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ABSTRACT
We study the problem of counting cycles in the adjacency

list streaming model, fully resolving in which settings there

exist sublinear space algorithms. Our main upper bound

is a two-pass algorithm for estimating triangles that uses

Õ (m/T 2/3) space, where m is the edge count and T is the

triangle count of the graph. On the other hand, we show that

no sublinear space multipass algorithm exists for counting

ℓ-cycles for ℓ ≥ 5. Finally, we show that counting 4-cycles is

intermediate: sublinear space algorithms exist in multipass

but not single-pass settings.
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1 INTRODUCTION
Subgraph counting is a fundamental graph problem and an

important primitive in massive graph analysis. It has many

applications in data mining and analyzing the structure of

large networks. In particular, triangle counting and the re-

lated problems of estimating the transitivity and clustering

coefficients arise in spam detection [4], community detection

in social networks [7], identification of web pages with a com-

mon topic [14], and evaluation of large graph models [24];

see Tsourakakis et al. [33] for an overview of applications.

Triangle counting has been studied in various models of

computation for large inputs, such as MapReduce [32], other

parallel models [2, 6], and external memory models [1]. In

the data streammodel, triangle counting was first introduced

by Bar-Yossef, Kumar, and Sivakumar [3]. Subsequent work

has studied algorithms in a number of streaming models [5, 9,

12, 13, 16–18, 21, 23, 26–28]. Other subgraphs have received

less attention in the streaming community, with most work

focused on cycles and cliques [5, 25, 28] and a few papers

considering arbitrary subgraphs of constant size [5, 18, 20].

1.1 Prior Work
Triangle Counting. Two adversarial insertion-only stream-

ing models have been studied in the literature: arbitrary
order, where the edges can arrive in any order, and adjacency
list order, where edges incident to the same vertex arrive to-

gether (and therefore every edge is required to appear twice).

In discussing related work, we use T to denote the number

of triangles in the graph and Õ (·) to hide factors polynomial

in logn and ε−1. In the single-pass arbitrary order model,

Ω(m) space is required to even distinguish between graphs

with 0 and T triangles [9] for any T < n, and thus work

has largely concentrated on providing space bounds param-

eterized by properties of the graph, such as the maximum

degree [17, 28], tangle coefficient [28], number of paths of

length two [16], or the maximum number of triangles shar-

ing an edge or a vertex [18, 27]; see [5] for a summary of

these results. The best known results without such additional

https://doi.org/10.1145/3294052.3319706
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Cycle Passes Space Comments Source

Triangle

1 Õ (P2/T ) P2 = number of paths of length two [12]

1 Õ (m/
√
T ) - [26]

3 Õ (
√
m +m3/2/T ) - [21]

3 Õ (m3/2/T ) - [26]

2 Õ (m/T 2/3) Distinguishing between 0 and T triangles [26]

2 Õ (m/T 2/3) - Theorem 3.7

1 Ω( fpj (m/
√
T ))

Ω( fpj (r )) = communication complexity

of 3-PJr ; T = O (m)
Theorem 5.1

const Ω( fd (m/T
2/3))

Ω( fd (r )) = communication complexity

of 3-DISJr ; T = O (m3/2)
Theorem 5.2

ℓ = 4

2 Õ (m/T 3/8) O (1)-factor approximation Theorem 4.6

1 Ω(m) T = O (n1/3) Theorem 5.3

const Ω(m/T 2/3) T = O (n3/4) Theorem 5.4

ℓ ≥ 5 const Ω(m) T = O (n) Theorem 5.5

Table 1: Cycle counting in adjacency list insertion-only streams. Unless specified otherwise, upper bounds are for
(1 + ε )-estimating the number of cycles and lower bounds for distinguishing between graphs with 0 and T cycles.

parameters are either the trivial O (m) or—for graphs with

many triangles—Õ (mn/T ) [12].
More recently, it has been shown that algorithms using a

constant number of passes over the stream can achieve sub-

linear space for any T = ω (1). The optimal lower bound de-

pending onm andT only was given by Bera and Chakrabarti

in [5]. They proved an Ω(min{m3/2/T ,m/
√
T }) bound and

gave an Õ (m3/2/T ) space algorithm matching one of the

terms. Independently, McGregor, Vorotnikova, and Vu [26]

gave two algorithmsmatching both terms of the lower bound,

and Cormode and Jowhari [13] gave a different algorithm

with Õ (m/
√
T ) space1.

In the adjacency list model, on the other hand, it is possible

to achieve sublinear space without additional parameters.

Prior to this work, the two state-of-the-art algorithms for (1+
ε )-approximating the number of triangles were a single-pass

algorithm using Õ (m/
√
T ) space and a two-pass algorithm

using Õ (m3/2/T ) space by McGregor et al. [26]. They also

gave a two-pass algorithm for distinguishing triangle-free

graphs from those with at least T triangles that uses only

Õ (m/T 2/3) space.

Counting Other Subgraphs. Prior to this work, counting

constant size subgraphs other than triangles had only been

considered in the arbitrary order setting.

1
Note that in the original version of the paper, Cormode and Jowhari initially

claimed that their algorithm returned a (1+ ε )-approximation but this claim

was incorrect. Instead, their proposed algorithm returned a (3+ ε )-estimate.

Subsequently, they designed a new (1+ ε )- approximation algorithm which

appeared in the revised version of the paper.

Bera and Chakrabarti [5] describe an algorithm (1 + ε )-
approximating the number of occurrences of a particular

subgraphH of sizeh using Õ (mβ (H )/T ) space and two passes
over the stream, where β (H ) denotes the size of an edge cover
of H . They improve on this algorithm for cliques and cycles,

achieving Õ (mh/2/T ) space, and provide a matching lower

bound. For single-pass algorithms they show lower bounds of

Ω(mh/T 2) for cliques and odd-length cycles and Ω(mh/2/T )
for even-length cycles. Kallaugher and Price [18] presented

an algorithm for counting copies of an arbitrary subgraph

H which depends on how much the subgraphs overlap with

each other; it is sublinear as long as no constant-size set of

vertices contains a constant fraction of the copies of H .

1.2 Our Setting
Streaming model. We consider the adjacency list streaming

model. In this model, we assume that the stream consists of

a sequence of ordered pairs xy. For each edge {x ,y}, both
xy and yx will be present in the stream. The promise on

the ordering is that all pairs with the same first vertex (the

adjacency list of that vertex) appear consecutively in the

stream. Within the adjacency lists the stream is ordered

arbitrarily. For example, for the graph consisting of a cycle

on three vertices V = {v1,v2,v3}, a possible ordering of the
stream could be ⟨v3v1,v3v2,v1v2,v1v3,v2v3,v2v1⟩. In this

example, we say that the adjacency list for v3 came first,

then the adjacency list for v1, and finally the adjacency list

for v2.



Cycle Counting. For ℓ ≥ 3, we will consider algorithms for

counting the number of ℓ-cycles in a graphG presented as an

adjacency list stream.G hasT cycles, withT unknown to the

algorithm, and the problem is to compute a multiplicative

approximation toT with probability 1−δ . The approximation

factor may be (1 ± ε ), with ε an arbitrary parameter, or it

may be a fixed constant.

Our algorithms are parametrized in terms of T , which is

a convention widely adopted in the literature on subgraph

counting. While T cannot be assumed to be known in ad-

vance, it suffices to know a lower bound onT ′ ≤ T , and then
set our space usage based on T ′, as our bounds will only be

tighter if T > T ′. Furthermore, if T is in fact smaller than

T ′, then we will not be able to accurately estimate T , but we
will be able to determine that it is smaller than T ′. This is
because our bounds are variance-based, with variance that

is increasing in T .
We will be primarily concerned with the space complexity

of the algorithms, expressed in terms of the edge countm,T , ε ,
and δ . When ε and δ are omitted, this denotes the complexity

when ε and δ are constant.

1.3 Our Results
We present new upper and lower bounds for cycle counting

in adjacency list streams. See Table 1 for a summary of known

results and our contributions. For triangle counting we give

a two-pass (1 + ε )-estimation algorithm using Õ (m/T 2/3)
space, improving on the previous best known multipass al-

gorithm. We also present the first adjacency list algorithm

for approximately counting 4-cycles, using Õ (m/T 3/8) space
and two passes over the stream to return a constant-factor

approximation toT . We complement our upper bounds with

lower bound results for all cycle lengths. These are the first

lower bounds for subgraph counting in the adjacency list

model and they fully resolve in which settings there exist

sublinear space cycle counting/distinguishing algorithms.

Both of our algorithms are based on sampling. Sampling-

based approaches to this problem are very sensitive to “heavy”

edges, i.e., edges which are involved in a large number of

cycles. Heavy edges often introduce unacceptably large vari-

ance to the estimator. In our triangle counting algorithm,

we deal with this by defining, for each triangle, a “lightest”

edge, and ensuring that the triangle is only counted if it is

initially sampled at that edge. See Sections 2.1 and 3 for more

in-depth discussion.

In our 4-cycle counting algorithm, we deal with this prob-

lem by showing that a sufficient fraction of the 4-cycles have

at least one wedge that is sufficiently “light”. The difference

from triangle counting is that the algorithm cannot identify
the “light” wedge during the stream; this leads to a constant

factor approximation to the cycle count, rather than 1 + ε .
See Sections 2.2 and 4 for details.

We present lower bounds for counting cycles of all length,

both in one pass and constant number of passes. We use re-

ductions from four known communication complexity prob-

lems: Index (INDEXr ), three-player Number on Forehead

Pointer-jumping (3-PJr ), two-player Disjointness (DISJr ) and

three-player NOF Disjointness (3-DISJr ), where r indicates
the size of the input. The communication complexity of the

two multi-player Number on Forehead (NOF) problems have

not yet been fully resolved [10, 31] and thus we present

our lower bounds for triangle counting as conditional on

the best communication complexity lower bounds for these

problems. It is generally believed that both of these prob-

lems have communication complexity Ω̃(r ), which would

imply lower bounds of Ω̃(m/
√
T ) and Ω̃(m/T 2/3) for one pass

and multipass triangle counting respectively, matching the

corresponding algorithms (from [26] and here) up to poly-

log factors; certainly any result to the contrary would be a

breakthrough. For 4-cycle counting we show that solving

the problem in one pass requires Ω(m) space, but in two

passes it can be done using sublinear amount of space. We

then show that counting larger cycles requires Ω(m) space
for any constant number of passes. The details can be found

in Sections 2.3 and 5.

2 TECHNIQUES
2.1 Triangle Counting Algorithm
Our main upper bound is a two-pass adjacency list streaming

algorithm that counts the number of triangles in a graph

using O
(
m/T 2/3 · logn

)
space, where T is the number of

triangles in the graph and m is the number of edges. To

motivate our methods, consider first the following algorithm

for distinguishing graphs with T triangles from graphs with

no triangles described in [26]:

First Pass Samplem′ edges from the graph.

Second Pass Check if any of these edges are in a trian-

gle.

Note that the second pass can be accomplished with only

2m′ extra bits of storage by, for each adjacency list presented

in the second pass, flagging any endpoint of a sampled vertex

if it appears in the adjacency list. If both endpoints of an

edge are flagged in the adjacency list of some vertex v , that
edge forms a triangle with v .
It can be shown (see, e.g., [15]) that any graph with T

triangles must have at least T 2/3
edges involved in those

triangles, so providedm′ ≥ m/T 2/3
, at least one such edge

will be sampled in the first pass with good probability, and

so the algorithm will detect that the graph has at least one

triangle.



This algorithm gives an unbiased estimator for T , as the
number of triangles found by the algorithm is 3m′T /m in

expectation (if triangles with multiple sampled edges are

counted with multiplicity). However, this estimator has high

variance, due to “heavy” edges—edges involved in many tri-

angles. We can reduce the variance by discarding excessively

heavy edges (for instance, if we discard every edge involved

in at least 100T 1/3
triangles we can reduce the variance to

O (T 2)), but at the cost of biasing the estimator. This approach

will allow us a constant-factor approximation to T , but not
the (1 ± ε )-multiplicative approximation we want.

Instead, consider the following three-pass algorithm,which

only counts a triangle as being sampled if its “lightest” edge

was sampled:

First Pass Sample a size-m′ set S of edges from the graph.

Second Pass Collect the set Q of triangles that include

at least one edge in S .
Third Pass For every triangle uvw ∈ Q , calculate Tuv ,
Tvw ,Twu , the number of triangles inG that useuv ,vw ,

andwu, respectively.
Post-Processing For each edge e ∈ S , and each triangle

τ using e , count τ iff e = argmine ′∈τ Te ′ , breaking ties

arbitrarily.

This algorithm discards most “heavy edges” (it is possible for

a heavy edge to be the lightest edge of some triangle, but not
of most triangles), while providing an unbiased estimator, as

each triangle has an exactlym′/m chance of being counted.

One can show that this leads to an unbiased estimator with

good variance.

However, there are two problems with this algorithm.

Firstly, it takes an extra pass, and secondly, we need to store

Q , which is sizem′T /m in expectation. Therefore, its space

complexity is, in the worst case,

O
(
max

(
m/T 2/3,T 1/3

)
logn

)
To deal with the second problem, we sample a size-m′ sub-
set of the triangles we would collect in the second pass, or

all of them if we see fewer than m′. This gives us a true

O
(
m/T 2/3 · logn

)
-space algorithm.

Nowwe consider the first problem. Our algorithm depends

on, for each triangle sampled, determining whether it was

sampled at its “lightest” edge. It is impossible to determine

this exactly in only two passes, as for each edge e ′ in a

triangle τ , we will only be able to count triangles that involve
e ′ in the postfix of the stream that appears after τ is first

detected.

To solve this, we first note that, if we sample the edge

uv in our first pass, we will be able to add it to S when the

first of the adjacency lists of u,v arrive (assuming we use a

hash-based sampling method). Suppose this is u. Then, if uv
is completed by a vertexw to form τ , eitherw appears after

u, in which case τ can be found during the first pass, or it

appears before u, in which case τ can be found in the second

pass as soon asw arrives. In either case, we can find τ by the

time its first vertex arrives in the second pass.

We can therefore replace argmine ′∈τ Te ′ from the three-

pass algorithm with argmine ′∈τ He ′,τ , where

He ′,τ = |{τ
′
: e ′ ∈ τ ′, (τ ′ \ e ′) arrives after (τ \ e ′) }|,

because we can compute He ′,τ in the second pass for every

τ ∈ Q and edge e ′ ∈ τ .
For any given edge e ′ and triangle, this can be arbitrarily

small, but on average across all triangles that use an edge

e ′, He ′,τ will be approximately Te ′/2, which will suffice to

bound the variance of our algorithm (for further details, see

the full discussion in Section 3). This gives us the following

algorithm:

First Pass Sample a size-m′ set S of edges from the graph.

First and Second Pass Collect the set Q of triangles

that include at least one edge in S .
Second Pass For each τ ∈ Q and each e ′ ∈ τ , calculate

He ′,τ .

Post-Processing For each edge e ∈ S , and each triangle

τ using e , count τ iff e = argmine ′∈τ He ′,τ , breaking

ties arbitrarily.

Combining with the aforementioned fix—only storing a

sample of Q—gives our final algorithm.

2.2 4-Cycle Counting Algorithm
Our second result is a two-pass adjacency list streaming algo-

rithm that returns an O (1) multiplicative approximation to

the 4-cycle count of a graph using Õ
(
m/T 3/8

)
space, where

T is the number of 4-cycles in the graph andm is the number

of edges. In the first pass, we collect a set of edges S and

in the second, count how many 4-cyclesG has that contain

a wedge in S . To sample even one cycle reliably, we need

S to be size at leastm/T 3/8
, as any wedge will be sampled

with probability about ( |S |/m)2, and there can be as few as

T 3/4
wedges in a graph with T 4-cycles. We show that this

also gives a O (1)-factor multiplicative approximation to T
by showing that at least a constant fraction of the cycles in

G have at least one wedge that is “good”, i.e. that is not used

by too many 4-cycles and has neither of its edges used by

too many 4-cycles.

2.3 Lower Bounds
Our last set of results consists of five lower bounds on the

space complexity of cycle counting in the adjacency list

streaming model. All of them involve the standard method

of using reductions from known communication complex-

ity problems. We let Cr be a two or three-player commu-

nication complexity problem with input of size Θ(r ) and a



(a) One-pass Triangle Counting
Ω̃(m/

√
T ) from 3-PJ

(conditional)

(b) Multi-pass Triangle Counting
Ω̃(m/T 2/3) from 3-DISJ

(conditional)

(c) One-pass 4-cycle Counting
Ω(m) from INDEX

(d) Multi-pass 4-cycle Counting
Ω(m/T 2/3) from DISJ

(e) Multi-pass ℓ-cycle Counting, ℓ ≥ 5

Ω(m) from DISJ

Figure 1: Lower bound constructions.



single bit as output. Suppose A is an algorithm that can

distinguish between graphs with T ℓ-cycles and ℓ-cycle-free
graphs with probability 2/3 in the one-pass adjacency list

streaming model. We then construct a protocol for Cr which

sends messages whose size is the internal space of A. Based

on an instance of Cr we construct a graph G, such that G is

ℓ-cycle-free if the output is 0 and hasT ℓ-cycles if the output
is 1. Alice, Bob (and possibly Charlie) each encode their input

as adjacency lists of vertices in the graph G. The protocol is
then for Alice to run A on her adjacency lists, and send the

algorithm’s state to Bob, who then runs it on his adjacency

lists. If there are three players, Bob sends the state to Charlie,

who then runsA on his lists. The last player can tell whether

G has 0 orT ℓ-cycles and therefore whether the output of Cr
is 0 or 1. This implies that if Cr requires Ω( f (r )) one-way
communication, A must use Ω( f (r )) space.
To obtain a bound on the space used by multi-pass algo-

rithms, we allow players to communicate for an arbitrary

number of rounds and consider total communication. If total

communication complexity of Cr is Ω( f (r )), then any algo-

rithm A with c passes must use Ω( f (r )/c ) space, which is

Ω( f (r )) for constant c .
For our reductions, we use the following communication

complexity problems (formally defined in Section 5):

• INDEX: Alice has s ∈ {0, 1}r , Bob has x ∈ [r ], and
must output sx .
• DISJ: Alice and Bob have s1, s2 ∈ {0, 1}r and must

determine if any s1x = s
2

x = 1.

• 3-PJ: Three-player Number on Forehead (NOF) Pointer-

jumping. This problem can be viewed as an extension

of Index to the multi-party NOF setting.

• 3-DISJ: Three-player NOF Disjointness.

Using reductions from Index and Disjointness is standard for

proving lower bounds on the space of one-pass and multi-

pass arbitrary order streaming algorithms. In adjacency list

streams, they are only applicable for obtaining bounds on

counting subgraphs with two disjoint edges, and thus cannot

be used for triangles. Since the input of a given communi-

cation complexity problem is encoded in the edges of the

graph and each player sees every edge on certain vertices,

assigning two vertices of a triangle to Alice and the third

one to Bob (or vice versa) would lead to the player with two

vertices having information about the other player’s input.

On the other hand, in a 4-cycle (or a larger cycle) we can

assign two adjacent vertices to Alice and two other adjacent

vertices to Bob, which would insure that both of them have

private input. To circumvent this problem for triangles, we

employ three-player communication complexity problems,

where each player knows two thirds of the input. This is

a special case of the k-player Number on Forehead (NOF)

model, where the input consists of k parts I1 through Ik and

i-th player knows all Ij except Ii . Showing bounds on com-

munication complexity in this model has proven harder than

in the more standard Number in Hand model. For multiparty

NOF Pointer Jumping and Disjointness there is currently a

gap between best known upper and lower bounds on the

communication complexity. The best known lower bound for

three players is currently Ω(
√
r ) for both problems, where

r is the size of input [30, 34]. Thus, we reference fpj (r ) and
fd (r ) as (currently unknown) complexities of NOF Pointer

Jumping and Disjointness respectively in our triangle count-

ing lower bounds. It is conjectured, that the communication

complexity of both problems is Ω̃(r ), where Ω̃(·) notation
hides inverse polylog factors. If that is the case, our triangle

counting bounds become tight.

For ℓ ≥ 4, we encode classic one-way (for one-pass) or two-

way (for multi-pass) communication complexity problems as

subgraph counting problems. This requires us to encode the

players’ inputs in disjoint edges, as if we use incident edges
the players will share information, and so it is not available

for ℓ = 3.

In two of our reductions concerning counting 4-cycles we

aim to construct a graph with a large number of 4-cycles for

instances with output 1 and a similar 4-cycle-free graph for

0-instances. To achieve that, we employ bipartite 4-cycle-free

graphs on 2r vertices withΘ(r 3/2) edges. An example of such

a graph is an incidence graph of a special kind of projective

plane called a field plane. If the order of the plane is q, it
has q2 + q + 1 points, the same number of lines, and each

line passes through exactly q + 1 points. Thus, the incidence
graph has 2(q2 + q + 1) vertices, each with degree q + 1.

The graph is 4-cycle-free since by definition of a projective

plane, for any two distinct points, there is exactly one line

passing through both of them, and for any two distinct lines,

there is exactly one point both of them pass through. We

also note that there are no 4-cycle-free graphs on r vertices
with ω (r 3/2) edges [8].

When ℓ ≥ 5 our lower bounds become Ω(m) for any
constant number of passes regardless of the number of cycles

in the graph. This is because we can encode Disjointness

(which is known to require linear communication even in

two-way complexity) as an ℓ-cycle-counting problem. This

encoding will depend on the fact that a pair of disjoint edges

can be shared by many different ℓ-cycles, which does not

hold for ℓ = 4.

For illustrations of the lower bound constructions see

Figure 1. Solid edges are fixed and dashed edges correspond

to players’ input. For detailed definitions of communication

complexity problems and descriptions of the reductions see

Section 5.



3 TWO PASS TRIANGLE COUNTING
ALGORITHM

3.1 Notation
For any edge or subset of edges x in G, write L(x ) for the
set of triangles involving x , and write T (x ) for |L(x ) |. Let
T = T (G ). For each triangle τ ∈ L(G ), and each edge e ∈ τ ,
let τ−e denote the unique vertex in τ that is not an endpoint

of e .

3.2 Algorithm
Our algorithm will take two passes over the stream. Call

these passes P1, P2. We will require that P2 have the same

ordering as P1. For each i ∈ [2], u ∈ V (G ) and v ∈ Γ(u), let
P<uv
i denote the prefix of Pi that appears beforev appears in

the adjacency list ofu, and P>uv
i denote the postfix of Pi that

appears afterwards. Similarly, let P<u
i ,P>v

i denote the prefix

and postfix of Pi that occur before and after the adjacency

list of v , respectively. For each e ∈ G, define an order on the

triangles of the graph as follows: τ1 <e τ2 if τ
−e
2

arrives after

τ−e
1

in the stream.

Now, let τ be a triangle and e an edge. Define:

He,τ = |{τ
′ ∈ L(e ) : τ <e τ

′}|

Then, for each triangle τ , let ρ (τ ) be the unique edge e ∈ τ
that minimizes He,τ , breaking ties arbitrarily. Let

T̃e = |{τ ∈ L(e ) : ρ (τ ) = e}|

Note that

∑
e ∈E T̃e = T . Our algorithm is then as follows:

(1) Choose a sample sizem′.
(2) While passing through P1, keep a uniformly chosen

size-m′ subset S of E (G ), adding an edge to S the first

time of the two times it appears in P1. If m
′ > m,

instead keep all of E (G ).
(3) While passing through P1 and P2, perform the follow-

ing steps in parallel:

(a) Calculatem = |E (G ) |. Define k = max(m/m′, 1).
(b) Calculate T ′ =

∑
e ∈S Te .

(c) Sample a size-m′ subset Q uniformly from {(e,τ ) :
e ∈ S,τ ∈ L(e )}, or let Q be the entire set if it is

smaller thanm′.
(d) For each (e ′,τ ) ∈ Q and for each e ∈ τ , calculate

He,τ .

(4) Return T̃ ′ = k2T ′
m |{(e,τ ) ∈ Q : ρ (τ ) = e}|.

3.3 Analysis
3.3.1 Space Complexity. To see that this can be implemented,

first note that, if we are storing an edge e = uv , whenever
the adjacency list of a vertex w appears in the stream we

can check whether uvw forms a triangle in G with the use

of only two extra bits per such edge e . This is because, while
scanning the adjacency list ofw , we can flag u if uw appears,

and v if vw appears, concluding at the end of the adjacency

list that uvw exists iff v andw are flagged.

Therefore, we can perform step 3b withO ( |S | logn) space,
and step 3c with O ( |Q | logn) space. We can perform step 3a

in O (logn) space just by maintaining a counter.

Then, for step 3d, consider any (e,τ ) ∈ Q . The first time

this can be added to Q is the first time the vertexw = τ−e is
seen after adding e to S . Suppose e appears in P1 for the first
time as the vertex v in the adjacency list of u. Then, as P1, P2
have the same order, the adjacency list ofw appears either

in P>uv
1

or P<uv
2

. So in particular, all of P>uv
2
∪ P>w

2
is seen

after (e,τ ) is added toQ . Since u arrives beforev , this means

that P>u
2
∪ P>v

2
∪ P>w

2
is seen after (e,τ ) is added to Q .

Then, for any f ∈ τ and σ ∈ L(e ′) such that τ <f σ , σ−f

appears after τ−f in P2, by the definition of <f . Since τ
−f

must be one of u,v,w , σ−f is in P>u
2
∪ P>v

2
∪ P>w

2
, and it

appears after (e,τ ) is added to Q . Therefore,

He,τ = |{τ
′ ∈ L(e ) : τ <e τ

′}|

can be counted with only O ( |Q | logn) space.
Therefore, the space complexity of this algorithm is:

O (( |Q | + |S |) logn) = O (m′ logn)

3.3.2 Correctness.

Lemma 3.1.

E
[
T̃ ′

]
= T

Proof. Fix any ordering of the stream. Condition on the

set S of edges sampled from P1. Then, for each triangle τ ∈ G
such that e ∈ S and ρ (τ ) = e , (e,τ ) ∈ Q with probability

m′
T ′ =

m
kT ′ . Therefore,

E
[
T̃ ′���S

]
= k

∑
e ∈S

T̃e

and as each e ∈ G is included in S with probability
m′
m = 1/k ,

E
[
T̃ ′

]
=

∑
e ∈G

T̃e

and since for each τ there is exactly one e ∈ τ such that

ρ (τ ) = e:

E
[
T̃ ′

]
= T

□

To bound the accuracy of this estimator, we will need the

following combinatorial lemma concerning the values T̃e .

Lemma 3.2. ∑
e ∈G

T̃ 2

e = O
(
T 4/3

)
Proof. For all i ∈ {0, . . . , ⌊logT ⌋}, let Ei = {e ∈ G : T̃e ∈

[2
i , 2i+1]}, and let Ai = {τ ∈ G : ρ (τ ) ∈ Ei }.



Then, let Bi = {τ ∈ Ai : Hρ (τ ),τ ≥ T̃ρ (τ )/2}, and let

Fi =
⋃

Bi , so Fi contains all of the edges of triangles in

Bi . Then, for any e ∈ Ei , at least half of the triangles τ

such that ρ (τ ) = e have Hρ (τ ),τ ≥ T̃ρ (τ )/2, so |Bi | ≥ |Ai |/2.
Furthermore, by [15], any graph withm edges has at most

m3/2
triangles, and so |Fi |

3/2 ≥ |Ai |/2. Then,

∑
e ∈G

T̃ 2

e ≤

⌊logT ⌋∑
i=0

2
i+1

∑
e ∈Ei

T̃e

While ∑
e ∈Ei

T̃e = |Ai |

≤ 2|Fi |
3/2

Then, for any e ∈ Fi , ∃τ ∈ Bi such that e ∈ τ , and therefore

He,τ ≥ Hρ (τ ),τ ≥ T̃ρ (τ )/2. Therefore:

Te ≥ He,τ

≥ T̃ρ (τ )/2

≥ 2
i−1

Thus, |Fi |2
i−1 ≤ 3T , and so |Fi |

3/2 ≤ T 3/2
2
−3(i−1)/2/33/2. At

the same time,

∑
e ∈Ei T̃e is clearly at mostT , and so by break-

ing our sum at i = ⌊logT /3⌋:

∑
e ∈G

T̃ 2

e ≤

⌊log(T )/3⌋∑
i=0

2
iT +

⌊logT ⌋∑
i= ⌊log(T )/3⌋

2
−i/2+5/2T 3/2/33/2

= O
(
T 4/3

)
+O

(
T 4/3

)
= O

(
T 4/3

)
□

We are now ready to analyze the accuracy of the algorithm.

First, we will show that k
∑

e ∈S T̃ is a good estimator for T .

Lemma 3.3.

∀ε > 0,P

k
∑
e ∈S

T̃e ∈ ((1 − ε )T , (1 + ε )T )

≥ 1 −O

(
k

ε2T 2/3

)
Proof. As each e ∈ G is included in S with probability

m′/m = 1/k ,

E

k
∑
e ∈S

T̃e


= T

We will now proceed to bound the variance. Let Ie be the
indicator variable that is 1 if e ∈ S and 0 otherwise. Then,

since a fixed number of edges are included in S , the family

{Ie }e ∈G is negatively associated, and so

Var
*
,
k
∑
e ∈S

T̃e+
-
= k2

∑
e ∈G

T̃ 2

e Var (Ie )

≤ k2
∑
e ∈G

T̃ 2

e (1/k − 1/k
2)

≤ k
∑
e ∈G

T̃ 2

e

≤ kT 4/3

by applying Lemma 3.2. The result then follows by Cheby-

shev’s inequality. □

We will now bound, for any sample set S , the accuracy with

which the algorithm estimates k
∑

e ∈S T̃e .

Lemma 3.4.

∀ε > 0,P

T̃ ′ ∈ *

,
k
∑
e ∈S

T̃e − εT ,k
∑
e ∈S

T̃e + εT +
-

������
S


≥ 1 −
k3T ′

ε2T 2m

∑
e ∈S

T̃e

Proof. We may assume |Q | = m′, since otherwise Q =⋃
e ∈S (e,L(e )) and so T̃

′ = k
∑

e ∈S T̃e exactly. Conditioned on
S , for any τ such that ρ (τ ) ∈ S , let Jτ be 1 if (ρ (τ ),τ ) ∈ Q ,
and 0 otherwise. As Q is fixed size, the family {Jτ }τ ∈G is

negatively associated, and so

Var

(
T̃ ′���S

)
≤

(
kT ′

m′

)
2 ∑
e ∈S

∑
τ :ρ (τ )=e

Var(Jτ )

=

(
kT ′

m′

)
2 ∑
e ∈S

∑
τ :ρ (τ )=e

*
,

m′

T ′
−

(
m′

T ′

)
2

+
-

≤
k2T ′

m′

∑
e ∈S

T̃e

≤
k3T ′

m

∑
e ∈S

T̃e

The result then follows from Chebyshev’s inequality. □

To make use of the bound above, we will need to bound the

probability that T ′ is too large.

Lemma 3.5.

P
[
kT ′ ≤ 30T

]
≥ 9/10

Proof. Each edge in G is included in S with probability

1/k , so

E
[
T ′

]
=

∑
e ∈G

Te/k

= 3T /k

The result then follows from Markov’s inequality. □



Putting these results together will allow us to bound the

accuracy of the estimator.

Lemma 3.6. There exists a constant D > 0 such that, ∀ε ∈
(0, 1), if

k ≤ ε2DT 2/3

then
P
[
T̃ ′ ∈ ((1 − ε )T , (1 + ε )T )

]
≥ 2/3

Proof. Using Lemmas 3.3 and 3.4, chooseD ≤ 1 such that

P

k
∑
e ∈S

T̃e ∈ ((1 − ε/2)T , (1 + ε/2)T )

≥ 99/100

P

T̃ ′ ∈ *

,
k
∑
e ∈S

T̃e − εT /2,k
∑
e ∈S

T̃e + εT /2+
-

������
S


≥ 1 −
kT ′

3000T 4/3m
k
∑
e ∈S

T̃e

Then, if E is the event that k
∑

e ∈S T̃e = (1 ± ε/2)T and

kT ′ ≤ 30T , by Lemma 3.5 and the union bound

P [E] ≥ 89/100

Thus,

P

T̃ ′ ∈ *

,
k
∑
e ∈S

T̃e − εT /2,k
∑
e ∈S

T̃e + εT /2+
-

������
S, E



≥ 1 −
kT ′

2670T 4/3m
k
∑
e ∈S

T̃e

≥ 1 −
1

89T 1/3m
k
∑
e ∈S

T̃e

≥ 1 −
1 + ε

89m
T 2/3

≥
87

89

as T ≤ m3/2
. Therefore, with probability at least 89/100 ×

87/89 − 1/100 > 2/3

T̃ ′ ∈ *
,
k
∑
e ∈S

T̃e − εT /2,k
∑
e ∈S

T̃e + εT /2+
-

and

k
∑
e ∈S

T̃e ∈ ((1 − ε/2)T , (1 + ε/2)T )

Therefore,

T̃ ′ = ((1 − ε )T , (1 + ε )T )

□

Theorem 3.7. For all ε,δ ∈ (0, 1), there is a 2-pass triangle
counting algorithm that uses

O

(
m logn

ε2T 2/3
log 1/δ

)

space and returns a (1 ± ε ) multiplicative approximation to T
with probability 1 − δ .

Proof. Letm′ = Θ
(
m/(ε2T 2/3)

)
, with constants chosen

so that k = Θ(ε2T 2/3) meets the requirements of Lemma 3.6.

This gives an algorithm that runs in

O

(
m logn

ε2T 2/3

)
space and returns a (1 ± ε ) multiplicative approximation to

T with probability 2/3. Then, for an appropriately chosen

constant D ′ ∈ N, run D ′ log 1/δ copies of the algorithm

in parallel, and take the median of their outputs. If D ′ is
chosen to be a sufficiently large constant, at least half the

algorithmswill return a result within εT ofT with probability

1 − δ , and so the median will give a (1 ± ε ) multiplicative

approximation. □

4 TWO PASS 4-CYCLE COUNTING
ALGORITHM

4.1 Notation
For any edge or wedge x , let Tx denote the number of 4-

cycles that contain x , let T denote the number of 4-cycles in

our graph G, and letm denote the number of edges in G.

4.2 Algorithm
Our algorithm will take two passes over the stream. Call

these passes P1, P2. We will not require P2 to have the same

ordering as P1. Our algorithm is then as follows:

(1) Choose a sample sizem′.
(2) While passing through P1, keep a uniformly chosen

size-m′ subset S of E (G ). Ifm′ > m, instead keep all of

E (G ). Recordm.

(3) Let Q be the set of wedges consisting of edges in S .
(4) While passing through P2, for each w ∈ Q , calculate

Tw .
(5) Let k =m/m′.
(6) Return T ′ = k2 ·

∑
w ∈Q Tw .

4.3 Analysis
4.3.1 Space Complexity. For any wedge uvw in Q , and any

vertex z ∈ V (G ), we may check whether uvwz forms a 4-

cycle in G while passing over the adjacency list of z with

only extra 2|S | bits of storage, by flagging whether u andw
are in the adjacency list of z. Therefore, the algorithm can

be implemented with the use of

O ( |S | logn) = O (m′ logn)

space.



4.3.2 Correctness. To show that the algorithm obtains an

O (1) factor approximation to T , we will need to show that

at least a constant fraction of cycles in our graph G are easy

to find.

Definition 4.1. We call an edge e ∈ E (G ) “heavy” if it is
contained in at least 40

√
T 4-cycles, and “light” otherwise. We

call a wedgew “overused” if it is contained in at least 40T 1/4

4-cycles, “heavy” if it contains a heavy edge, “bad” if it is either
overused or heavy, and “good” otherwise. We call a cycle “good”
if it contains at least one good wedge. We will denote the set of
good cycles as FG .

Lemma 4.2. |FG | = Ω(T )

Proof. See appendix. □

For each cycle τ that has at least one good wedge, let ρ (τ )
denote an arbitrarily chosen good wedge in τ . Let fG denote

the number of 4-cycles τ such that ρ (τ ) is in the sampled

wedge setQ . Let fB denote the number of 4-cycles τ such that
ρ (τ ) < Q , but some other wedge in τ is in Q . The estimate

returned by the algorithm is then k2 ( fG + fB ).

Lemma 4.3. There exists a constant D > 0 such that, if

k ≤ DT 3/8

then P
[
k2 fG ∈ [|FG |/4, 2|FG |]

]
≥ 9/10.

Proof. For each τ ∈ FG , there is a

m′(m′ − 1)

m(m − 1)
∈ [1/(2k2), 1/k2]

probability that both edges in ρ (τ ) will be included in S , so

E
[
k2 fG

]
∈ [|FG |/2, |FG |]

Next we bound the variance. For any two 4-cycles τ1,τ2, the
probability that both ρ (τ1) and ρ (τ2) are inQ is

∏r−1
i=0

m′−i
m−i ≤

k−r , where r is the total number of distinct edges between

ρ (τ1) and ρ (τ2) (varying from 4 if they are disjoint to 2 if

they are the same wedge).

Var(k2 fG ) = k
4 E

[
f 2G
]
− k4 E [fG ]

2

≤ k4
∑

τ1,τ2∈FG

P [ρ (τ1), ρ (τ2) ∈ Q] − k
4 E [fG ]

2

≤ k4
∑

τ1,τ2∈FG :

ρ (τ1 )∩ρ (τ2 ),∅

P [ρ (τ1), ρ (τ2) ∈ Q]

≤ k4 *.
,

∑
τ ∈FG

*.
,
k−2Tρ (τ ) + k

−3
∑

e ∈ρ (τ )

Te
+/
-

+/
-

≤
∑
τ ∈FG

(
40k2T 1/4 + 80kT 1/2

)
≤ 120DT 2

where the penultimate step uses the fact that ρ (τ ) is good
and the last step uses the fact that k ≤ DT 3/8

. The result

then follows for sufficiently small D > 0 by Lemma 4.2 and

Chebyshev’s inequality. □

Lemma 4.4.

P
[
k2 fB ≤ 40T

]
≥ 9/10

Proof. Each cycle has 4 wedges, and each one has at most

a 1/k2 probability of contributing to fB , so E
[
k2 fB

]
≤ 4T .

The result then follows by Markov’s inequality. □

Lemma 4.5. There exists a constant D > 0 such that, if

k ≤ DT 3/8

then with probability 4/5, the algorithm outputs an O (1) mul-
tiplicative approximation to T .

Proof. Apply the union bound to the above two lemmas.

□

Theorem 4.6. For every δ ∈ (0, 1), there exists a two-pass
4-cycle counting algorithm that uses

O

(
m logn

T 3/8
log 1/δ

)
space and returns a O (1) multiplicative approximation to T
with probability 1 − δ .

Proof. Let m′ = Θ(m/T 3/8), with constants chosen so

that k = Θ(T 3/8) meets the requirement of Lemma 4.5. This

gives an algorithm that runs in O ((m logn)/T 3/8) space and
returns anO (1) multiplicative approximation toT with prob-

ability 2/3. Running Θ(log 1/δ ) copies of the algorithm in

parallel and taking the median of their outputs then gives

the desired result. □

5 LOWER BOUNDS
We will make use of reductions from the following commu-

nication complexity problems. In each case, the players are

allowed to use (shared) randomness, and the lower bounds

mentioned will be for solving the problem with probability

2/3.

Index (INDEXr )

Alice holds a binary string s of length r and Bob holds an
index x ∈ [r ]. Alice sends a message to Bob, who must

compute sx . This requires Ω(r ) communication[22].



Three Party NOF Pointer-Jumping (3-PJr )

Alice, Bob, and Charlie share edges from a graphwith four

layers of vertices: V1 = {v
∗}, V2 = {v2i }

r
i=1, V3 = {v3i }

r
i=1,

V4 = {v40,v41} and three layers of edges E1,E2,E3, where
Ei contains edges from Vi to Vi+1. Edges of the graph

are directed, and every vertex in layers 1 through 3 has

out-degree exactly one. Vertices in V4 have out-degree 0.
Alice has the edges in E2 and E3, Bob has E1 and E3, and
Charlie has E1 and E2. Using one way communication —

Alice sends a message to Bob, who then sends a message

to Charlie — the players must compute whether v∗ is
connected by a directed path to v40 or v41, answering
0 in the first case and 1 in the second. The best known

lower bound on the communication complexity of this

problem isΩ(
√
r ) [34], while the best known upper bound

is Õ (r log log r/ log r ) [11], and it is conjectured that the

true complexity of the problem is close to linear.

Two Party Disjointness (DISJr )

Alice holds a binary string s1 of length r and Bob holds

a string s2 of the same length. Using multi-way commu-

nication, they must determine whether there exists an

index x such that s1x = s2x = 1, answering 1 if there is

and 0 otherwise. The communication complexity of this

problem is Ω(r ) [19, 29].

Three Party NOF Disjointness (3-DISJr )

Alice, Bob, and Charlie share three binary strings of

length r : s1, s2, and s3. Each of the three players holds

two of the strings: Alice has s1 and s2, Bob s2 and s3,
Charlie s3 and s1. Using multi-way communication, they

must determine whether there exists an index x such

that s1x = s2x = s3x = 1, answering 1 if there is and 0

otherwise. The best known lower bound on the commu-

nication complexity of this problem is Ω(
√
r ) [30]. No

sublinear protocol is known, and it is conjectured that

the true complexity is Ω̃(r ).

5.1 Reduction Structure
Each of the lower bounds will take the following form: an

encoding of an instance of the problem into a graph where

the vertices are “assigned” to players. Each player must be

able to insert the adjacency list corresponding to their “as-

signed” vertices, and thus any edges between the assigned

vertices of two different players must be determined by state

shared by both players.

In each case, we will embed an instance of the problem

in a graph which has no ℓ-cycles (for ℓ the length we are

considering) if the correct output of the game is 0, and T
cycles if it is 1. Therefore, any algorithm that can distinguish

between 0 and T ℓ-cycles (in particular, any algorithm for

counting ℓ-cycles) would provide a protocol for the commu-

nication problem, with communication complexity equal to

the space cost of the algorithm. For one-pass lower bounds,

we will reduce from one-way communication problems, and

for multi-pass lower bounds we will reduce from multi-way

communication problems, so that each pass over the input

corresponds to one round of communication.

5.2 Girth-6 Graphs
In two of our reductions concerning counting 4-cycles we

will need to construct a graphwith a large number of 4-cycles

for instances with output 1 and a similar 4-cycle-free graph

for 0-instances. To achieve this, we employ bipartite 4-cycle-

free graphs on 2r vertices with Θ(r 3/2) edges. An example

of such a graph is an incidence graph of a special kind of

projective plane called field plane. If the order of the plane is

q, it has q2 +q+ 1 points, the same number of lines, and each

line passes through exactly q + 1 points. Thus, the incidence
graph has 2(q2 + q + 1) vertices, each with degree q + 1. The
graph is 4-cycle-free since by the definition of a projective

plane, for any two distinct points, there is exactly one line

passing through both of them, and for any two distinct lines,

there is exactly one point both of them pass through. We

also note that there are no 4-cycle-free graphs on r vertices
with ω (r 3/2) edges [8].

5.3 One-Pass Triangle Counting
Theorem 5.1. If 3-PJr requires Ω( fpj (r )) communication,

then for anym and T ≤ m, there existm′ = Θ(m) and T ′ =
Θ(T ) such that any adjacency list streaming algorithm that dis-
tinguishes betweenm′-edge graphs with 0 andT ′ triangles with
at least 2/3 probability in one pass requires Ω( fpj (m/

√
T ))

space.

Proof. We will describe an encoding of an instance of

3-PJr as a graph G, illustrated in Figure 1a. Let r ,k ∈ N
be variables to be fixed later, and consider an instance of

3-PJr with edge sets E1,E2,E3. V (G ) will be the union of the

following sets:

• A = {ai }
r
i=1 of size r , assigned to Alice.

• B of size k , assigned to Bob.

• C1,C2, . . . ,Cr , each of size k , assigned to Charlie.

The edges of the graph will be:

• For the edge (v∗,v2i ) ∈ E1, k
2
edges connecting every

vertex in B to every vertex in Ci .

• For each edge (vi ,v3j ) ∈ E2, k edges connecting every

vertex in Ci to aj .
• For each edge (vi ,v41) ∈ E3, k edges connecting ai to
every vertex in B. Edges (vi ,v40) ∈ E3 will be ignored.

G will have O (rk + k2) edges. If v∗ has a path to v41 it will
have k2 triangles. Otherwise it will have 0 triangles. We can



therefore set k = Θ(
√
T ) and r = Θ(m/

√
T ) to complete the

proof. □

5.4 O (1)-Pass Triangle Counting
Theorem 5.2. If 3-DISJr requires Ω( fd (r )) communication,

then for anym andT ≤ m3/2, there existm′ = Θ(m) andT ′ =
Θ(T ) such that any adjacency list streaming algorithm that
distinguishes betweenm′-edge graphs with 0 and T ′ triangles
with at least 2/3 probability in a constant number of passes
requires Ω( fd (m/T

2/3)) space.

Proof. We will describe an encoding of an instance of

3-DISJr as a graph G, illustrated in Figure 1b. V (G ) will be
the union of the following sets:

• A1,A2, . . . ,Ar , each of size k , assigned to Alice.

• B1,B2, . . . ,Br , each of size k , assigned to Bob.

• C1,C2, . . . ,Cr , each of size k , assigned to Charlie.

The edges of the graph will be:

• For each i ∈ [r ], k2 edges between Ai and Ci iff s1i = 1.

• For each i ∈ [r ], k2 edges between Ai and Bi iff s2i = 1.

• For each i ∈ [r ], k2 edges between Bi and Ci iff s3i = 1.

G will haveΘ(rk ) vertices andO (rk2) edges. If there exists an
index x such that s1x = s

2

x = s
3

x = 1, Ax , then Bx , and Cx will

form k3 triangles. Otherwise, the graph will be triangle-free.

Therefore, for anym and T ≤ m3/2
, we may set k = Θ(T 1/3)

and r =m/T 2/3
, and the result follows. □

5.5 One Pass 4-Cycle Counting
Theorem 5.3. For anym andT ≤ m1/3, there existsm′ =m

such that any adjacency list streaming algorithm that distin-
guishes betweenm′-edge graphs with 0 and T 4-cycles with at
least 2/3 probability in one pass requires Ω(m) space.

Proof. We will describe an encoding of an instance of

INDEXΘ(r 3/2 ) as a graphG , illustrated in Figure 1c.V (G ) will
be the union of the following sets:

• A = {ai }
r
i=1 and B = {bi }

r
i=1, each of size r , assigned to

Alice.

• C1,C2, . . . ,Cr ,D1,D2, . . . ,Dr , each of size k , assigned
to Bob.

Using the construction in Section 5.2, fix a bipartite 4-cycle-

free graph H with both partitions of size r and Θ(r 3/2) edges.
Let the size of Alice’s string (and therefore the size of the

instance) be |E (H ) |, and associate each edge of H with a

different index of Alice’s string. The edges of our graph are

then the following:

• A copy of H between A and B, with the edges corre-

sponding to bits of Alice’s string that are 0 removed.

• A matching of size k between Ci and D j , where ij is
the edge of H corresponding to Bob’s index.

• For each i ∈ [r ], k edges between ai and Ci .

• For each i ∈ [r ], k edges between bi and Di .

The resulting graph hasΘ(rk ) vertices andO (r 3/2+rk ) edges.
If sx = 1, the graph has k 4-cycles, otherwise it is 4-cycle-

free. Therefore, by setting k = T and r = Θ(m2/3), the result
follows. □

5.6 O (1)-Pass 4-Cycle Counting
Theorem 5.4. For anym and T ≤ m3/5, there existsm′ =

Θ(m) such that any any adjacency list streaming algorithm
that distinguishes between m′-edge graphs with 0 and T 4-
cycles with at least 2/3 probability in a constant number of
passes requires Ω(m/T 2/3) space.

Proof. We will describe an encoding of an instance of

DISJΘ(r 3/2 ) as a graph G, illustrated in Figure 1d.

Using the construction in Section 5.2, fix a bipartite 4-

cycle-free graphH1 with both partitions of size r andΘ(r 3/2)
edges and another bipartite 4-cycle-free graph H2 with both

partitions of size k and Θ(k3/2) edges. Let the size of Alice
and Bob’s strings (and therefore the size of the instance) be

|E (H1) |, and associate each edge of H1 with an index i from
1 to |E (H1) |, so each edge in H1 corresponds to bits s

1

i and s
2

i
in Alice and Bob’s strings.

V (G ) will be the union of the following sets:

• Sets A1,A2, . . .Ar and B1,B2, . . . Br , each of size k , as-
signed to Alice.

• SetsC1,C2, . . .Cr and D1,D2, . . .Dr , each of size k , as-
signed to Bob.

The edges of the graph will be:

• A copy of H2 between Ai and Ci for all i ∈ [r ]
• A copy of H2 between Bi and Di for all i ∈ [r ].
• For each edge (vi ,uj ) in H1, a matching of size k be-

tween Ai and Bj iff corresponding Alice’s bit is 1.

• For each edge (vi ,uj ) in H1, a matching of size k be-

tween Ci and D j iff corresponding Bob’s bit is 1.

G will have Θ(rk ) vertices and Θ(rk3/2 + kr 3/2) edges. If
there exists an index x such that s1x = s2x = 1, G will have

k3/2 4-cycles, and otherwise it will be 4-cycle-free. Therefore,
the result follows by setting k = T 2/3

and r 3/2 = Θ(m/T 2/3),
so that as T ≤ m3/5

, rk3/2 + kr 3/2 = Θ(m2/3T 5/9 + m) =
Θ(m). □

5.7 O (1)-Pass ℓ-cycle Counting for ℓ ≥ 5

Theorem 5.5. For any constant ℓ ≥ 5, and for anym and
T ≤ m, there exists m′ = Θ(m) such that any adjacency
list streaming algorithm that distinguishes betweenm′-edge
graphs with 0 and T ℓ-cycles with at least 2/3 probability in a
constant number of passes requires Ω(m) space.

Proof. We will describe an encoding of an instance of

DISJk as a graphG , illustrated in Figure 1e. V (G ) will be the
union of the following sets:



• A = {ai }
r+1
i=1 of size r + 1, assigned to Alice.

• B = {bi }
r
i=1 of size r , assigned to Bob.

• C = {ci }
k
i=1 of size k , assigned to Bob.

• D = {di }
ℓ−4
i=1 of size ℓ − 4, assigned to Bob.

The edges of the graph will be:

• (ai ,bi ) for all i ∈ [r ].
• (ar+1, ci ) for all i ∈ [k].
• (dℓ−4, ci ) for all i ∈ [k].
• A path d1 − d2 − · · · − dℓ−4. Note that for ℓ = 5, this

path has 1 vertex and 0 edges.

• (ai ,ar+1) for every i such that the i-th bit of Alice’s

string is 1.

• (bi ,d1) for every i such that the i-th bit of Bob’s string

is 1.

G will have O (r + k ) edges, as ℓ is a constant. If there exists
an index x such that s1x = s2x = 1, then the graph will have

k ℓ-cycles, otherwise it will be ℓ-cycle-free. Therefore, if
T ≤ m, the result follows by setting r =m,k = T . □
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A PROOFS OMITTED FROM 4-CYCLE
COUNTING

Definition 4.1. We call an edge e ∈ E (G ) “heavy” if it is
contained in at least 40

√
T 4-cycles, and “light” otherwise. We

call a wedgew “overused” if it is contained in at least 40T 1/4

4-cycles, “heavy” if it contains a heavy edge, “bad” if it is either
overused or heavy, and “good” otherwise. We call a cycle “good”
if it contains at least one good wedge. We will denote the set of
good cycles as FG .

Lemma 4.2. |FG | = Ω(T )

We split the proof of this into three subsidiary lemmas.

Lemma A.1. There are at least 13

50
T cycles containing no

more than one heavy edge.

Proof. Call a wedge “very heavy” if it contains two heavy

edges. We note that there are at most

√
T /10 heavy edges,

as each cycle contains 4 edges. Therefore, there are at most

T /100 distinct pairs of disjoint heavy edges, and so there are

at mostT /50 cycles containing a pair of disjoint heavy edges,
as each such pair may participate in at most two distinct

cycles.

Therefore, the remaining
49

50
T cycles all either contain no

more than one heavy edge, or consist of one light wedge

joined with one very heavy wedge. Let the number of cycles

of the second type be B.
For each pair of vertices uv , let дuv be the number of light

wedges of the form uwv for some vertexw , and buv be the

number of very heavy wedges of that form. Then we have:

B =
∑

uv ∈V (G )2

дuvbuv

Furthermore,

∑
uv ∈V (G )2:
дuv ≤2

дuvbuv ≤ 2

∑
uv ∈V (G )2

buv ≤ T /50

and so we have:

B ≤
∑

uv ∈V (G )2:
дuv>2

дuvbuv +T /50

Furthermore, between any pair of vertices there are at

least

(
buv
2

)
cycles consisting of two very heavy wedges with

endpoints at those vertices, and at least

(
дuv
2

)
cycles con-

sisting of two light wedges with endpoints at those vertices.

Furthermore, each of those cycles will appear between at

most two pairs of vertices in this fashion. Therefore:
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T ≥ B +
1

2

∑
uv ∈V (G )2

((
дuv
2

)
+

(
buv
2

))

≥ B +
1

2

∑
uv ∈V (G )2:
дuv>2

((
дuv
2

)
+

(
buv
2

))

= B +
1

4

∑
uv ∈V (G )2:
дuv>2

(
д2uv − дuv + b

2

uv − buv
)

≥ B +
1

4

∑
uv ∈V (G )2:
дuv>2

(
2

3

д2uv + b
2

uv

)
−T /400

≥ B +
1

√
6

∑
uv ∈V (G )2:
дuv>2

дuvbuv −T /400

≥ B +
1

√
6

(B −T /50) −T /400

where the last step plugs in the previous expression. Hence:

B ≤ T (1 +
1

50

√
6

+
1

400

)/(1 +
1

√
6

) < 0.72T

So the number of cycles that contain no more than one

heavy edge is at least
49

50
T − 0.72T = 13

50
T . □

For the next two lemmas, note that there are at most

4T /40T 1/4 = T 3/4/10 overused wedges, as each cycle con-

tains 4 distinct wedges. We will distinguish between two

kinds of vertices. Let a vertex v ∈ V (G ) be “primary” if it is

an endpoint of at least

√
T overused wedges, and “secondary”

otherwise. There are at most 2 · T 3/4/10 · 1/
√
T = T 1/4/5

primary vertices.

Lemma A.2. There are at most 3

25
T 4-cycles containing all

overused wedges.

Proof. Any 4-cycle that contains all overused wedges and
at least one primary vertex can be uniquely specified by one

primary vertex and an overused wedge that is disjoint from

it. There are therefore at most

T 1/4/5 ·T 3/4/10 ≤ T /50

such cycles. Now, for any pair of secondary vertices u,v ∈
V (G ), let Xuv be the number of 4-cycles that contain u andv
as opposite vertices (that is, not connected by any edge in the

cycle), and have only overused wedges. As both u and v are

secondary, Xuv ≤
√
T . Note also that there are at least

√
Xuv

overused wedges with u and v as their endpoints. Then, the

number of 4-cycles containing only secondary vertices and

all overused wedges is at most:∑
uv ∈V (G )2:

u,v secondary

Xuv ≤ T
1/4

∑
uv ∈V (G )2:

u,v secondary

√
Xuv

≤ T 1/4
# of overused wedges

≤ T /10

So the total number of cycles that contain all overusedwedges

is at most
1

50
T + 1

10
T = 3

25
T . □

Lemma A.3. There are at most 3

25
T 4-cycles containing one

heavy edge e and with the two wedges not containing e being
overused.

Proof. First we bound the number of such 4-cycles where

e has at least one primary endpoint, v . For any such cycle, v
has an overused wedge that is disjoint from it, andv together

with this wedge uniquely determine the cycle, so the number

of such cycles is at most:

T 1/4/5 ·T 3/4/10 = T /50

Second, we bound the number of such 4-cycles where e has
at least one secondary endpoint v . Each such cycle can be

characterised by the choices of e and the choice of overused

wedge that connects to e at v . As v is secondary, there are at

most

√
T choices of this overused wedge, so the total number

of such cycles is at most:

√
T /10 ·

√
T = T /10

So the total number of cycles that contain one bad edge e
and with the two wedges not containing e being overused is

at most
1

50
T + 1

10
T = 3

25
T . □

By combining the previous three lemmas, there are at

least
13

50
cycles that contain no more than one heavy edge,

no more than
3

25
T of which have all overused cycles, and no

more than
3

25
T of which have one heavy edge e and both

wedges that do not contain e overused. So the number of

cycles which contain at least one good wedge is at least:

13

50

T −
3

25

T −
3

25

T =
1

50

T = Ω(T ) .
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