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Abstract

We consider directed graph algorithms in a streaming setting,
focusing on problems concerning orderings of the vertices.
This includes such fundamental problems as topological
sorting and acyclicity testing. We also study the related
problems of finding a minimum feedback arc set (edges
whose removal yields an acyclic graph), and finding a sink
vertex. We are interested in both adversarially-ordered and
randomly-ordered streams. For arbitrary input graphs with
edges ordered adversarially, we show that most of these
problems have high space complexity, precluding sublinear-
space solutions. Some lower bounds also apply when the
stream is randomly ordered: e.g., in our most technical result
we show that testing acyclicity in the p-pass random-order
model requires roughly n'T'/? space. For other problems,
random ordering can make a dramatic difference: e.g., it is
possible to find a sink in an acyclic tournament in the one-
pass random-order model using polylog(n) space whereas
under adversarial ordering roughly nt/? space is necessary
and sufficient given O(p) passes. We also design sublinear
algorithms for the feedback arc set problem in tournament
graphs; for random graphs; and for randomly ordered
streams. In some cases, we give lower bounds establishing
that our algorithms are essentially space-optimal. Together,
our results complement the much maturer body of work on
algorithms for undirected graph streams.

1 Introduction

While there has been a large body of work on undi-
rected graphs in the data stream model [20], the com-
plexity of processing directed graphs (digraphs) in this
model is relatively unexplored. The handful of excep-
tions include multipass algorithms emulating random
walks in directed graphs [15,22], establishing prohibitive
space lower bounds on finding sinks [13] and answering
reachability queries [11], and ruling out semi-streaming

" *Supported in part by NSF under awards 1907738, 1908849,
and 1934846.
fDepartment of Computer Science, Dartmouth College.
tDepartment of Computer Science, Dartmouth College.
8College of Information and Computer Sciences, University of
Massachusetts, Amherst.
TDepartment of Computer Science, Dartmouth College. Work
performed in part while the author was at University of Mas-
sachusetts, Amherst.

in Directed Graph Streams*

Andrew McGregor® Sofya Vorotnikova¥

constant-pass algorithms for directed reachability [12].
This is rather unfortunate given that many of the mas-
sive graphs often mentioned in the context of motivating
work on graph streaming are directed, e.g., hyperlinks,
citations, and Twitter “follows” all correspond to di-
rected edges.

In this paper we consider the complexity of a variety
of fundamental problems related to vertex ordering in
directed graphs. For example, one basic problem that
motivated! much of this work is as follows: given a
stream consisting of edges of an acyclic graph in an
arbitrary order, how much memory is required to return
a topological ordering of the graph? In the offline
setting, this can be computed in O(m + n) time using
Kahn’s algorithm [16] or via depth-first trees [23] but
nothing was known in the data stream setting.

We also consider the related minimum feedback
arc set problem, i.e., estimating the minimum num-
ber of edges (arcs) that need to be removed such
that the resulting graph is acyclic. This problem is
NP-hard and the best known approximation factor is
O(lognloglogn) for arbitrary graphs [10], although a
PTAS is known in the case of tournaments [18]. Again,
nothing was known in the data stream model. In con-
trast, the analogous problem for undirected graphs is
well understood in the data stream model. The number
of edges required to make an undirected graph acyclic
is m — n + ¢ where c¢ is the number of connected com-
ponents. The number of connected components can be
computed in O(nlogn) space by constructing a span-
ning forest [2,11].

Previous Work. Some versions of the problems we
study in this work have been considered previously in
the query complexity model. For example, Huang et
al. [14] consider the “generalized sorting problem” where
G is an acyclic graph with a unique topological order.
The algorithm is presented with an undirected version
of this graph and may query any edge to reveal its
direction. The goal is to learn the topological ordering
with the minimum number of queries. Huang et al. [14]
and Angelov et al. [5] also studied the average case

IThe problem was explicitly raised in an open problems session

at the Shonan Workshop “Processing Big Data Streams” (June
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complexity of various problems where the input graph
is chosen from some known distribution. Ailon [3]
studied the equivalent problem for feedback arc set in
tournaments. Note that all these query complexity
results are adaptive and do not immediately give rise
to small-space data stream algorithms.

Perhaps the relative lack of progress on streaming
algorithms for directed graph problems stems from their
being considered “implicitly hard” in the literature, a
point made in the recent work of Khan and Mehta [19].
Indeed, that work and the also-recent work of Elkin [9)
provide the first nontrivial streaming algorithms for
computing a depth-first search tree and a shortest-
paths tree (respectively) in semi-streaming space, using
O(n/ polylogn) passes. Notably, fairly non-trivial work
was needed to barely beat the trivial bound of O(n)
passes.

Some of our work here applies and extends
work of Guruswami and Onak [12], who gave the
first super-linear (in m) space lower bounds in the
streaming model for decision problems on graphs. In
particular, they showed that solving reachability in n-
vertex digraphs using p passes requires pitQ/p) / sy
space. Via simple reductions, they then showed similar
lower bounds for deciding whether a given (undirected)
graph has a short s—t path or a perfect matching.

the

1.1 Results

Arbitrary Graphs. To set the stage, in Section 2
we present a number of negative results for the case
when the input digraph can be arbitrary. In particular,
we show that there is no one-pass sublinear-space algo-
rithm for such fundamental digraph problems as testing
whether an input digraph is acyclic, topologically sort-
ing it if it is, or finding its feedback arc set if it is not.
These results set the stage for our later focus on spe-
cific families of graphs, where we can do much more,
algorithmically.

For our lower bounds, we consider both arbitrary
and random stream orderings. In Section 2.1, we con-
centrate on the arbitrary ordering and show that check-
ing whether the graph is acyclic, finding a topological
ordering of a directed acyclic graph (DAG), or any mul-
tiplicative approximation of feedback arc set requires
(n?) space in one pass. The lower bound extends to
nHQ(l/p)/po(l) when the number of passesis p > 1. In
Section 2.2, we show that essentially the same bound
holds even when the stream is randomly ordered. This
strengthening is one of our more technically involved
results and it is based on generalizing a fundamental
result by Guruswami and Onak [12] on s—t connectivity
in the multi-pass data stream model.

As a by-product of our generalization, we also

obtain the first random-order super-linear (in n) lower
bounds for the undirected graph problems of deciding
(i) whether there exists a short s—t path (ii) whether
there exists a perfect matching.

Tournaments. A tournament is a digraph that has
exactly one directed edge between each pair of distinct
vertices. If we assume that the input graph is a
tournament, it is trivial to find a topological ordering,
given that one exists, by considering the in-degrees of
the vertices. Furthermore, it is known that ordering
the vertices by in-degree yields a 5-approximation to
feedback arc set [8].

In Section 3, we present an algorithm which com-
putes a (1 4 ¢)-approximation to feedback arc set in
one pass using O(c~2n) space?. However, in the post-
processing step, it estimates the number of back edges
for every permutation of vertices in the graph, thus re-
sulting in exponential post-processing time. Despite its
“brute force” feel, our algorithm is essentially optimal,
both in its space usage (unconditionally) and its post-
processing time (in a sense we shall make precise later).
We address these issues in Section 3.4. On the other
hand, in Section 3.2, we show that with O(logn) addi-
tional passes it is possible to compute a 3-approximation
to feedback arc set while using only polynomial time and
O(n) space.

Lastly, in Section 4, we consider the problem of
finding a sink in a tournament which is guaranteed to
be acyclic. Obviously, this problem can be solved in
a single pass using O(n) space by maintaining an “is-
sink” flag for each vertex. Our results show that for
arbitrary order streams this is tight. We prove that
finding a sink in p passes requires Q(n'/?/p?) space.
We also provide an O(n'/Plog(3p))-space sink-finding
algorithm that uses O(p) passes, for any 1 < p < logn.
In contrast, we show that if the stream is randomly
ordered, then using polylog n space and a single pass is
sufficient. This is a significant separation between the
arbitrary-order and random-order data stream models.

Random Graphs. In Section 5, we consider a natu-
ral family of random acyclic graphs (see Definition 1.1
below) and present two algorithms for finding a topo-
logical ordering of vertices. We show that, for this fam-
ily, O(n*/3) space is sufficient to find the best ordering
given O(logn) passes. Alternatively, 5(713/ 2) space is
sufficient given only a single pass, on the assumption
that the edges in the stream are randomly ordered.

Rank Aggregation. In Section 6, we consider the
problem of rank aggregation (formally defined in the
next section), which is closely related to the feedback

2Throughout the paper, 5(f(n)) = O(f(n) polylogn).
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Problem Passes Input Order Space Bound Notes
ACYC 1 O(n?)
ACYC » PIH2(1/p) p0(1)
mult. approx. FAS-SIZE 1 O(n?)
mult. approx. FAS-SIZE P pt+2/p) /pO)
mult. approx. FAS 1 O(n?)
O(1)-approx. FAS P pt /) /pO)
STCONN-DAG D random nt+2/p) /pO) error probability 1/p(®)
ACYC P random nt+2/p) /pO) error probability 1/p(®)
O(1)-approx. FAS P random pt+e/p) /pO) error probability 1/p®®)
(1 + &)-approx. FAS-T 1 O(e~2n) exp. time post-processing
3-approx. FAS-T D 6(n1+1/p)
ACYC-T 1 O(n)
ACYC-T P Q(n/p)
SINK-FIND-T 2p—1 O(n'/?)
SINK-FIND-T p Q(n'/? /p?)
SINK-FIND-T 1 random o(1)
TOPO-SORT O(logn) O(n*/3) random DAG + planted path
TOPO-SORT 1 random O(n?/?) random DAG + planted path
(1 + ¢)-apx. RANK-AGGR 1 O(e72n) exp. time post-processing

Table 1: Summary of our algorithmic and space lower bound results. These problems are defined in Section 1.2.
The input stream is adversarially ordered unless marked as “random” above. Besides the above results, we also
give an oracle (query complexity) lower bound in Section 3.4.

arc set problem. We present a one-pass, 6(5_2n)
space algorithm that returns (1 + ¢)-approximation to
the rank aggregation problem. The algorithm is very
similar to our (1 + ¢)-approximation of feedback arc set
in tournaments and has the same drawback of using
exponential post-processing time.

A summary of these results is given in Table 1.

1.2 Models and Preliminaries

Vertex Ordering Problems in Digraphs. An
ordering of an n-vertex digraph G = (V,E) is a list
consisting of its vertices. We shall view each ordering o
as a function o: V' — [n], with o(v) being the position of
v in the list. To each ordering o, there corresponds a set
of back edges Ba(o) = {(v,u) € E: o(u) < o(v)}. We
say that o is a topological ordering if Bg(o) = @; such o
exists iff G is acyclic. We define 8¢ = min{|Bg(0)|: o
is an ordering of G}, i.e., the size of a minimum feedback
arc set for G.

We now define the many interrelated digraph prob-
lems studied in this work. In each of these problems,
the input is a digraph G, presented as a stream of its

edges. The ordering of the edges is adversarial unless
specified otherwise.

ACYC: Decide whether or not G is acyclic.

TOPO-SORT: Under the promise that G is acyclic,
output a topological ordering of its vertices.

STCONN-DAG: Under the promise that G is acyclic,
decide whether it has an s-to-t path, these being
two prespecified vertices.

SINK-FIND: Under the promise that G is acyclic,
output a sink of G.

FAS-SIZE (a-approximation): Output an

B S [6Ga aﬁG]'

FAS (a-approximation): Output an ordering ¢ such
that |Bg(0')‘ < afig.

integer

FAS-T: Solve FAS under the promise that G is a
tournament. In a similar vein, we define the
promise problems ACYC-T, TOPO-SORT-T, SINK-
FIND-T, FAS-SIZE-T.

For randomized solutions to these problems we shall
require that the error probability be at most 1/3.
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We remark that the most common definition of the
minimum feedback arc set problem in the literature on
optimization is to identify a small set of edges whose
removal makes the graph acyclic, so FAS-SIZE is closer
in spirit to this problem than FAS. As we shall see, our
algorithms will apply to both variants of the problem.
On the other hand, lower bounds sometimes require
different proofs for the two variants. Since fg =0 iff G
is acyclic, we have the following basic observation.

OBSERVATION 1.1. Producing a multiplicative approxi-
mation for any of FAS, FAS-T, FAS-SIZE, and FAS-SIZE-T
entails solving (respectively) TOPO-SORT, TOPO-SORT-
T, ACYC, and ACYC-T.

For an ordering m of a vertex set V, define E™ =
{(u,v) € V2 : 7(u) < w(v)}. Define Tou(r) = (V, E™)
to be the unique acyclic tournament on V' consistent
with 7.

As mentioned above, we will also consider vertex
ordering problems on random graphs from a natural
distribution. This distribution, which we shall call a
“planted path distribution,” was considered by Huang
et al. [14] for average case analysis in their work on
generalized sorting.

DEFINITION 1.1. (PLANTED PATH DISTRIBUTION)
Let PlantDAG,, , be the distribution on digraphs on
[n] defined as follows. Pick a permutation m of [n]
uniformly at random.  Retain each edge (u,v) in
Tou(w) with probability 1 if w(v) = w(u) + 1, and with
probability q, independently, otherwise.

Rank Aggregation. The feedback arc set problem
in tournaments is closely related to the problem of
rank aggregation (RANK-AGGR). Given k total orderings
01,-..,0k of n objects we want to find an ordering that
best describes the “preferences” expressed in the input.
Formally, we want to find an ordering that minimizes
cost(m) = Zle d(m,0;), where the distance d(m,0)
between two orderings is the number of pairs of objects
ranked differently by them. That is,

d(m0) = 3 Un(a) < (), o) < o(a)},

a,be[n]

where the notation 1{¢} denotes a 0/1-valued indicator
for the condition ¢.

In the streaming model, the input to RANK-AGGR
can be given either as a concatenation of k£ orderings,
leading to a stream of length kn, or as a sequence of
triples (a,b,i) conveying that o;(a) < o;(b), leading to
a stream of length k(g) Since we want the length of

the stream to be polynomial in n, we assume k = n©®).

Lower Bounds through Communication Com-
plexity. Space lower bounds for data streaming algo-
rithms are most often proven via reductions from stan-
dard problems in communication complexity. We recall
two such problems, each involving two players, Alice
and Bob. In the INDEXy problem, Alice holds a vector
x € {0,1}" and Bob holds an index k € [N]: the goal is
for Alice to send Bob a message allowing him to output
xg. In the DISJy problem, Alice holds x € {0,1}" and
Bob holds y € {0,1}": the goal is for them to commu-
nicate interactively, following which they must decide
whether x and y are disjoint, when considered as sub-
sets of [N], i.e., they must output — \/f\il z; Ay;. In the
special case DISJ s, it is promised that the cardinalities
|x| = |y| = s. In each case, the communication protocol
may be randomized, erring with probability at most 9.
We shall use the following well-known lower bounds.

Fact 1.1. (SEE, E.G., [1,21]) For error probabil-
ity & = %, the one-way randomized complexity
Ryj3(INDEXN) = Q(N) and the general randomized
complezity Ry /3(DISIy n/3) = Q(N).

Other Notation and Terminology. We call an edge
critical if it lies on a directed Hamiltonian path of length
n—1 in a directed acyclic graph. We say an event holds
with high probability (w.h.p.) if the probability is at
least 1 — 1/ poly(n). Given a graph with a unique total
ordering, we say a vertex u has rank r if it occurs in the
rth position in this total ordering.

2 General Digraphs and the Hardness of some
Basic Problems

In this section, our focus is bad news. In particular, we
show that there is no one-pass sublinear-space algorithm
for the rather basic problem of testing whether an input
digraph is acyclic, nor for topologically sorting it if
it is. These results set the stage for our later focus
on tournament graphs, where we can do much more,
algorithmically.

2.1 Arbitrary Order Lower Bounds

To begin, note that the complexity of TOPO-SORT-
T is easily understood: maintaining in-degrees of all
vertices and then sorting by in-degree provides a one-
pass O(nlogn)-space solution. However, the problem
becomes maximally hard without the promise of a
tournament.

THEOREM 2.1. Solving TOPO-SORT in one pass Te-
quires Q(n?) space.

Proof. We reduce from INDEXy, where N = p? for a
positive integer p. Using a canonical bijection from
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[p]? to [N], we rewrite Alice’s input vector as a matrix
X = (Xij)i jep) and Bob’s input index as (y,z) € [p]*.
Our reduction creates a graph G = (V,E) on n = 4p
vertices: the vertex set V = L°w ROw L' & R', where
each |L?| = |R®| = p. These vertices are labeled, with ¢}
being the ith vertex in L° (and similarly for r?, ¢} rl).

Based on their inputs, Alice and Bob create streams
of edges by listing the following sets:

Ex ={(t3,r5) : b€ {0,1}, 4,5 € [p], ; = b},
Eyz = {(TO El), (Tl EO)}

2%y z %y
The combined stream defines the graph G, where E =
ExUE,..
We claim that G is acyclic. In the digraph (V, Ey),
every vertex is either a source or a sink. So the only

vertices that could lie on a cycle in G are Eg, r(z),%, and
rl. Either (¢,72) ¢ E or (£,,r]) ¢ E, so there is in

fact no cycle even among these four vertices.

Let o be a topological ordering of G. If z,, = 0,
then we must, in particular, have o (€)) < o(£}), else we
must have o(¢;) < o(¢)). Thus, by simulating a one-
pass algorithm A on Alice’s stream followed by Bob’s
stream, consulting the ordering o produced by A and
outputting 0 iff 0(62) < J(%), the players can solve
INDEX . It follows that the space used by A must be at
least Ry)3(INDEXy) = Q(N) = Q(p?) = Q(n?). o

For our next two results, we use reductions from
STCONN-DAG. It is a simple exercise to show that a
one-pass streaming algorithm for STCONN-DAG requires
Q(n?) space. Guruswami and Onak [12] showed that a
p-pass algorithm requires n1+9(1/p)/p0(1) space.’

PROPOSITION 2.1. Solving ACYC requires 2(n?) space
in one pass and n*t2A/P) /pON) space in p passes.

Proof. Given a DAG G and specific vertices s, t, let G’
be obtained by adding edge (¢,s) to G. Then G’ is
acyclic iff G has no s-to-t path. By the discussion above,
the lower bounds on AcYC follow. 0

COROLLARY 2.1. A one-pass multiplicative approzima-
tion algorithm for either FAS or FAS-SIZE requires £2(n?)
space. Such approximation for FAS-SIZE in p passes re-
quires n*+/P) 1O space,

Proof. This is immediate from Observation 1.1, Theo-
rem 2.1, and Proposition 2.1. ]

Proving a similar multi-pass lower bound for FAS
takes a little more work.
3Although their paper states the lower bound for s-t connec-

tivity in general digraphs, their proof in fact shows the stronger
result that the bound holds even when restricted to DAGs.

PROPOSITION 2.2. A p-pass O(1)-approzimation algo-
rithm for FAS requires nl“'ﬂ(l/p)/po(l) space.

Proof. Let A be a c-approximation algorithm for FAS,
with ¢ = O(1). We reduce from STCONN-DAG as follows.
Let graph G with specified vertices s,t be an input to
STCONN-DAG. Make ¢ + 1 copies of G. Introduce two
new vertices s* and t*. Add directed edges from s* to
each copy of s, from each copy of t to t*, and from t* to
s*. Let G’ be the resulting (cn 4+ n + 2)-vertex graph.

When there is no s-to-t path in G, our graph G’ is
acyclic, so A must output a topological ordering o: in
particular, o(t*) < o(s*).

When there is an s-to-t path in G, a FAS-minimizing
ordering of G’ must place s* before t*, creating exactly
one back edge. On the other hand, there are at least
c+1 directed cycles in G’ that intersect only in the edge
(t*,s*). In any ordering 7 of G’ with 7(t*) < 7(s*), each
of these c+1 cycles contributes at least one distinct back
edge. Thus, A, being a c-approximation, cannot output
such 7 and must therefore output o with o(s*) < o(t*).

The lower bound follows as A’s placement of s* and
t* solves STCONN-DAG on G. 0

2.2 Random Order Lower Bounds

We consider the STCONN-DAG, ACYC, and FAS problems
in a uniformly randomly ordered digraph stream. Recall
that for adversarially ordered streams, these problems
require about n*t2(/P) gpace in p passes. The hardness
ultimately stems from a similar lower bound for the
SHORTPATH-DAG problem. In this latter problem, the
input is an n-vertex DAG with two designated vertices
vs and v, such that either (a) there exists a path
of length at most 2p + 2 from vs to vy or (b) v is
unreachable from v;. The goal is to determine which
of these is the case.

Our goal in this section is to show that the same
lower bound continues to hold under random ordering,
provided we insist on a sufficiently small error probabil-
ity, about 1/p*(P). We prove this for SHORTPATH-DAG.
As this is a special case of STCONN-DAG, a lower bound
for SHORTPATH-DAG carries over to STCONN-DAG. Fur-
ther, by the reductions in Propositions 2.1 and 2.2, the
lower bounds also carry over to ACYC and FAS. We also
show a barrier result arguing that this restriction to low
error is necessary: for the SHORTPATH-DAG problem, if
an error probability of at least 2/p! is allowed, then O(n)
space is achievable in p passes.

Our proof uses the machinery of the Guruswami—
Onak lower bound for SHORTPATH-DAG under an ad-
versarial stream ordering [12]. As in their work, we
derive our space lower bound from a communication
lower bound for set chasing intersection (henceforth,
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sc1). However, unlike them, we need to prove a “ro-
bust” lower bound for sci, in the sense of Chakrabarti,
Cormode, and McGregor [7], as explained below. To
define sci1, we first set up a special family of multilayer
pointer jumping problems, described next.

Picture a layered digraph G* with 2k + 1 layers
of vertices, each layer having m vertices, laid out in
a rectangular grid with each column being one layer.
From left to right, the layers are numbered —k, —k +
1,...,k. Layer 0 is called the mid-layer. The only
possible edges of G* are from layer ¢ to layer ¢ — 1,
or from layer —¢ to layer —¢ 4 1, for ¢ € [k] (i.e., edges
travel from the left and right ends of the rectangular grid
towards the mid-layer). We designate the first vertex in
layer —k as v, and the first vertex in layer k as v;.

Each vertex not in the mid-layer has exactly t
outgoing edges, numbered 1st through ¢th, possibly with
repetition (i.e., G* is a multigraph). Think of these
edges as pointers. An input to one of our communication
problems (to be defined soon) specifies the destinations
of these pointers. Thus, an input consists of 2mkt
tokens, where each token is an integer in [m] specifying
which of the m possibilities a certain pointer takes. The
pointers emanating from layer ¢ of vertices constitute
the ¢th layer of pointers. Our communication games
will involve 2k players named P_g,...,P_1,Py,..., Pg.
We say that P, is the natural owner of the portion of
the input specifying the ¢th layer of pointers.

In the ScI,;, . problem, the goal is to determine
whether or not there exists a mid-layer vertex reachable
from v, as well as v;. Consider the communication game
where each pointer is known to its natural owner and
the players must communicate in k& — 1 rounds, where
in each round they broadcast messages in the fixed
order P_q,..., P, P,..., P;. Guruswami and Onak
showed that this problem requires total communica-
tion Q(m! /(%) k16 1663/2 1) in the parameter regime
t?k <« m. This almost immediately implies a similar
lower bound for SHORTPATH-DAG—simply reverse the
directions of the pointers in positive-numbered layers—
which then translates into a data streaming lower bound
along standard lines.

The key twist in our version of the SCI problem
is that each pointer is allocated to one of the 2k
players uniformly at random: thus, most pointers are
not allocated to their natural owners. The players
have to determine the output to SCI communicating
exactly in the same pattern as before, up to a small
error probability taken over the protocol’s internal
randomness as well as the random allocation. This
setup potentially makes the problem easier because
there is a good chance that the players will be able to
“jump two pointers” within a single round. Our main

technical result is to show that a lower bound of the
form m!+t2(1/%) holds despite this. In the terminology of
Chakrabarti et al. [7], who lower-bounded a number of
communication problems under such random-allocation
setups, this is a robust communication lower bound.

THEOREM 2.2. Suppose that t** = o(m/ polylog(m))
and that protocol II solves SCl, . with error ¢ <
(2k)~2k=2 when the input is randomly allocated amongst
the 2k players, as described above. Then, II communi-

cates Q(m 1/ (2K) /116 1603/2 ) bits.

To prove this result, we consider a problem we
call MPJ-MEET,,, j ;, defined next (Guruswami and Onak
called this problem OR o LPCE). Consider an input G*
t0 SCLy, k¢ and fix an ¢ € [¢]. If we retain only the ith
pointer emanating from each vertex, for each layer ¢, the
lth layer of pointers defines a function fy;: [n] — [n].
Let x; (respectively, y;) denote the index of the unique
mid-layered vertex reached from v, (respectively, v;) by
following the retained pointers. Formally,

= fo1i(fooi( fopa(1)---
yi = fri(fei( fra(1) ).

Define a function to be r-thin if every element in its
range has at most r distinct pre-images. The instance
G* is said to meet at i if x; = y; and is said to be r-thin
at ¢ if each function f,; is r-thin. The desired output
of MPJ-MEET is

)

t
MPJ-MEET(G") = \/]I{G* meets at i}V
i=1
1{G" is not (C'logm)-thin at i},

for an appropriate universal constant C'. The corre-
sponding communication game allocates each pointer to
its natural owner and asks them to determine the out-
put using the same communication pattern as for SCI.
Here is the key result about this problem.

LEMMA 2.1. (LEMMA 7 OF GURUSWAMI-ONAK [12])
The (k — 1)-round constant-error communication com-
plexity of MPJ-MEET is lower-bounded as follows:

RF L (MPI-MEET,, 1.1) = Q(tm/ (k*® logm)) — O(kt?).
0

Using this, we prove our main technical result.

Proof. [Proof of Theorem 2.2] Based on the e-error
protocol II for SCI, r:, we design a protocol Q for
MPJ-MEET,, 1+ as follows. Let G* be an instance of
MPJ-MEET allocated to players as described above. The
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players first check whether, for some i, G* fails to be r-
thin at ¢, for r := C'logm: this check can be performed
in the first round of communication with each player
communicating a single bit. If the check passes, the
protocol ends with output 1. From now on, we assume
that G* is indeed r-thin at each i € [t].

Using public randomness, the players randomly
renumber the vertices in each layer of G*, creating an
instance G’ of scr.* The players then choose p, a ran-
dom allocation of pointers as in the SCI problem. They
would like to simulate IT on G’, as allocated by p, but of
course they can’t do so without additional communica-
tion. Instead, using further public randomness, for each
pointer that p allocates to someone besides its natural
owner, the players reset that pointer to a uniformly ran-
dom (and independent) value in [m]. We refer to such
a pointer as damaged. Since there are 2k players, each
pointer is damaged with probability 1 — 1/(2k). Let
G" denote the resulting random instance of sc1. The
players then simulate IT on G” as allocated by p.

It remains to analyze the correctness properties of
Q. Suppose that G* is a l-instance of MPJ-MEET.
Then there exists ¢ € [t] such that G* meets at i.
By considering the unique maximal paths out of wy
and v; following only the ith pointers at each vertex,
we see that G* is also a l-instance of scI. Since the
vertex renumbering preserves connectivity, G’ is also a
l-instance of sc1. With probability (2k)~2*, none of
the 2k pointers on these renumbered paths is damaged;
when this event occurs, G” is also a l-instance of
sc1. Therefore, @ outputs 1 with probability at least
(2k)72k (1 — err(IT)) > (2k)72F(1 —¢).

Next, suppose that G* is a 0-instance of MPJ-MEET.
It could be that G* is a l-instance of sci. However,
as Guruswami and Onak show,” the random vertex
renumbering ensures that Pr[sci(G’) = 1] < o(1). For
the rest of the argument, assume that sci(G’) = 0. In
order to have sc1(G”) = 1, there must exist a mid-layer
vertex z such that

= fri (foi (- i (1))
= o1 (=20 for g (1) -4))

some choice of pointer numbers
.y Jk € [t]. We consider three cases.

(2.1)

for
Jiy--

i1y ks

e (Case 1: None of the pointers in the above list is

damaged.  In this case, eq. (2.1) cannot hold,
TThis step is exactly as in Guruswami-Onak [12]. Formally,

each function fy; is replaced by a corresponding function of
form mp; o fy; 0 TrZ_Jrll,i (for £ > 0), for random permutations
m,i: [m] — [m]. To keep things concise, we omit the full details
here.

5See the final paragraph of the proof of Lemma 11 in [12].

because sc1(G’) = 0.

o Case 2: The layer-1 pointer in the above list is
damaged.  Condition on a particular realization
of pointers in negative-numbered layers and let
x denote the mid-layered vertex reached from wvg
by following pointers numbered jg,...,71, as in
eq. (2.1). The probability that the damaged pointer
at layer 1 points to z is 1/m. Since this holds for
each conditioning, the probability that sci(G"”) =1
is also 1/m.

o (Case 3: The layer-€ pointer is damaged, but point-
ers in layers 1,...,¢ — 1 are not, where { >
2. Again, condition on a particular realization of
pointers in negative-numbered layers and let x be
as above. Since the functions f in eq. (2.1) are all
r-thin, the number of vertices in layer /—1 that can
reach x using only undamaged pointers is at most
rf=1 < rk=1. The probability that the damaged
pointer at layer ¢ points to one of these vertices is
at most r¥=1/m.

Combining the cases, the probability that eq. (2.1)
holds for a particular choice of pointer numbers
i1yensiky g1y, Jk € [t] is at most r*~!/m. Tak-
ing a union bound over the t?* choices, the overall
probability Prsci(G") = 1] < t*rk=1/m = o(1),
for the parameter regime t2* = o(m/ polylog(m)) and
r = O(logm). Therefore, Q outputs 1 with probability
at most err(II) 4+ o(1) < & + o(1).

Thus far, we have a protocol @ that outputs 1
with probability a when MPJ-MEET(G™*) = 0 and with
probability 8 when MPJ-MEET(G*) = 1, where a < € +
o(1) and 8 > (2k)~2¥(1—¢). Recall that e = (2k)~2+~2,
so (3 is bounded away from a. Let Q' be a protocol
where we first toss an unbiased coin: if it lands heads,
we output 0 with probability § := (a + 8)/2 and 1
with probability 1 — §; if it lands tails, we simulate
Q. Then Q' is a protocol for MPJ-MEET with error
probability % — (B8 —«)/4. By Lemma 2.1, this protocol
must communicate Q(m!+1/ (28 /161032 ) bits and
so must II. O

By a standard reduction from random-allocation
communication protocols to random-order streaming
algorithms, we obtain the following lower bound: the
main result of this section.

THEOREM 2.3. For each constant p, a p-pass algo-
rithm that solves SHORTPATH-DAG on n-verter di-
graphs whose edges presented in a uniform random or-
der, erring with probability at most l/pQ(p) must use
Q(n+1/2r+2) 116g3/2 n) bits of space.
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Consequently, similar lower bounds hold for the
problems STCONN-DAG, ACYC, and FAS. 0

This paper is focused on directed graph problems.
However, it is worth noting that a by-product of our
generalization of the Guruswami-Onak bound to ran-
domly ordered streams is that we also obtain the first
random-order super-linear (in n) lower bounds for two
undirected graph problems.

COROLLARY 2.2. For each constant p, n*T*1/P) space
18 required to solve either of the following problems in p
passes, erring with probability at most l/pQ(p), over a
randomly ordered edge stream of an n-vertexr undirected
graph G:

o decide whether G contains a perfect matching;

e decide whether the distance between prespecified
vertices vs and vy is at most 2p + 2.

A Barrier Result. Notably, Theorem 2.3 applies only
to algorithms with a rather small error probability. This
is inherent: allowing just a slightly larger error proba-
bility renders the problem solvable in semi-streaming
space. This is shown in the result below, which should
be read as a barrier result rather than a compelling al-
gorithm.

PROPOSITION 2.3. Given a randomly ordered edge
stream of a digraph G, the SHORTPATH-DAG problem
on G can be solved using O(n) space and p passes, with
error probability at most 2/p!.

Proof. Recall that we’re trying to decide whether or not
G has a path of length at most (2p+2) from v, to v;. The
high-level idea is that thanks to the random ordering,
a “Bellman—Ford” style algorithm that grows a forward
path out of vy and a backward path out of v; is very
likely to make more than one step of progress during
some pass.

To be precise, we maintain arrays ds; and d;, each
indexed by V. Initialize the arrays to oo, except that
ds[vs] = diJvy] = 0. During each pass, we use the
following logic.

for each edge (z,y) in the stream:
if ds[x] + di[y] < 2p + 1: output TRUE and halt
ds[y] < min(ds[y], 1 + ds[z])
di[x] < min(d:[z], 1 + dt[y])

If we complete p passes without any output, then we
output FALSE.

If G has no short enough path from v, to vy, this
algorithm will always output FALSE. So let’s consider
the other case, when there is a vs—v; path 7 of length at

most 2p+2. Let vertex z be the midpoint of 7, breaking
ties arbitrarily if needed. The subpaths [v, 2], and
[2,v¢] have lengths ¢ and r, respectively, with ¢ < p+1
and r < p+ 1. Notice that if our algorithm is allowed
to run for g (resp. r) passes, then dg[z] (resp. di[z])
will settle to its correct value. If both of them settle,
then the algorithm correctly outputs TRUE. So, the only
nontrivial case is when ¢, € {p,p + 1}.

Let Es be the event that the random ordering of
the edges in the stream places the edges of [vs, 2], in
the exact reverse order of m. Let E; be the event that
the random ordering places the edges of [z, v4], in the
exact same order as w. If F; does not occur, then for
some two consecutive edges (w, z), (z,y) on [vs, ], the
stream puts (w,z) before (z,y). Therefore, once ds[w)
settles to its correct value, the following pass will settle
not just dg[x], but also ds[y]; therefore, after ¢ — 1 < p
passes, ds[z] is settled. Similarly, if F; does not occur,
then after r — 1 < p passes, di[z] is settled. As noted
above, if both of them settle, the algorithm correctly
outputs TRUE.

Thus, the error probability < Pr[EVE:] < Pr[Eg]+
Pr[E:] =1/q¢' + 1/r! < 2/p!, as required. a

3 Feedback Arc Set in Tournaments

3.1 Accurate, One Pass, but Slow Algorithm
for FAS-T

We shall now design an algorithm for FAs-T (that also
solves FAS-SIZE-T) based on linear sketches for ¢;-norm
estimation. Recall that the ¢;-norm of a vector x €
RN is [|x[; = > iev) |zil- A d-dimensional ¢;-sketch
with accuracy parameter € and error parameter J is a
distribution S over d x N matrices, together with an
estimation procedure Est: R? — R such that

Pr [(1 —e)||x]|1 < Est(Sx) < (1 —|—5)||X1H] >1-96.
S«+S

Such a sketch is “stream friendly” if there is an efficient
procedure to generate a given column of S and further,
Est is efficient. Obviously, a stream friendly sketch leads
to a space and time efficient algorithm for estimating
IIx|l given a stream of entrywise updates to x. We
shall use the following specialization of a result of Kane
et al. [17].

FacT 3.1. (KANE ET AL. [17]) There is a stream
friendly  d-dimensional  fy-sketch — with  accu-
racy ¢ and error & that can handle NP

many +1-updates to x € RN, with each wup-
date taking O(e~%loge~'logd~llog N) time, with
d = O(e%logd~1), and with entries of the sketched
vector fitting in O(log N) bits.
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THEOREM 3.1. There is a one-pass algorithm for FAS-
T that uses O(e~2nlog?n) space and returns a (14 €)-
approximation with probability at least % , but requires
exponential post-processing time.

Proof. Identify the vertex set of the input graph G =
(V,E) with [n] and put N = (}). We index vectors z
in RY as z,,, where 1 < u < v < n. Define a vector
x € {0,1}" based on G and vectors y™ € {0,1}" for
each permutation 7: [n] — [n] using indicator variables
as follows.

Tuw = {(w,v) € B}, yg, = {m(u) <m(v)}.

A key observation is that the wwv-entry of x — y™ is

nonzero iff the edge between u and v is a back edge of G
according to the ordering . Thus, |Bg(7)| = ||lx—y™||1.

Our algorithm processes the graph stream by main-
taining an ¢;-sketch Sx with accuracy €/3 and error
6 = 1/(3-n!). By Fact 3.1, this takes O(c~2nlog?n)
space and O(e~2loge 'nlog? n) time per edge.

In post-processing, the algorithm considers all n!
permutations 7 and, for each of them, computes S(x —
y™) = Sx — Sy™. It thereby recovers an estimate for
lx —y™||1 and finally outputs the ordering 7 that min-
imizes this estimate. By a union bound, the probabil-
ity that every estimate is (1 £ ¢/3)-accurate is at least
1—n!-§ = 2/3. When this happens, the output ordering
provides a (1 + ¢)-approximation to FAS-T by our key
observation above. a

Despite its “brute force” feel, the above algorithm
is essentially optimal, both in its space usage (uncon-
ditionally) and its post-processing time (in a sense we
shall make precise later). We address these issues in
Section 3.4.

3.2 Multiple Passes:
Time

FAS-T in Polynomial

For a more time-efficient streaming algorithm, we design
one based on the KWIKSORT algorithm of Ailon et
al. [4]. This (non-streaming) algorithm operates as
follows on a tournament G = (V, E).

e Choose a
V1,02, ...

random ordering of the vertices:
7’U’I’L‘

e Vertex v; partitions V into two sub-problems {u :
(u,v1) € E} and {w : (v1,w) € E}. At this point
we know the exact place of vy in the ordering.

e Vertex wo further partitions one of the these
sub-problems. Proceeding in this manner, after
v1,v2,...,0; are considered, there are i + 1 sub-
problems.

e Continue until all n vertices are ordered.

When v; is being used to divide a sub-problem we refer
to it as a pivot.

Emulating KwikSort in the Data Stream
Model. We will emulate KWIKSORT in p passes over
the data stream. In each pass, we will consider the
action of multiple pivots. Partition vq,...,v, into p
groups Vi,...,Vp, where Vi = {v1,...,0en1/010gn )} V2
consists of the next en?/? logn vertices in the sequence,
and V; contains en?/Plogn vertices coming after Vi-1.
Here c is a sufficiently large constant. At the end of pass
Jj + 1, we want to emulate the effect of pivots in Vi
on the sub-problems resulting from considering pivots
in V7 through V;. In order to do that, in pass j + 1
for each vertex v € Vj41 we store all edges between v
and vertices in the same sub-problem as v, where the
sub-problems are defined at the end of pass j.

The following combinatorial lemma plays a key role
in analyzing this algorithm’s space usage.

LEMMA 3.1. (MEDIOCRITY LEMMA) In an n-vertex
tournament, if we pick a vertex v uniformly at ran-
dom, then Prlen < din(v) < (1 —¢)n] > 1—4e. Simi-
larly, Prlen < dout(v) < (1 —e)n] > 1 —4e. In partic-
ular, with probability at least 1/3, v has in/out-degree
between n/6 and 5n/6.°

Proof. Let H be a set of vertices of in-degree at least
(1—¢)n. Let h = |H|. On the one hand, } _ din(v) =
(1—¢)nh. On the other hand, the edges that contribute
to the in-degrees of vertices in H have both endpoints in
H or one endpoint in H and one in V'\ H. The number
of such edges is

Z din (U) <

(Z) +h(n—h) = %(2nh—h2 —h).
veEH
Therefore, (2nh — h? — h)/2 > (1 — €)nh. This implies
h < 2en.

Thus, the number of vertices with in-degree at least
(1 —&)n (and out-degree at most en) is h < 2en. By
symmetry, the number of vertices with out-degree at
least (1 — ¢)n (and in-degree at most en) is also less
than 2en. Thus, the probability a random vertex has

8 The Mediocrity Lemma is tight: consider sets of vertices
A, B,C where |A| = |C| = 2en and |B| = (1 — 4¢)n. Edges on
B do not form any directed cycles. Subgraphs induced by A and
C' are balanced, i.e., the in-degree equals the out-degree of every
vertex (where degrees here are considered within the subgraph).
All other edges are directed from A to B, from B to C, or from A
to C. Then vertices with in/out-degrees between en and (1 —¢e)n
are exactly the vertices in B, and a random vertex belongs to this
set with probability 1 — 4e.
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in/out-degree between en and (1 —e)n is (n — 2h)/n >
(n—2-2en)/n=1-4e. a

Space Analysis. Let M; be the maximum size of a
sub-problem after pass j. The number of edges collected
in pass j + 1 is then at most M;|V;;1|. By Lemma 3.2
(below), this is at most cn't'/Plogn. Once the post-
processing of pass j + 1 is done, the edges collected in
that pass can be discarded.

LEMMA 3.2. With high probability, M; < nt=3/? for all
j-

Proof. Let M7 denote the size of the sub-problem that
contains v, after the jth pass. We shall prove that, for
cach v, Pr[M? > n'=3/?] <1/n'°. The lemma will then
follow by a union bound.

Take a particular vertex v. If, before the jth
pass, we already have M7 ; < n'=3/? there is nothing
to prove. So assume that MY , > n'=//?. Call a
pivot “good” if it reduces the size of the sub-problem
containing v by a factor of at least 5/6. A random pivot
falls in the same sub-problem as v with probability at
least n'=7/P /n; when this happens, by the Mediocrity
Lemma, the probability that the pivot is good is at least
1/3. Overall, the probability that the pivot is good is
at least n=7/7 /3.

In the jth pass, we use cn?/? log n pivots. If at least
logg 5 n of them are good, we definitely have M} <
n'=3/P. Thus, by a Chernoff bound, for a sufficiently
large ¢, we have

Pr [MJ” > nl_j/p}
< Pr [Bin (cnj/” log n, Tfj/p/?)) < loggs n}

< l/nlo.
O

THEOREM 3.2. There exists a_polynomial time p-pass
data stream algorithm using O(n'*/P) space that re-
turns a 3-approzimation (in expectation) for FAS-T.

Proof. The pass/space tradeoff follows from Lemma 3.2
and the discussion above it; the approximation factor
follows directly from the analysis of Ailon et al. [4].
O

3.3 A Space Lower Bound

Both our one-pass algorithm and the O(logn)-pass
instantiation of our multi-pass algorithm use at least
Q(n) space. For FAS-SIZE-T, where the desired output
is a just a number, it is reasonable to ask whether o(n)-
space solutions exist. We now prove that they do not.

PROPOSITION 3.1. Solving ACYC-T is possible in one
pass and O(nlogn) space. Meanwhile, any p-pass
solution requires Q(n/p) space.

Proof. For the upper bound, we maintain the in-degrees
of all vertices in the input graph G. Since G is a
tournament, the set of in-degrees is exactly {0, 1,...,n—
1} iff the input graph is acyclic.

For the lower bound, we reduce from DISJy n/3-
Alice and Bob construct a tournament T on
n = T7TN/3 vertices, where the vertices are labeled
{v1,...,van,w1,...,wyy3}. Alice, based on her input
x, adds edges (ve;,v2;—1) for each i € x. For each re-
maining pair (i,7) € [2N] x [2N] with ¢ < j, she adds
the edge (vs,v;). Let a1 < --- < apys be the sorted or-
der of the elements in Bob’s set y. For each k = a4 € vy,
Bob defines the alias von4r = wy and then adds the
edges

Ey ={(vi,vonsg): 1<i<2k—1} U
{(van+k,vj) : 2k < j < 2N}.

Finally, he adds the edges {(w;,w;) : 1 <i < j < N/3}.
This completes the construction of T

We claim that the tournament 7' is acyclic iff xNy =
&. The “only if” part is direct from construction, since
if x and y intersect at some index k € [IN], we have the
directed cycle (vag, Vog—1, Van 4k, U2k ). For the “if” part,
let o be the ordering (v1,...,van) and let 77 = Tou(o),
as defined in Section 1.2. We show how to modify
o into a topological ordering of T', proving that T is
acyclic. Observe that, by construction, the tournament
T\{wi,...,wyn/3} can be obtained from 7" by flipping
only the edges (ve;—1,v9;) for each ¢ € x. Each time
we perform such an edge flip, we modify the topological
ordering of 7" by swapping the associated vertices of the
edge. The resultant ordering would still be topological
as the vertices were consecutive in the ordering before
the flip. Thus, after performing these swaps, we get
a topological ordering of T'\ {w1,...,wn/3}. Now,
consider some k € y. Since xNy = &, k ¢ x and so, vag
succeeds vgx_1 in this ordering, just as in o, since we
never touched these two vertices while performing the
swaps. Thus, for each such k, we can now insert von 1k
between wvop_1 and wor in the ordering and obtain a
topological ordering of T'. This proves the claim.

Thus, given a p-pass solution to ACYC-T using s
bits of space, we obtain a protocol for DISJy y/3 that
communicates at most (2p — 1)s bits. By Fact 1.1,
(2p—1)s = Q(N) =Q(n), ie., s =Q(n/p). 0

THEOREM 3.3. A p-pass multiplicative approximation
for FAS-SIZE-T requires Q2(n/p) space.

Proof. This is immediate
and proposition 3.1. 0

from Observation 1.1
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3.4 An Oracle Lower Bound

Let us now consider the nature of the post-processing
performed by our one-pass FAS-T algorithm in Sec-
tion 3.1. During its streaming pass, that algorithm
builds an oracle based on G that, when queried on an
ordering o, returns a fairly accurate estimate of | Bg (o).
It proceeds to query this oracle n! times to find a good
ordering. This raises the question: is there a more ef-
ficient way to exploit the oracle that the algorithm has
built? A similar question was asked in Bateni et al. [6] in
the context of using sketches for the maximum coverage
problem.

Were the oracle exact—i.e., on input o it returned
|Bg(0)| exactly—then two queries to the oracle would
determine which of (4, j) and (j,4) was an edge in G. Tt
follows that O(nlogn) queries to such an exact oracle
suffice to solve FAS-T and FAS-SIZE-T. However, what
we actually have is an e-oracle, defined as one that, on
query o, returns 3 € R such that (1 —¢)|Bg(0)] < f <
(14 ¢€)|Bg(o)|. We shall show that an e-oracle cannot
be exploited efficiently: a randomized algorithm will,
with high probability, need exponentially many queries
to such an oracle to solve either FAS-T or FAS-SIZE-T.

To prove this formally, we consider two distributions
on n-vertex tournaments, defined next.

DEFINITION 3.1. Let Dyes, Dyo be distributions on tour-
naments on [n] produced as follows. To produce a sam-
ple from Dyes, pick a permutation m of [n] uniformly
at random; output Tou(rw). To produce a sample from
Do, for each i,j with 1 < i < j < n, independently at
random, include edge (i, j) with probability % ; otherwise
include edge (j4,1).

Let o be an ordering of [n]. By linearity of
expectation, if T" is sampled from either Dyes or Dy,

Bl (o) =mi=5(3)-

In fact, we can say much more.

LEMMA 3.3. There is a constant ¢ such that, for all
e > 0, sufficiently large n, a fized ordering o on [n],
and random T drawn from either Dyes 01 Dyo,

Pri(l—e)m < |Br(o)| < (1+e)m]>1-2"<"

Proof. When T < D,,, the random variable |Br(o)|
has binomial distribution Bin(2m, 3), so the claimed
bound is immediate.

Let T' <= Dyes. Partition the edges of the tourna-
ment into perfect matchings My,..., M, 1. For each
i € [n— 1], let X; be the number of back edges of T

involving M, i.e.,

X; = {(u,v) € M; : either (u,v) € Br(o)
or (v,u) € Br(o)}|.

Notice that X; ~ Bin(n/2, 3), whence
Pr{(1—e)n/d < X; < 21 +e)nj4] >1 -2,

for a certain constant b. By a union bound, the
probability that all of the X;s are between these bounds
is at least 1 — (n—1)27%°" > 1 —2-"n_for suitable c.
When this latter event happens, we also have (1—¢)m <
|Br(o)] = L0 X, < (1+e)m. 0

We define a (g, ¢)-query algorithm for a problem P
to be one that access an input digraph G solely through
queries to an e-oracle and, after at most ¢ such queries,
outputs its answer to P(G). We require this answer to
be correct with probability at least %

Now consider the particular oracle Or ., describing
an n-vertex tournament 7', that behaves as follows when
queried on an ordering o.

o If (1—¢/2)m < |Br(o)] < (1+¢/2)m, then return
m.

o Otherwise, return |Br(o)|.

Clearly, Ot is an e-oracle. The intuition in the next
two proofs is that this oracle makes life difficult by
seldom providing useful information.

PROPOSITION 3.2. Every (q,e)-query algorithm for
TOPO-SORT-T makes exp(Q(e?n)) queries.

Proof. WLOG, consider a (g,¢)-query algorithm, A,
that makes exactly g queries, the last of which is its
output. Using Yao’s minimax principle, fix A’s random
coins, obtaining a deterministic (g,e)-query algorithm
A’ that succeeds with probability > % on a random
tournament 1" <= Dyes. Let 01,...,04 be the sequence
of queries that A’ makes when the answer it receives
from the oracle to each of oy,...,04—1 is m.

Suppose that the oracle supplied to A’ is Or . Let
& be the event that A’’s query sequence is o1, ...,04
and it receives the response m to each of these queries.
For a particular o;,

Pr[Or.(0;) = m]
=Pr[(1 —¢/2)m < |Br(o;)| < (1 +¢/2)m]
> 1 _ 2—b52n
for a suitable constant b, by Lemma 3.3. Thus, by a

union bound, Pr[€] > 1 — g2’
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When € occurs, A" must output o, but &£ itself
implies that |Br(oq)] # 0, so A" errs. Thus, the
success probability of A’ is at most 1 — Pr[€] < ¢27% .
Since this probability must be at least %, we need
q=2- 2be’n — exp(Q2(e?n)). 0

PROPOSITION 3.3. Every (q,e)-query algorithm for
ACYC-T makes exp(Q(e2n)) queries.

Proof. We proceed similarly to Proposition 3.2, except
that we require the deterministic (g, ¢)-query algorithm
A’ to succeed with probability at least % on a random
T + %(Dyes + Dho). We view T as being chosen in
two stages: first, we pick Z €pr {yes,no} uniformly at
random, then we pick T < Dy.

Define o1,...,04 and & as before. So Pr[f] >
1 —qZ’bEQ". When £ occurs, A’ must output some fixed
answer, either “yes” or “no.” We consider these cases
separately.

Suppose that A’ outputs “no,” declaring that T is
not acyclic. Then A’ errs whenever Z = yes and &
occurs. The probability of this is at least % — q2*b52”,
but it must be at most 3, requiring ¢ = exp(Q(e?n)).

Suppose that A’ outputs “yes” instead. Then it errs
when Z = no, T is cyclic, and £ occurs. Since

Pr[T acyclic | Z = no] = n!/2(3) = exp(—Q(n?)),

we have & > Pr[A’ errs] > 1 — exp(—Q(n?)) — g2,
requiring ¢ = exp(Q(e2n)). d

THEOREM 3.4. A (q,¢)-query algorithm that gives a
multiplicative approximation for either FAS-T or FAS-
SIZE-T must make q = exp(Q(e2n)) queries.
Proof. This is immediate from Observation 1.1
and propositions 3.2 and 3.3. ]

4 Sink Finding in Tournaments

A classical offline algorithm for TOPO-SORT is to repeat-
edly find a sink v in the input graph (which must exist
in a DAG), prepend v to a growing list, and recurse on
G \ v. Thus, SINK-FIND itself is a fundamental digraph
problem. Obviously, SINK-FIND can be solved in a single
pass using O(n) space by maintaining an “is-sink” flag
for each vertex. Our results below show that for arbi-
trary order streams this is tight, even for tournament
graphs.

In fact, we say much more. In p passes, on the
one hand, the space bound can be improved to roughly
O(n?*/?).  On the other hand, any p-pass algorithm
requires about Q(n'/?) space. While these bounds don’t
quite match, they reveal the correct asymptotics for the

number of passes required to achieve polylogarithmic
space usage: namely, O(logn/loglogn).

In contrast, we show that if the stream is randomly
ordered, then using polylog(n) space and a single pass
is sufficient. This is a significant separation between the
adversarial and random order data streams.

4.1 Arbitrary Order Sink Finding

THEOREM 4.1. (MULTI-PASS ALGORITHM) For all p
with 1 < p < logn, there is a (2p — 1)-pass algorithm
for SINK-FIND-T that uses O(n'/?log(3p)) space and has
failure probability at most 1/3.

Proof. Let the input digraph be G = (V,E). For a
set S C V, let maxS denote the vertex in S that
has maximum in-degree. This can also be seen as
the maximum vertex within S according to the total
ordering defined by the edge directions.

Our algorithm proceeds as follows.

e Initialization: Set s = [n'/PIn(3p)]. Let S; be a
set of s vertices chosen randomly from V.

e Fori=1top—1:

— During pass 2i — 1: Find v; = max5; by
computing the in-degree of each vertex in .5;.

— During pass 2i: Let S;;11 be a set of s vertices
chosen randomly from {u: (v;,u) € E}.

o During pass 2p—1: Find v, = max .S, by computing
the in-degree of each vertex in S,,.

For the sake of analysis, consider the quantity ¢; =
{u : (v;,u) € E}|. Note that, for each i € [p],

1
Pr [ei > el-_l/nl/p] =(1-1/n/P)" < .
3p
Thus, by the union bound, ¢, = 0 with probability at
least 1 — p/(3p) = 2/3. Note that ¢, = 0 implies that
vp is a sink. O

We turn to establishing a multi-pass lower bound.
Our starting point for this is the tree pointer jumping
problem TPJ ;, which is a communication game involv-
ing k players. To set up the problem, consider a com-
plete ordered k-level t-ary tree T'; we consider its root z
to be at level 0, the children of z to be at level 1, and so
on. We denote the i-th child of y € V(T') by y;, the j-th
child of y; by ¥, ;, and so on. Thus, each leaf of T is of
the form z;,, . ;, , for some integers i1,...,ix_1 € [t].

An instance of TPJ,, is given by a function
¢: V(T) — [t] such that ¢(y) € {0,1} for each leaf
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y. The desired one-bit output is

TPI(¢) == g™ (2) = g(g(- - g(2) --+)) , where
o) i {¢<y>,

Yo(y) >

(4.2) if y is 3., leaf,
otherwise.

For each j € {0,...,k — 1}, Player j receives the input
values ¢(y) for each vertex y at level j. The players
then communicate using at most k — 1 rounds, where a
single round consists of one message from each player,
speaking in the order Player k — 1, ..., Player 0. All
messages are broadcast publicly (equivalently, written
on a shared blackboard) and may depend on public
random coins. The cost of a round is the total number
of bits communicated in that round and the cost of a
protocol is the mazimum, over all rounds, of the cost
of a round. The randomized complexity R*~!(TPJy, ;) is
the minimum cost of a (k — 1)-round -error protocol
for TPJy ;.

Combining the lower bound approach of
Chakrabarti et al. [7] with the improved round
elimination analysis of Yehudayoff [24], we obtain the
following lower bound on the randomized communica-
tion complexity of the problem.

THEOREM 4.2. RF7Y(TPJy ) = Q(t/k). O
Based on this, we prove the following lower bound.

THEOREM 4.3. (MULTI-PASS LOWER BOUND) Any
streaming algorithm that solves SINK-FIND-T in p
passes must use Q(n/?/p?) space.

Proof. We reduce from TPJj;, where k = p+ 1. We
continue using the notations defined above. At a high
level, we encode an instance of TPJ in the directions of
edges in a tournament digraph G, where V(G) can be
viewed as two copies of the set of leaves of T'. Formally,

V(G) = {(iy, ..

We assign each pair of distinct vertices u,v € V(G)
to a level in {0,...,k — 1} as follows. Suppose that
w = (i1,...,9) and v = (i,...,1}). We assign {u, v} to
level j—1, where j is the smallest index such that i; # z;
Given an instance of TPJ ¢, the players jointly create
an instance of SINK-FIND-T as follows. For each j from
k—1to 0, in that order, Player j assigns directions for all
pairs of vertices at level j, obtaining a set £ of directed
edges, and then appends E; to a stream. The combined
stream Ej,_q1 0---0 F; o Ey defines the tournament G.
It remains to define each set F; precisely.

The set Er_1 encodes the bits ¢(y) at the leaves y
of T as follows.

(4.3)
B ={((i,1—a),{i,a) € V(G)?: ¢() =a},

'aik—ha') :

each i; € [t] and a € {0,1}}.

Notice that if we ignore edge directions, Fy_; is a
perfect matching on V(G).

Now consider an arbitrary level j € {0,..., &k —2}.
Corresponding to each vertex z;,,... ., , at level j of T,
we define the permutation 7, : [t] = [t] thus:

A..,ijfl

(771'17---#]’71 (1)7 s Ty, (t))
= (1,...,5—1,54—17...,75,2)7
where £ = ¢(2i,,...i;_,) -

(4.4)

Using this, we define E; so as to encode the pointers at
level j as follows.

B, = {({ir, .

7ik>7 <7;17 ..
(45) e V(G):ml i (i) <ml o ()}

k)

. . . ./
o li—15T5, . .,’Ljfl,lj,...

It should be clear that the digraph (V(G), Ey U
EiU--- U Eg_1) is a tournament. We argue that
it is acyclic. Suppose, to the contrary, that G has
a cycle o. Let j € {0,...,k — 2} be the smallest-
numbered level of an edge on o. Then there exist
hi,...,hj—1 such that every vertex on o is of the
form (hy,...,hj_1,4j,...,i). Let v ... (") be the
vertices on ¢ whose outgoing edges belong to level j.
For each ¢ € [r], let v(® = (hl,...,hj,l,ig»q),...,i;@).
Let = mp,,...n,_,- According to eq. (4.5),

A @) <716y <o
a contradiction.

It follows that G has a unique sink. Let v =
(h1,...,ht—1,a) € V(G) be this sink. In particular, for
each level j € {0,...,k—2}, all edges in E; involving v
must be directed towards v. According to eq. (4.5), we
must have ”}711,4..,hj,1(hj) =t, i.e, Thy,. . n;_,(t) = hy.
By eq. (4.4), this gives ¢(zn,,...n,_,) = hj. Next, by
eq. (4.2), this gives g(zn,,...n;_,) = Zhy,....h;- Instanti-
ating this observation for j =0,...,k — 2, we have

Zhy = 9(2)7 Zhy,hy = g(zh1)7
cvs Rhy,.nhpo1 = g(zhly-'7hk—2) )

ie., Zhi,.ihp_1 = g(k’l)(z).

At this point hq,...,hi_1 have been determined,
leaving only two possibilities for v. We now use the fact
that the sole edge in Ej_; involving v must be directed
towards v. According to eq. (4.3), ¢(%hy,...hp_,) = G-
Invoking eq. (4.2) again, a = ¢(g* 1 (2)) = g (z) =
TPJj.4(9).

Thus, the players can read off the desired output
TPJ +(¢) from the identity of the unique sink of the
constructed digraph G. Notice that n = |V(G)| =
2tF=1_ Tt follows that a (k —1)-pass streaming algorithm
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for SINK-FIND-T that uses S bits of space solves TPJy ;
in k — 1 rounds at a communication cost of £S. By
Theorem 4.2, we have S = Q(t/k?) = Q(n'/*=1)/k?).
O

4.2 Random Order Sink Finding

In this section we show that it is possible to find the sink
of an acyclic tournament in one pass over a randomly
order stream while using only polylog(n) space. The
algorithm we consider is as follows:

o Initialization: Let S be a random set of s =

200 logn nodes.
. Forizltok:zlogg(

__m
2000007 log 2

— Ingest the next ¢; := 100 - 2'(n — 1)logn
elements of the stream: For each v € S,
collect the set of edges S, comnsisting of all
outgoing edges; throw away S, if it exceeds
size 220logn

— Pick any v € S, such that |S,|] = (200 +
20)logn and let S be the endpoints (other
than v) of the edges in S,

o Ingest the next m/1000 elements: find P the set
of vertices w such that there exists an edge uw for
some u € .S

e Ingest the remaining 499m/500 elements: Output
any vertex in P with no outgoing edges.

THEOREM 4.4. There is a single pass algorithm for
SINK-FIND-T that uses O(polylogn) space and has fail-
ure probability at most 1/3 under the assumption that
the data stream is randomly ordered.

Proof. We refer to the ¢; elements used in the iteration
1 as the ith segment of the stream. For a node u, let
Xu,; be the number of outgoing edges from v amongst
the 7th segment. The following claim follows from the
Chernoff bound:

CrLAM 4.1. With high probability,
Irk(u) —n/2' > 0.2-n/2° then

for all uw with

| X,.i — 200logn| > 0.1-200logn .

With high probability, for all uw with |rk(u) — n/2| <
0.05-n/2%, then

| Xy,: —200logn| < 0.1-200logn .

If follows from the claim that if after processing the
ith segment of the stream there exists a v such that
|Sy] = (200 + 20)logn then with high probability
rk(u) = (1£0.2) - n/2°. We next need to argue that
there exists such a v.

CLAaM 4.2. With high probability, for every node u with
rk(u) = (14£0.2)-n/2°", there exists an edge uv in the
ith segment such that |rk(v) —n/2% < 0.05 - n/2".

Proof. There are at least 0.01 - n/2¢ such edges. The
probability that none of them exists in the ith segment
is at most (1 — ¢;/m)®01"/2" < 1/ poly(n). 0

The above two claims allow us to argue by induction
that we will have an element u with rk(u) = (1 +
0.2) - n/2" after the ith segment. At the end of the
kth segment we have identified at least (200 — 20)logn
vertices where every rank is at most (1 + 0.2) - n/2% =
O(logn). With probability at least 1 — 1/ poly(n) one
of these vertices includes an edge to the sink amongst
the (k + 1) segment and hence the sink is in P with
high probability. There may be other vertices in P but
the following claim shows that we will identify any false
positives while processing the final 499m /500 elements
of the stream.

Cramm 4.3. With probability at least 1 — 1/499, there
exists at least once outgoing edge from every node except
the sink amongst the last 499m /500 elements of the
stream

Proof. [Proof of Claim] The probability no outgoing
edge from the an element of rank r > 0 appears in the
suffix of the stream is at most (1 —499/500)" . Hence,
by the union bound the probability that there exists an
element of rank r > 0 without an outgoing edge is at
most Zr>1(1 —499/500)" = 1/499. a0

This concludes the proof of Theorem 4.4. ]

5 Topological Ordering in Random Graphs

We present results for computing a topological ordering
of G ~ PlantDAG,, , (see Definition 1.1). We first
present an O(log n)-pass algorithm using 5(714/ 3) space.
We then present a one-pass algorithm that uses 5(n3/ 2)
space and requires the assumption that the stream is in
random order.

5.1 Arbitrary Order Algorithm

In this section, we present two different algorithms.
The first is appropriate when ¢ is large whereas the
second is appropriate when ¢ is small. Combining these
algorithms and considering the worst case value of ¢
yields the algorithm using O(n*/?) space.

Algorithm for large q. The basic approach is to
emulate QuickSort. We claim that we can find the
relationship between any vertex u among n vertices
and a predetermined vertex v using three passes and
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O(n+q 3logn) space. Assuming this claim, we can sort
in O(log(¢?n)) passes and O(n/q) space: we recursively
partition the vertices and suppose at the end of a phase
we have sub-problems of sizes ni,ns,ns,.... Any sub-
problem with at least 1/¢? vertices is then sub-divided
by picking ©(logn) random pivots (with replacement)
within the sub-problems using the aforementioned three
pass algorithm. There are at most ¢?n such sub-
problems. Hence, the total space required partition all
the sub-problems in this way is at most

n
0] lognZ(ni +¢ 3logn) | = O(ng tlog*n) .

i=1

Note that the size of every sub-problem decreases by a
factor at least 2 at each step with high probability and
hence after log(q?n) iterations, all sub-problems have at
most 1/¢? vertices. Furthermore, each vertex degree is
O(1/q - logn) in each sub-problem. Hence, the entire
remaining instance can be stored using O(n/q - logn)
space.

It remains to prove our three-pass claim. For this,
we define the following families of sets:

L; = {u: 3 u-to-v path of length < i},
R; = {u: 3 v-to-u path of length < i}.

Using two passes and O(nlogn) space we can identify
Ly and Ry using O(nlogn) space. Let U be the set of
vertices not contained in Lo U Ry. The following lemma
(which can be proved via Chernoff bounds) establishes
that Ls U Ry includes most of the vertices of the graph
with high probability.

LEMMA 5.1. With high probability, |U| = O(q~2logn).

In a third pass, we store every edge between vertices in
U and also compute L3 and R3. Computing L3 and R3
requires only O(nlogn) space. There is an edge between
each pair of vertices in U with probability ¢ and hence,
the expected number of edges between vertices in U is
at most ¢|U[?> = O(¢ ®log®n). By an application of
the Chernoff Bound, this bound also holds w.h.p. Note
that L3, R3, and the edges within U suffice to determine
whether u € Lo, or u € Ry for all u. To see this first
suppose u € Lo, and that (u,w) is the critical edge
on the directed path from u to v. Either w € Ly and
therefore we deduce uw € Lg; or u € Lo; or u € Ly and
w & Lo and we therefore store the edge (u,w).
This establishes the following lemma.

LEMMA 5.2. There is a O(logn)-pass, O(n/q)-space
algorithm for TOPO-SORT on a random input graph
G ~ PlantDAG,, ,. a0

Algorithm for small q. We use only two passes. In
the first pass, we compute the in-degree of every vertex.
In the second, we store all edges between vertices where
the in-degrees differ by at most 3v/cnq - Inn where ¢ > 0
is a sufficiently large constant.

LEMMA 5.3. There is a two-pass, 5(n3/2\/§)-5pace al-
gorithm for TOPO-SORT on a random input graph G ~
PlantDAG;, 4.

Proof. We show that, with high probability, the above
algorithm collects all critical edges and furthermore
only collects O(n%2,/q) edges in total. Let u be the
element of rank r,. Note that d;,(u) has distribution
1+Bin(r,—2,¢q). Let X,, = din(u)—1. By an application
of the Chernoff Bound,

Pr || X, — (ru — 2)q] = /e(ry — 2)qlnn] < 1/poly(n).

Hence, w.h.p., r, = 2 + X, /q + \/en/q-Inn for all
vertices u. Therefore, if (u,v) is critical, then
| Xy — Xo| <[ Xy — (ru — 2)q|+
|(Tu - 2)(] - (Tv - 2)(]| + |Xv - (rv - 2)(]|
< 3y/eng-1lnn.
This ensures that the algorithm collects all critical

edges. For the space bound, we first observe that for
an arbitrary pair of vertices w and v, if | X, — X,| <

3v/ceng - Inn then

[ru—7o| < | Xu—Xo|/q+2/en/q-Inn < 8y/en/q-Inn .

Hence, we only store an edge between vertex u and
vertices whose rank differs by at most 8y/cn/q-Inn.
Since edges between such vertices are present with
probability ¢, the expected number of edges stored

incident to w is 8y/eng-Inn and is O(y/ng-Inn) by
an application of the Chernoff bounds. Across all
vertices this means the number of edges stored is

O(n®/?\/q-Tnn) as claimed. o

Combining Lemma 5.2 and Lemma 5.3 yields the
main theorem of this section.

THEOREM 5.1. There is an O(logn)-pass algorithm for
TOPO-SORT on a random input G ~ PlantDAG,, , that

uses O(min(n/q, n3/2,/q) space. For the worst-case over
q, this is O(n*/3). 0

5.2 Random Order Algorithm

The transitive reduction of a DAG G = (V, E) is the
minimal subgraph G™9 = (V,E’) such that, for all
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u,v € V, if G has a u-to-v path, then so does G*9.
So if G has a Hamiltonian path, G*¢ is this path.

The one-pass algorithm assuming a random order-
ing of the edges is simply to maintain G™4 as G is
streamed in, as follows. Let S be initially empty. For
each edge (u,v) in the stream, we add (u,v) to S and
then remove all edges (u',v’) where there is a u'-to-v’
path among the stored edges.

THEOREM 5.2. There is a one-pass algorithm that uses
O(maxg<, min{n/q4,n?q}) space and solves TOPO-SORT
on an input G ~ PlantDAG,, , presented in random

order. In the worst case this space bound is O(n®/?).

Proof. Consider the length-T prefix of the stream where
the edges of G are presented in random order. It will
be convenient to write T = n?§. We will argue that
the number of edges in the transitive reduction of this
prefix is O(min{n/q, n?¢}) with high probability; note
the bound n2§ follows trivially because the transitive
reduction has at most T edges. The result then follows
by taking the maximum over all prefixes.

We say an edge (u,v) of G is short if the difference
between the ranks is r, — r, < 7 := c¢§ 2logn where
c is some sufficiently large constant. An edge that is
not short is defined to be long. Let S be the number
of short edges in G and let M be the total number
of edges in G. Note that E[S] < (n — 1) 4+ ¢7n and
E[M] = (n — 1) + ¢(";"). By the Chernoff bound,
S < 2¢mn and n%q/4 < M < n?q with high probability.
Furthermore, the number of short edges in the prefix is
expected to be T'-S/M and, with high probability, is at
most

4Tqrn

2T -S/M £ ———
S/ n2q/4

= 16¢n/G - logn .

Now consider how many long edges are in the transitive
reduction of the prefix. For any long edge (u,v), let
X, denote the event that (u,w), (w,v) are both in the
prefix. Note that the variables { Xy }wir, +1<r, <r,—1 are
negatively correlated and that

Pr(X, = 1] > (¢T/M)2/2 > /2.

Hence, if X =5 X, then

Wiry +1<ry <ry—1
E[X] > c¢G?logn-§*/2 =c/2-logn

and so, by the Chernoff bound, X > 0 with high
probability and if this is the case, even if (u,v) is in
the prefix, it will not be in the transitive reduction
of the prefix. Hence, by the union bound, with high
probability no long edges exist in the transitive closure
of the prefix. 0

6 Rank Aggregation

Recall the RANK-AGGR problem and the distance d
between permutations, defined in Section 1.2. To recap,
the distance between two orderings is the number of
pairs of objects which are ranked differently by them,
ie.,

d(m, o) := Z 1{n(a) < m(b), o(b) < o(a)}.

a,be[n]

Note that RANK-AGGR is equivalent to finding the
median of a set of k points under this distance function,
which can be shown to be metric. It follows that picking
a random ordering from the k£ input orderings provides
a 2-approximation for RANK-AGGR.

A different approach is to reduce RANK-AGGR to
the weighted feedback arc set problem on a tournament.
This idea leads to a (1 + ¢)-approximation via #1-
norm estimation in a way similar to the algorithm in
Section 3.1. Define a vector x of length (g) indexed by
pairs of vertices {a,b} where

k
Tap = 3 1{oi(a) < o,(b)},
=1

i.e., the number of input orderings that have a < b.
Then for any ordering m define a vector y™, where for
each pair of vertices {a,b},

yoy = k- 1{r(a) < 7(b)}.

Tt is easy to see that ||x — y™||1 = cost(m).

As in Section 3.1, our algorithm maintains an ¢;-
sketch Sx with accuracy €/3 and error § = 1/(3 -
n!). By Fact 3.1, this requires at most O(s~2nlog* n)
space. In post-processing, the algorithm considers all
n! permutations 7w and, for each of them, computes
S(x—y™) = Sx— Sy™. It thereby recovers an estimate
for ||x — y™||; and finally outputs the ordering 7 that
minimizes this estimate.

The analysis of this algorithm is essentially the same
as in Theorem 3.1. Overall, we obtain the following
result.

THEOREM 6.1. There is a one-pass algorithm for rank
aggregation that uses 0(5_2n10g2 n) space, returns a
(1 + &)-approzimation with probability at least %, but
requires exponential post-processing time. 0
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