,1)

• Inner sketch: Entries x are “truncated” Cauchy(0,1)

• Repeat Õ(ln δ-1) times and take median.

Pr
[
Ω(1) ≤ |M(x).a|

|a| ≤ O(log n)
]
≥ 9/10



a) Neat Result for L2

b) Sketching Sketches
c) Other Results



Other Results



Other Results
• Mutual Information:

• Can’t (1+ε)-factor approximate in o(n) space

• Can ±ε using algorithms for approx. entropy.

• [Chakrabarti, Cormode, McGregor ’07]



Other Results
• Mutual Information:

• Can’t (1+ε)-factor approximate in o(n) space

• Can ±ε using algorithms for approx. entropy.

• [Chakrabarti, Cormode, McGregor ’07]

• Distributed Model:  
• Player 1 sees (3,.), (5,.), (2,.), (3,.), (7,.), (1,.), (3,.), (6,.), ...

• Player 2 sees (.,5), (.,3), (.,7), (.,4), (.,1), (.,2), (.,9), (.,6), ...

• Very hard in general, e.g., can’t check if L1(s-r)=0 



Other Results
• Mutual Information:

• Can’t (1+ε)-factor approximate in o(n) space

• Can ±ε using algorithms for approx. entropy.

• [Chakrabarti, Cormode, McGregor ’07]

• Distributed Model:  
• Player 1 sees (3,.), (5,.), (2,.), (3,.), (7,.), (1,.), (3,.), (6,.), ...

• Player 2 sees (.,5), (.,3), (.,7), (.,4), (.,1), (.,2), (.,9), (.,6), ...

• Very hard in general, e.g., can’t check if L1(s-r)=0 

• Additive Approximation for L1(s-r):

• where qi is q conditioned on first term equals i.

• [Guha, McGregor, Venkatasubramanian ’06]

L1(p − q) =
∑

i piL1(q − qi )



Main Results

Can estimate L2(r-s) well using neat 
extension of AMS sketch.

Can estimate L1(r-s) up to O(log n) 
factor using p-stable distributions.

Can estimate mutual information 
additively using entropy algorithms.

Questions?


