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ABSTRACT
We present space-efficient data stream algorithms for approximating
the number of triangles in a graph up to a factor 1 + ε. While it can
be shown that determining whether a graph is triangle-free is not
possible in sub-linear space, a large body of work has focused on
minimizing the space required in terms of the number of triangles T
(or a lower bound on this quantity) and other parameters including
the number of nodes n and the number of edges m. Two models
are important in the literature: the arbitrary order model in which
the stream consists of the edges of the graph in arbitrary order and
the adjacency list order model in which all edges incident to the
same node appear consecutively. We improve over the state of
the art results in both models. For the adjacency list order model,
we show that Õ(ε−2m/

√
T ) space is sufficient in one pass and

Õ(ε−2m3/2/T ) space is sufficient in two passes where the Õ(·)
notation suppresses log factors. For the arbitrary order model, we
show that Õ(ε−2m/

√
T ) space suffices given two passes and that

Õ(ε−2m3/2/T ) space suffices given three passes and oracle access
to the degrees. Finally, we show how to efficiently implement the
“wedge sampling" approach to triangle estimation in the arbitrary
order model. To do this, we develop the first algorithm for `p
sampling such that multiple independent samples can be generated
with O(polylogn) update time; this primitive is widely applicable
and this result may be of independent interest.

Categories and Subject Descriptors
F.2 [Analysis of Algorithms & Problem Complexity]
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1. INTRODUCTION
Estimating the number of triangles in a graph is a canonical

problem in the data stream model of computation. The problem
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was first considered by Bar-Yossef et al. [6] nearly fifteen years ago
and a significant body of work has since been devoted to designing
more efficient and ingenious algorithms for the problem in both the
single-pass [1, 2, 6, 9, 10, 22, 24, 29, 31, 37, 38, 41] and multi-pass
models [8, 16, 28]. For a survey of existing graph stream algorithms,
including triangle counting, see [32].

There appears to be two main reasons for the high level of in-
terest in the problem. First, the number of triangles in a network
and related quantities such as the transitivity or global clustering
coefficient (the fraction of length two paths that are included in a tri-
angle) play an important role in the analysis of real-world networks.
Popular examples include motif detection in protein interaction
networks [34], uncovering hidden thematic structure in the web
graph [17], analysis of social networks [44], and the evaluation
of large graph models [30]. Following Kutzkov et al. [9, 29], we
direct the interested reader to Tsourakakis et al. [42] for an excellent
overview of these and other applications. Second, the problem has
a rich theory. The best exact algorithm in the RAM model runs in
O(m2ω/(ω+1)) time [2] where ω ≤ 2.3728 is the matrix multipli-
cation exponent and m is the number of edges. This year, Eden et
al. [18] designed the first sub-linear time algorithm. Finally, there
are connections to a range of important problems in the field of
fine-grained complexity [23]. Since many of the real world graphs
of interest are massive, it is natural that the problem has also been
studied in the appropriate computation models, e.g., the MapReduce
model [40] and other parallel models [5, 7], external memory mod-
els [4], and the data stream model (see above for the long stream of
references).

Two data stream models have been considered in the literature on
triangle counting: the arbitrary order model in which the stream
consists of the edges of the graph in arbitrary order and the adjacency
list order model in which all edges incident to the same node appear
consecutively.1 Of the algorithms designed in both models, some
are suitable when there are many triangles whereas others dominate
if there are only a few triangles. We next discuss the state-of-the-art
results and these trade-offs in the context of our new results.

1.1 Our Results and Related Work
In discussing our results and the related work we use n to denote

the number of nodes in the input graph, m to be the number of
edges, and T is the number of triangles in the graph.

Approximate Triangle Counting. We present four main algo-
rithms that (1 + ε)-estimate the number of triangles: two algorithms
for each data stream model (arbitrary order and adjacency list order)
1The adjacency list order model is closely related to the vertex
arrival model that has been considered in the context of finding
matchings in the data stream model [20, 26] and row-order arrival
model consider in the context of linear algebra problems [12, 19].



where one is suitable for processing graphs with many triangles (in
particular, when T ≥ m) and the other is suitable for processing
graphs with fewer triangles (i.e., T ≤ m).2 Specifically:

1. Adjacency List Model: We present a single-pass algorithm
using Õ(ε−2m/

√
T ) space and a two-pass algorithm using

Õ(ε−2m3/2/T ) space. We show that the space can be further
reduced if we only need to distinguish triangle-free graphs
from those with at least T triangles.

2. Arbitrary Order Model: We present a two-pass algorithm
using Õ(ε−2m/

√
T ) space and a three-pass algorithm using

Õ(ε−2m3/2/T ) space. However, the second algorithm as-
sumes that we have oracle access to the degrees of the nodes.

It can be argued that using only ≈ m/
√
T space has become a

natural goal in the context of estimating the number of triangles.
In particular, Cormode and Jowhari [16] showed that any constant
pass algorithm in the arbitrary order model required this amount
of space when m = Θ(n

√
T ) and there is an existing two-pass

algorithm that returns a 3-approximation using this amount of space.
Furthermore, Jha et al. [22] showed that this space was sufficient
for additively approximating T . Unfortunately, Braverman et al. [8]
showed it was insufficient for achieving multiplicative approxima-
tion via a single-pass algorithm in the arbitrary order model. The
significance of our results is showing that ≈ m/

√
T space is suffi-

cient for 1 + ε approximation if we are given a single pass over a
stream in adjacency list order or two passes over a stream in arbitrary
order.

However, it is possible to improve upon ≈ m/
√
T space when T

is large and our other two algorithms do just this. At a high level,
the main difference between the two types of algorithms we present
is as follows. The m/

√
T dependence arises when we focus on

distinguishing between edges that are involved in many triangles
and those that are not, whereas the m3/2/T dependence arises
when we distinguish between high and low degree nodes. The idea
of distinguishing heavy and light edges or nodes is an important
idea in the non-streaming work by Alon et al. [2], Eden et al. [18],
Chiba and Nishizeki [11], among others. The main challenge in
our work arises from the constraints of the data stream model. This
necessitates new algorithms and new notions of heavy and light that
may also depend on the ordering of the stream.

Wedge Sampling. An important technique developed in the context
of triangle counting is that of wedge sampling [27, 39]. A wedge
is a length-two path in a graph and the goal is to sample wedges
uniformly from the graph. We use W to denote the number of
wedges in a graph3 and note that the global clustering coefficient
equals 3T/W . In the final section of this paper, we show the
following:

3. Fast Wedge Sampling via `p Sampling: We show how to
sample s independent wedges in the data stream model with
Õ(1) update time. We do this by first proving a new result for
`p sampling, an important data stream primitive. See Section
4.2 for more details. Our second algorithm for the arbitrary
order model is based on wedge sampling.

2For context, it can be shown that T = O(m3/2) and there are
graphs where T = Ω(m3/2) [2].
3For context, it can be shown that W is at least m2/(2n) (for
m ≥ n) and can be Ω(mn).

1.1.1 Comparison to Previous Algorithms

Adjacency List Model. Prior to our work, the state-of-the-art algo-
rithms in the adjacency list model were a three-pass algorithm using
Õ(
√
m + ε−2m3/2/T ) space that was presented by Kolountza-

kis et al. [28] and a one-pass algorithm using Õ(ε−2W/T ) space
that was presented by Buriol et al. [10]. Note that Õ(ε−2W/T ) is
Õ(ε−2mn/T ) in the worst case and therefore the former algorithm
may use significantly less space when m � n2 but this improve-
ment is limited by the additive

√
m term. Our one-pass algorithm

improves upon the Buriol et al. result for T ≤ n2 and improves
upon the Kolountzakis et al. result for all values of T . This second
observation follows because if T ≥ m then m/

√
T ≤

√
m and

if T ≤ m then m/
√
T ≤ m3/2/T . Our two-pass algorithm also

dominates the algorithm of Kolountzakis et al. for all T since it uses
only two passes rather than three passes and there is no additive√
m term in the space use.

Arbitrary Order Model. Prior to our work, the state-of-the-art
results include another one-pass algorithm by Buriol et al. [10]
that used Õ(ε−2mn/T ) space. Pavan et al. [38] showed that the
dependence on n could be replaced by the maximum degree and
Pagh and Tsourakakis [37] showed that this could be replaced by
a dependence on the maximum number of triangles using a single
edge. The other most relevant result is a one pass algorithm by
Jha et al. [22] that returns an additive ±εW estimate (equivalently,
an additive ε approximation of the transitivity coefficient) using
Õ(ε−2m/

√
T ) space. In establishing our first result for the arbitrary

order model, we first revisit the Jha et al. algorithm to show that it
can also be used to estimate the number of triangles multiplicatively
using space that is almost identical to that required by Pagh and
Tsourakakis’ algorithm.

The most relevant previous work in the arbitrary order model is an
(1 + ε)-approximation using Õ(ε−2m/T 1/3) space by Braverman
et al. [8] and a (3 + ε)-approximation with Õ(ε−4.5m/

√
T ) space

by Cormode and Jowhari [16]. Note that Cormode and Jowhari
initially claimed that their algorithm returned a 1 + ε but this claim
is incorrect [13].4 Subsequent to the submission of our paper,
Cormode and Jowhari have independently designed a new algo-
rithm [14]. This alternative algorithm, significantly different from
their earlier algorithm and more complicated than our algorithm,
uses Õ(ε−2.5m/

√
T ) space.

1.2 Notation and Preliminaries
It will be convenient to assume the node set of the graph is

[n] = {1, 2, . . . , n}. Let Γ(v) denote the neighbors of a node
v and so deg(v) = |Γ(v)|. We write (undirected) edges as sets
of two nodes {u, v} and write ordered pairs of nodes as uv. For
example, {u, v} = {v, u} but uv 6= vu. We use ∆ to denote the
set of triangles in the input graph and so T = |∆|. For a random
variable X , we denote the expectation and variance as E [X] and
V [X] respectively. Bin(n, p) denotes the binomial distribution
with parameters n and p.

To simplify the presentation of our algorithms we adopt two
main conventions that we explain here. Following Braverman et
al. [8], we restrict our attention to bounding the expected space use
of our randomized algorithm rather than bounding the space with
high probability. Note that if the algorithm satisfies its accuracy
guarantee with probability 99/100, for example, then it is straight-
4The error can be found in the proof of Theorem 3 [16]. Specifically,
it is claimed that Y ≤ X and hence a lower bound on Y is a lower
bound on X . However, all that can be shown is Y ≤ 3X and a
factor of three is lost in the analysis.



forward to show that the algorithm satisfies its accuracy guarantee
and doesn’t exceed its expected space use by more than a factor 100
with probability at least 49/50. Hence, by running a logarithmic
number of copies of the algorithm in parallel, terminating any that
exceed their space bound, and taking the median of the remaining
estimates ensures an accurate answer with only a logarithmic space
increase with 1−1/ poly(n) probability. Secondly, we parameterize
our algorithms in terms of the actual number of triangles T in the
graph and various quantities in the algorithm will depend on T .
Obviously, we do not know T in advance (otherwise we wouldn’t
be trying to estimate it) but this convention is widely adopted in the
literature. A natural way to formalize this is to phrase the problem
as distinguishing between graphs with at most t triangles from those
with at least (1 + ε)t triangles where t is an input parameter. In
practice, the quantities in the algorithm would be initialized based on
a lower or upper bound (as appropriate) for the unknown quantities.

2. ADJACENCY LIST ALGORITHMS
In this model, we may assume that the stream consists of a se-

quence of ordered pairs xy. For each edge {x, y}, both xy and
yx will be present in the stream. The promise on the ordering is
that all tuples with the same first node appear consecutively in the
stream. Aside from that constraint, the stream is ordered arbitrarily.
For example, for the graph consisting of a cycle on three nodes
V = {v1, v2, v3}, a possible ordering of the stream could be

〈v3v1, v3v2, v1v2, v1v3, v2v3, v2v1〉 .

In this example, we say that the adjacency list for v3 came first, then
the adjacency list for v1, and finally the adjacency list for v2.

2.1 One Pass and Õ(ε−2m/
√
T ) Space

Algorithm and Intuition. Define a total ordering on nodes <s
based on stream ordering where x <s y if the adjacency list of x is
specified before the adjacency list of y in the stream. Define

Rxy =

{
|{z : {x, y, z} ∈ ∆ and x <s z <s y}| if x <s y
0 if y <s x

and note that
∑
x,y Rxy = T .

The basic outline of the algorithm comprises of two interlocking
parts. In the first part, we will sample each edge xy with probability
p when it arrives and, until yx arrives, we count all nodes z such
that {x, y, z} forms a triangle. If we do not observe yx after xy
was sampled (i.e., yx came before xy in the stream ordering) this
counter will never be used. Otherwise, the counter equalsRxy when
yx arrives. Hence, by summing these counters we get an estimator
that equals

∑
xy RxyI[xy sampled]. In expectation it equals pT

and has low variance if all Rxy are small.
The second part ensures that we estimate every Rxy if Rxy ≥√
T regardless of whether xy was sampled. This will allow us to

restrict our attention to small Rxy in the first part of the algorithm
(and hence get a good variance bound). The critical observation that
allows us to estimate every large Rxy is as follows: when reading
the neighbors of x, even if we did not sample xy, we will have
probably sampled some of the edges in the set

{xz : {x, y, z} ∈ ∆ and x <s z <s y}

if the number of edges in this set, i.e., Rxy , is large. Subsequently,
each of these sampled edges form a triangle with the incident edges
of y and the number of these triangles can be used to a) recognize
Rxy is large and b) to estimate Rxy .

See Figure 1 for the detailed description of the algorithm with the
appropriate bookkeeping.

Analysis. For the analysis, letH consist of all edges xy such that
xy is defined as heavy by the algorithm. The final value of A can
be written as A = Al +Ah where

Al =
∑
xy 6∈H

c1(xy) and Ah =
∑
xy∈H

c2(xy)

The next two lemmas establish that, with good probability,Al/p ≈∑
xy 6∈HRxy and Ah/p ≈

∑
xy∈HRxy .

LEMMA 1. With probability at least 99/100,

Ah/p =
∑
xy∈H

Rxy ± εT/2

and Rxy ≤ 2
√
T for all xy 6∈ H.

PROOF. First note that c2(xy) ∼ Bin(Rxy, p). If Rxy ≥√
T/2, then by an application of the Chernoff bound,

Pr [c2(xy) = (1± ε/2)pRxy] ≥ 1−2e−ε
2pRxy/12 ≥ 1−1/n10 .

Alternatively, if Rxy ≤
√
T/2 then c2(xy) < p

√
T with probabil-

ity at least 1−1/n10. Taking the union bound over all xy establishes
the lemma since∑

xy:c2(xy)≥p
√
T

c2(xy) = (1± ε/2)p
∑
xy∈H

Rxy .

LEMMA 2. With probability at least 99/100,

Al/p =
∑
xy 6∈H

Rxy ± εT/2 .

PROOF. First note that c1(xy) = Rxy with probability p and 0
otherwise. Furthermore, the c1(·) values are independent because
they each depend on whether a different tuple was sampled. Hence

E [Al] = p
∑
xy 6∈H

Rxy and V [Al] ≤ p
∑
xy 6∈H

R2
xy ≤ 4pT 3/2 .

sinceRxy ≤ 2
√
T for xy 6∈ H. By an application of the Chebyshev

bound,

Pr [|Al − E [Al] | ≥ εpT/2] ≤ 4pT 3/2

(εpT/2)2
=

16

pε2T 1/2
≤ 1

100
.

We then use the above two lemmas to prove our first main result.

THEOREM 3. There exists a Õ(ε−2m/
√
T )-space algorithm

using one pass in the adjacency list model that returns a (1 + ε)-
approximation of T with probability 49/50.

PROOF. The accuracy guarantee follows from Lemmas 1 and
2. The expected space use is Õ(pm) = Õ(ε−2m/

√
T ) since each

edge is sampled with probability p and Õ(1) bits of auxilary data is
collected for each sampled node.

2.2 Two Passes and Õ(ε−2m3/2/T ) Space

Algorithm and Intuition. Define a total ordering on nodes <d
based on degrees where x <d y if

deg(x) < deg(y) or (deg(x) = deg(y) and id(x) < id(x)) ,



Algorithm TRIANGLES1

1. Initialize A← 0, S1 ← ∅, S2 ← ∅ and p← α · logn · ε−2/T 1/2 for some large constant α.

2. On seeing edges adjacent to v in the adjacency stream:

(a) Update auxiliary information about sampled edges:

i. For all ab ∈ S1: If a, b ∈ Γ(v) then c(ab)← c(ab) + 1

ii. For all av ∈ S2: Let order(av) = 1

(b) Sample additional edges and update estimator. For each incident edge vu:

i. With probability p, S1 ← {vu} ∪ S1 and set c(vu) = 0

ii. With probability p, S2 ← {vu} ∪ S2 and set order(vu) = 0

iii. Define

c1(uv) :=

{
c(uv) if uv ∈ S1

0 otherwise

c2(uv) := |{z : uz ∈ S2, order(uz) = 1, z ∈ Γ(v)}|

and say uv is heavy if c2(uv) ≥ p
√
T . Update the estimator as follows:

A← A+

{
c1(uv) if uv is not heavy
c2(uv) if uv heavy

3. Return A/p

Figure 1: The TRIANGLES1 Algorithm. The algorithm maintains two sets of edges S1 and S2 where each is generated by sampling
each element of the stream with probability p. For each xy ∈ S1, we maintain a counter c(xy) that counts the number of triangles
{x, y, z} where x <s z <s y. For each xy ∈ S2, we maintain a boolean order(xy) that is initially 0 but is set to 1 when yx is observed;
at this point we have deduced x <s y. The elements in S2 will be used to determine whether each Rxy is large and, if so, to estimate
it. The elements of S1 will be used to estimate the contribution of all Rxy that are not large.

i.e., <d is ordering the nodes by degree with ties broken by the id
of the node (recall, we assume the nodes are labelled in 1, 2, . . . , n).
For each edge e = {x, y}, define

R{x,y} = |{z : {x, y, z} ∈ ∆ , x <d z, y <d z}|

and note that
∑
e∈E Re = T .

The basic idea for the algorithm in this section is as follows:
In the first pass, we generate a sample of edges S along with the
degree of each endpoint of the sample edges. In the second pass,
for each e ∈ S we compute Re and return

∑
e∈S Re. This will

equal pT in expectation and we will be able to bound the variance
by first showing that Re ≤

√
2m for all e ∈ E. See Figure 2

for the detailed description of the algorithm with the appropriate
bookkeeping.

Analysis. We first prove a bound on maxRe that will be required
to bound the variance of our estimator.

LEMMA 4. maxRe ≤
√

2m.

PROOF. Let e = {x, y} and suppose Re = R{x,y} >
√

2m.
Then deg(x) ≥

√
2m. Furthermore, there exist at least

√
2m

nodes z1, z2, . . . such that {x, y, zi} is a triangle and deg(zi) ≥
deg(x) >

√
2m. But then

deg(z1) + deg(z2) + . . . >
√

2m ·
√

2m = 2m

which is a contradiction since the sum of degrees of every node in
the graph is 2m.

THEOREM 5. There exists an Õ(ε−2m3/2/T )-space algorithm
using two passes in the adjacency list model that returns a (1 + ε)-
approximation of T with probability 99/100.

PROOF. Consider the above algorithm and note that each edge e
is contained in S with probability p and A =

∑
e∈S Re. Hence, by

appealing to Lemma 4,

E [A] = Tp and V [A] <
∑
e∈E

R2
ep ≤

√
2mTp

Then, by the Chebyshev bound,

Pr [|A/p− T | ≥ εT ] ≤(
√

2mT/p)/(ε2T 2)

=p−1ε−2
√

2m/T ≤ 1/100.

Hence the algorithm has the desired accuracy. The expected space
use is Õ(pm) = Õ(ε−2m3/2/T ).

Improved Algorithm for Testing Triangle-Freeness. We con-
clude this section by showing that if we are only trying to distinguish
triangle-free graphs from those with at least T triangles, less space
is sufficient.

THEOREM 6. There exists an Õ(m/T 2/3)-space algorithm us-
ing two passes in the adjacency list model that distinguishes triangle-
free graphs from those with at least T triangles with probability
99/100.

The basic observation is that a graph with T triangles has at
least T 2/3 edges involved in these triangles. This follows because
any graph with m edges can have at most O(m3/2) triangles (see,
e.g., [2]). Hence, if each edge is sampled with probability p =
α/T 2/3 for some large constant α > 0 at least one edge {u, v} in
some triangle {u, v, z} will the sampled. We do this sampling in
the first pass. Then, in the second pass of the algorithm when the



Algorithm TRIANGLES2

1. First pass: Let S = S′ = ∅ and p = 200ε−2√m/T . On seeing edges adjacent to v in the stream:

(a) For each a ∈ Γ(v), with probability p let S′ ← S′ ∪ {va} and store deg(v).

(b) For each bv ∈ S′, let S ← S ∪ {{b, v}} and store deg(v).

2. Second pass: Let A = 0. On seeing edges adjacent to v in the stream:

(a) For each edge {a, b} ∈ S such that a <d v, b <d v, and a, b ∈ Γ(v), A← A+ 1.

3. Output: Return A/p.

Figure 2: The TRIANGLES2 Algorithm. After the first pass, S contains each edge in the graph sampled with probability p along with
the degrees of the endpoints. In the second pass, we count the number of triangles {a, b, v} where {a, b} ∈ S, a <d v, and b <d v.

neighbors of z are observed we will identify a triangle by tracking
which of the sampled edges have two endpoints in Γ(z).

3. ARBITRARY ORDER ALGORITHMS
Recall that in the arbitrary order model, the m edges of the graph

may arrive in any order. It will be useful to start by briefly revisiting
an algorithm by Jha, Seshadri and Pinar [22] in this model. They
designed a beautifully simple algorithm for estimating the transi-
tivity coefficient of a graph up to small additive error. We show
that the algorithm can be used to estimate the number of triangles
and that, if one makes a small change to their algorithm (essentially
sampling edges independently rather than sampling a fixed number
of edges), this facilitates a simple analysis of the algorithm that is
similar to that used by Pagh and Tsourakakis [37]. While we think
that simplifying the analysis and generalizing the result is valuable
in its own right, our main purpose in revisiting this algorithm is that
we will need to build upon it in the next section.

The single-pass algorithm is as follows:

1. Single Pass: S ← ∅, A ← 0. On the arrival of the edge
{u, v}:

(a) S ← S ∪ {{u, v}} with probability p (to be deter-
mined).

(b) A← A+ |{w : {w, u} and {w, v} ∈ S}|

2. Output: Return A/p2.

The following lemma bounds the probability that the output of
the algorithm is far from T .

LEMMA 7. Let τ =
∑
e∈E

(
xe
2

)
and xe is the number of trian-

gles that include edge e. Then,

Pr
[
|A/p2 − T | ≥ B

]
≤ (T + τp)/(B2p2) .

PROOF. Let T1, T2, . . . be the triangles in the graph and for each
Ti let Wi be the length two path consisting of the first two edges
in Ti that arrive in the stream. Let Ai = 1 if both edges in Wi

are sampled and Ai = 0 otherwise. At the end of the stream A =∑
Ai. To analyze A, first note that E [Ai] = p2 and V [Ai] ≤ p2.

Furthermore, Cov [Ai, Aj ] ≤ E [AiAj ] = p3 if Wi and Wj share
an edge (they can share at most one edge) and Cov [Ai, Aj ] = 0

otherwise. It follows that E [A] = Tp2 and

V [A] =
∑
i∈T

V [Ai] +
∑
i 6=j

Cov [Ai, Aj ]

≤ Tp2 +
∑
e∈E

∑
Wi∩Wj={e}

p3

≤ Tp2 + p3
∑
e∈E

(
xe
2

)
= Tp2 + τp3 .

The lemma follows from the Chebyshev’s inequality.

The parameter τ can be bounded as O(Tx∗) where x∗ is the
maximum number of triangles that share the same edge. Hence, it
follows that the variance of the estimate decreases with x∗. The fol-
lowing corollary follows by setting p appropriately. The first result
is an algorithm with the same space bound as Pagh and Tsourakakis’
algorithm [37] and the second result reproves the result of Jha et
al. [22].

COROLLARY 8. Setting p appropriately, the above single pass
algorithm returns:

• (1 ± ε)T with probability 99/100 using Õ(m(ε−1/
√
T +

ε−2x∗/T )) space.

• T±εW with probability 99/100 using Õ(mε−2/
√
W ) space.

PROOF. First note that τ ≤
∑
e∈E x

2
e/2 ≤ 1.5 · x∗ · T and

because
(
xe
2

)
is at most the square of the degree of an endpoint of e,

τ =
∑
e∈E

(
xe
2

)
≤

∑
u:deg(u)>1

(deg(u))3

≤

 ∑
u:deg(u)>1

(deg(u))2

3/2

= O(W 3/2) .

The expected space use of the algorithm is Õ(pm). Hence, setting

p = α ·max(ε−1/
√
T , ε−2τ/T 2)

in the algorithm for some sufficiently large constant α and appealing
to Lemma 7 with B = εT gives the first result. Similarly, setting
p = α · ε−2/

√
W in the algorithm and B = εW gives the second

result.

3.1 Two Passes and Õ(ε−2m/
√
T ) Space

From the analysis of the above one-pass algorithm, it is evident
that the space required is very sensitive to the existence of edges



that are involved in many triangles. In this section, we address this
by considering two types of edges, light edges that are only involved
in a small number of triangles and heavy that are involved in a large
number of triangles. Using two passes, we estimate the number of
triangles where every edge is light separately from the number of
triangles with at least one heavy edge.

An oracle. Edges are characterized as heavy or light by an oracle
defined by the following random process:

1. Sample each node z of the graph with probability

p = βε−2 logn/
√
T

for some large constant β > 0. Let Z be the set of sampled
nodes.

2. For any edge e = {u, v}, let x̃e = |{z ∈ Z : u, v ∈ Γ(z)}|
and define

oracle(e) =

{
L if x̃e < p

√
T

H if x̃e ≥ p
√
T
.

Note that once Z is chosen, the value of oracle(e) is fixed for all
e, including edges used to define the oracle. The following lemma
establishes that xe is relatively small if oracle(e) = L and relatively
large if oracle(e) = H.

LEMMA 9. With high probability for all e = {u, v}, oracle(e) =

L implies xe ≤ 2
√
T and oracle(e) = H implies xe ≥

√
T/2 .

PROOF. First, observe that for each e, x̃(e) ∼ Bin(xe, p). By
an application of the Chernoff bound, if xe ≥ 2

√
T then

Pr
[
x̃(e) < p

√
T
]
≤ exp(−2p

√
T/3) = n−10 .

Hence, by the union bound, with high probability oracle(e) = H if
xe ≥ 2

√
T for all edges e. The second case follows similarly.

See Figure 3 for the two-pass algorithm. In the first pass, the
algorithm instantiates the above oracle and samples some additional
edges S1. In the second pass, for each new edge that is light we
increment a counter by a third of the number of triangles it forms
with light edges from S1. In expectation this counter will be p2

times the total number of triangles involving three light edges. For
each new edge that is heavy, we will use the oracle to estimate the
number of triangles with i heavy edges that involve this edge for
i ∈ {1, 2, 3}. If we incremented a counter by the sum of these
estimates, we would count a triangle with i heavy edges i times. But
by scaling appropriately we can ensure this counter is an estimate
of the total number of triangles with at least one heavy edge.

THEOREM 10. There exists a Õ(ε−2m/
√
T )-space algorithm

using two passes in the arbitrary order model that returns a (1 + ε)-
approximation of T with probability at least 49/50.

PROOF. Let T L be the number of triangles among the set of
edges EL = {e ∈ E : oracle(e) = L}. Let W1,W2, . . . , be the
length two paths in EL that are involved in triangles in EL. Notice,
there are three length two paths involved in every triangle. Let
Ai = 1 if both edges in Wi are in SL1 and Ai = 0 otherwise.
Then, following the analysis in Lemma 7 and appealing to Lemma 9,
we can show that AL/p2 =

∑
iAi/(3p

2) equals T L ± εT/2 with
probability at least 99/100.

Let T H be the number of triangles in the input graph that have at
least one heavy edge. For each heavy e, define xie to be the number

of triangles that include edge e and have exactly i heavy edges. Then

T H =
∑

e:oracle(e)=H

(x1e + x2e/2 + x3e/3)

because every heavy triangle with i heavy edges occurs in i different
summands. Since each x̃ie ∼ Bin(xie, p) we can apply the Chernoff
bound to prove that

x̃1e + x̃2e/2 + x̃3e/3 = (1± ε)p(x1e + x2e/2 + x3e/3)

with probability at least

1− 2 exp(−ε2p(
√
T/6)/3) = 1− 1/poly(n) .

We then apply the union bound.
To bound the space used by the algorithm observe that

E [|S1|+ |S2|] = pm+
∑
v

p deg(v) = 3pm

so the expected space used by the algorithm is Õ(ε−2m/
√
T ) as

claimed.

4. WEDGE SAMPLING VIA `P SAMPLING
In this section, we consider the “wedge sampling approach" pro-

posed by Schank and Wagner [39] and Kolda et al. [27]. This
approach is most relevant to estimating the number of triangles
when the global clustering coefficient of the graph is large. The
previous work did not consider the data stream model, but we show
that it is relatively straightforward to design a streaming algorithm
based on their ideas. Our main results in this section are a) designing
an Õ(ε−2m3/2/T )-space algorithm based on the wedge sampling
approach given certain assumptions and b) improving the update
time of the algorithm to Õ(1). To achieve the fast update time
our main contribution is a new result on `p sampling, an important
primitive in data stream algorithms. Throughout this section we
assume that m ≥ 2n. This guarantees there are a Ω(n) wedges in
the graph.

4.1 Wedge Sampling Algorithms
The basic wedge sampling idea is to sample length-two paths

uniformly and compute the fraction of these that are contained in
a triangle. If there are W length-two paths or “wedges", then this
fraction is 3T/W because each triangle contains three length-two
paths. Thus, by an application of the Chernoff bound, if we sample
O(ε−2W/T ) wedges then we can estimate T/W up to a factor
1± ε with good probability. Hence, the challenge becomes how to
uniformly sample from the set of wedges in the graph and check
whether there is an edge that “completes" this wedge to a triangle.

To sample and test a single wedge in the arbitrary order model
we use the following two-pass algorithm:

• First pass: Use an `2-sampling algorithm [25] to sample a
node v with probability proportional to (1± ε) deg(v)2. In
Section 4.2, we discuss `2 sampling and show that this can be
done with fast update time even if we need to sample many
wedges simultaneously.

• Second pass: Independently sample two edges e1 and e2 inci-
dent to v uniformly at random using reservoir sampling [43]
or `0-sampling algorithm [25]. If e1 = e2, output FAIL. Else,
check if one of the edges arriving after e1 and e2 completes a
triangle with e1 and e2.

The following lemma shows that the above algorithm outputs
fail with probability at most 1/4 and if not, finds a triangle with
probability ≈ T/W .



Algorithm TRIANGLES3

1. Initialization: Let Z be a random subset of nodes where each node is in Z with probability p = βε−2 logn/
√
T .

2. First pass:

(a) Sample a random subset of edges S1 where each edge is in S1 with probability p.

(b) Collect all edges S2 that are incident to any node in Z.

3. Second pass: Let AL = AH = 0. For each edge e = {u, v} in the stream,

(a) For i ∈ {1, 2}, define SL
i = {e ∈ Si : oracle(e) = L} and SH

i = {e ∈ Si : oracle(e) = H} where Z and S2

define oracle as above.

(b) If oracle(e) = L then AL ← AL + |{w : {u,w}, {v, w} ∈ SL
1}|/3

(c) If oracle(e) = H then AH ← AH + x̃1e + x̃2e/2 + x̃3e/3 where

x̃1e = |{w ∈ Z : {u,w}, {v, w} ∈ SL
2}|

x̃2e = |{w ∈ Z : {u,w} ∈ SL
2 , {v, w} ∈ SH

2}|
+|{w ∈ Z : {u,w} ∈ SH

2 , {v, w} ∈ SL
2}|

x̃3e = |{w ∈ Z : {u,w}, {v, w} ∈ SH
2}|

We will use x̃ie/(ip) to estimate the number of triangles involving e that contain i heavy edges.

4. Output: Return AL/p
2 +AH/p

Figure 3: The TRIANGLES3 Algorithm. In the first pass, we sample a set of edges S2 that will be used to instantiate our oracle and a
set of edges S1. In the second pass, counter AL will be used to estimate the number of triangles where all edges are light and counter
AH will be used to estimate the number of triangles that include at least one heavy edge.

LEMMA 11. Let F be the event that the above algorithms fails.
Then if m ≥ 2n, Pr [F ] ≤ 1/2 and the probability of finding a
triangle is (1± ε)T/W conditioned on ¬F .

PROOF. We assume the `2 sampling is performed perfectly since
the (1 ± ε) error will only introduce a factor (1 ± ε) to all the
probabilities. First observe that

Pr [F ] =
∑
v∈V

deg(u)2∑
u∈V deg(u)2

· 1

deg(v)

=

∑
v∈V deg(v)∑
u∈V deg(u)2

≤ 2m

4m2/n
=

n

2m
≤ 1/4 .

Let Rv be the event that we sample node v and that e1 6= e2.

Pr [Rv|¬F ]

=
Pr [Rv ∧ ¬F ]

Pr [¬F ]

=
deg(v)2∑
u deg(u)2

(
2

deg(v)2

)(
1

1−
∑
v deg(v)/

∑
u deg(u)2

)
=

2∑
u deg(u)(deg(u)− 1)

= 1/W .

Therefore e1 and e2 form a wedge chosen uniformly at random.
Hence the probability that we find a triangle with edges e1, e2, e3
where e3 arrives in the stream after e1 and e2 are sampled in the
second pass equals 3T

W
· 1
3

= T/W as required. Note that the fact
that e3 comes last is not true if we condition on the node v that was
chosen as the “center" of the wedge; but since we chose a wedge
uniformly at random, there was probability of 1/3 that e1 and e2
were the first two edges of the triangle.

Appealing to the previous lemma and the above discussion we
can multiplicatively estimate T/W in two passes. Using the fact

we can also multiplicatively approximate W in parallel (see details
below), we can also multiplicatively approximate T .

THEOREM 12. There is a two pass, Õ(ε−2W/T )-space algo-
rithm in the arbitrary order model that returns a (1+ε)-approximation
to T with probability at least 99/100.

Three pass algorithm using Õ(ε−2m3/2/T ) space and a de-
gree oracle. Note that the above algorithm could be implemented
in a single pass if the degrees of the nodes in the graph were known
a priori. If we can assume oracle access to the degrees of the nodes
in the graph (this may be reasonable in various systems), we can fur-
ther improve the space use given additional passes. Given a degree
oracle we can evaluate the <d ordering (as defined in Section 2.2)
between the two endpoints of an edge when this edge arrives. This
will allow us to focus on a smaller set of wedges when following
the wedge sampling procedure above. Specifically, let W ′ be the
number of length two-paths x-y-z where y <d x and y <d z. We
call such wedges “<d-consistent". Note that W ′ ≤ W and it can
be significantly less; W may be Ω(mn) whereas W ′ = O(m3/2).

LEMMA 13. W ′ < 2m3/2.

PROOF. Associate every wedge with its internal node y. The
number of z ∈ Γ(y) such that y <d z is at most

√
2m using the

same argument as used in Lemma 4. Hence, every edge participates
in at most (

√
2m−1) wedges inW ′. ThereforeW ′ < 2m3/2.

Our three pass algorithm for sampling <d-consistent wedges and
checking if they participate in triangles is described in Figure 4. To
output the estimate of the number of triangles, rather than T/W ′,
we note that W ′ can be estimated via second frequency moment
estimation [9] as explained shortly.

The analysis of this algorithm is analogous to that of the previous
algorithm. Note that it is not clear whether it is possible to collapse



Algorithm TRIANGLES4

1. Initialization: A = 0, B = 0, r = α logn · ε−2m3/2/T for a large constant α.

2. Repeat r times in parallel:

(a) First pass: Use an `2-sampling algorithm to sample a node v with probability proportional to (1± ε)|{u ∈ Γ(v) :
v <d u}|.

(b) Second pass: Given the node v chosen in the first pass, sample edges e1 and e2 from {{u, v} : u ∈ Γ(v), v <d u}
via `0 sampling.

(c) Third pass: If e1 6= e2:

i. B ← B + 1.
ii. If for some edge e in the stream {e, e1, e2} form a triangle, A← A+ 1.

3. Output: AW ′/B

Figure 4: The TRIANGLES4 Algorithm. The algorithm attempts to sample r wedges that are <d-consistent in parallel. B stores the
number of wedges found and A stores the number of these that participate in triangles.

the second and third pass in a single pass, since the stream may be
ordered such that edges on high degree nodes arrive before edges
on low degree nodes.

THEOREM 14. Given access to a degree oracle, there is a three
pass, Õ(ε−2m3/2/T )-space algorithm in the arbitrary order model
that returns a (1 + ε)-approximation to T with probability at least
99/100.

EstimatingW andW ′. We start by rewriting W as follows:

W = 1/2 ·
∑
v∈V

deg(v)(deg(v)− 1) = 1/2 ·
∑
v∈V

deg(v)2 −m.

Assuming that m ≥ 2n, then

1/2 ·
∑
v∈V

deg(v)2 ≥ 1/2 · 4m2/n ≥ 4m.

Since m can be computed exactly, it follows that it is sufficient to
(1 + 3ε/4)-approximate

∑
v∈V deg(v)2 if we wish to approximate

(1 + ε)-approximate W . This can be done using existing algorithms
for estimating the second frequency moment estimation [9].

The case of W ′ can be argued similarly. Let

deg′(v) = |{u ∈ Γ(v) : u >d v}| .

Then,

W ′ = 1/2·
∑
v∈V

deg′(v)(deg′(v)−1) = 1/2·
∑
v∈V

deg′(v)2−m/2.

We also have

1/2 ·
∑
v∈V

deg′(v)2 ≥ 1/2 ·m2/n ≥ m .

Thus, (1 + ε/2)-approximating
∑
v∈V deg′(v)2 (which we can do

given a degree oracle) is sufficient to (1 + ε)-approximate W ′.

4.2 Running Time and Fast `p-Sampling
The above two algorithms require running many parallel copies

of the corresponding wedge sampler. It may initially appear that
running s copies would necessitate Ω(s) update time and thus make
the algorithms prohibitively slow. Fortunately, this can be avoided
and we can ensureO(polylog n) update time. Specifically, it is easy
to ensure that the third pass can be performed with O(logn) update
time; we store the wedges in a hash table and when a new edge

{x, y} is read, we increment a counter by the number of wedges
with endpoints x and y that are present. The more challenging
problem is ensuring the s copies of an `0 and `2 sampler can be
performed in parallel with update time that is independent of s. We
do this in the next section.

4.2.1 Fast `p Sampling
We now introduce a fast `p-sampling technique which completes

the argument that O(polylog n) update time in the above wedge
sampling algorithms is possible. Since `p-sampling is an important
primitive for numerous streaming applications such as cascaded
norms, duplicate detection, and higher moment estimation [36], our
technique is also expected to be of independent interest. The case of
fast `0-sampling is significantly simpler and a result was previously
known [33].

Preliminaries and Intuition. Most streaming problems can be
modeled by the evolution of an underlying n-dimensional integer
vector x. In the turnstile model, the stream consists of poly(n)
updates in the form xi ← xi + δ. In the context of the above
algorithms, xi would correspond to the degree of node i or the
number of neighbors of i that have higher degree or a boolean to
indicate that node i is neighbor of node v. An `p-sampler (see, [3,
15, 25, 36]) takes one pass over the stream and with high probability
returns (j, x̃j) where x̃j = (1± ε)xj and

Pr [j = i] = (1± ε)xpi /Fp(x)

where Fp(x) =
∑
i x

p
i and F0 = |{i : xi 6= 0}|.

The space and update time of existing `p-sampling algorithms are
O(poly(ε−1, logn)) and O(polylogn) respectively per sample. If
we want to draw s independent `p-samples, the naive implementa-
tion that maintains s different `p-samplers in parallel would need
Ω(s) update time. We will prove the following theorem.

THEOREM 15. For p ∈ [0, 2], there exists a one-pass algorithm
that, with high probability, outputs s independent `p-samples using
O(s · poly(ε−1, logn)) space and O(polylogn) update time.

We achieve polylogn update time regardless of s and our result is
most significant when s = o(n) and s = ω(polylogn). The main
idea behind our algorithm is as follows. We hash the coordinates
of x into w groups and for each of these groups we maintain a
small number of local `p-samplers restricting to the corresponding
coordinates. To draw an `p-sample, we randomly pick a group with



probability proportional to its mass contribution to Fp(x) and pick
an `p-sample from that group using a local `p-sampler. The main
challenge is ensuring that each group’s contribution is small so that
we only need to maintain a small number of samplers in each group,
hence, the fast update time. At a very high level, we achieve this by
separating the heavy coordinates into one group using Heavy-Hitters
algorithm.

Detailed Description. We restrict our attention to the case p ∈
(0, 2]. We make use of the following Heavy-Hitters result (see [25],
Lemma 1 and Section 4.4) .

LEMMA 16. For p ∈ (0, 2], there exists a one-pass,O(ε−pφ−1 ·
polylogn)-space and O(logn)-update time algorithm that with
high probability returns A ⊆ [n] and B = {x̃i : x̃i = (1 ±
ε)xi and i ∈ A} such that if xpi ≥ φFp(x) then i ∈ A and if
xpi < (φ/8)Fp(x) then i /∈ A.

We next introduce some definitions. We consider a set of pairwise
independent functions {hi}i∈[d] : [n] → [w] where d = c logn
and w = cs for some sufficiently large constant c. We let

Ai,j = {k ∈ [n] : hi(k) = j} .

We use a(i,j) to denote the characteristic vector of the set Ai,j .
Finally, we define the set of heavy coordinates as

H = {j ∈ [n] : xpj ≥ Fp(x)/s}

and let H ′ be any superset of H . We consider the algorithm in
Figure 5.

By running the Heavy-Hitters algorithm with φ = 1/s, at the end
of the stream, we have a set H ′ ⊇ H as required. Moreover, for
each k ∈ H ′, the algorithm also returns x̃pk = (1±O(ε))xpk. One
can use frequency moment approximation algorithm such as [21]
that supports O(polylogn) update time to maintain r and α(i,j).

The update time during the stream is O(polylogn). To see
this, a stream update to coordinate k involves the following steps.
First, the algorithm needs to compute hi(k) for each i ∈ [d] =
[c logn]. Then, it updates O(logn) data structures that are used
to maintain {α(i,j)}hi(k)=j , r, and the `p-samplers on the vectors
{a(i,j)}hi(k)=j . Finally, the algorithm updates the Heavy-Hitters
subroutine. Each of these updates can be done in O(polylogn)
time.

Based on the algorithm, we say group Ai,j is good if (i, j) ∈ G.
Let Ik∈H′ be the indicator variable for the event k ∈ H ′. We define

g(k) = |{(i, j) ∈ G : k ∈ Ai,j}|+ Ik∈H′ .

Intuitively, we use g(k) in the rejection probability to avoid bias
toward the coordinates that appear in many groups. It is important
to note that the rejection probability is valid. Since each coordinate
is in at most d good groups, for sufficiently small ε,

α ≤ (1 + ε)
∑

(i,j)∈G

Fp(a
(ij)) ≤ (1 + ε)d · Fp(x) ≤ 2d · r .

Furthermore, it is obvious that

β ≤ (1 + ε)
∑
k∈H′

xpk ≤ (1 + ε)Fp(x) ≤ 2d · r .

LEMMA 17. For all k /∈ H ′, k belongs to at least one good
group with high probability.

PROOF. Observe that if k /∈ H ′, then xpk ≤ Fp(x)/s. Fix i and
suppose hi(k) = j. By pairwise independence,

E
[
Fp(a

(i,j))
]
≤ xpk +

∑
z 6=k

xpz/w

≤ xpk + Fp(x)/(c · s) ≤ 2Fp(x)/s.

Applying Markov bound, Pr
[
Fp(a

(i,j)) > 8Fp(x)/s
]
≤ 1/4. Hence,

Pr [Ai,j is good] ≥ Pr
[
(1 + ε)Fp(a

(i,j)) < 10(1− ε)Fp(x)/s
]

≥ Pr
[
Fp(a

(i,j)) < 8Fp(x)/s
]
≥ 3/4.

for sufficiently large c and small ε. Thus, the probability that there is
no good group for k is at most (1/4)d = (1/4)c logn ≤ n−c. The
lemma follows by taking the union bound over all k ∈ [n].

Let Sp(xk) be the event of outputting (k, x̃k) as a sample and
let Sp(success) = ∪k∈[n]Sp(xk). The probability of successfully
retrieving a sample is

Pr [Sp(success)] =
∑
k∈H′

Pr [Sp(xk) | HEAD] Pr [HEAD] +

∑
(i,j)∈G
k∈Ai,j

Pr [Sp(xk) | TAIL] Pr [TAIL]

=
∑
k∈H′

1

2
·

(1± ε)xpk
β

· β

2dr · g(k)

+
∑

(i,j)∈G
k∈Ai,j

1

2
· α

(i,j)

α
· α

2dr
·

(1± ε)xpk
Fp(a(i,j))

· 1

g(k)

=
∑
k∈[n]

(1±O(ε))xpk
4cFp(x) logn

= Θ(
1

logn
).

The third step follows from the fact that r = (1 ± ε)Fp(x) and
α(i,j) = (1± ε)Fp(a(i,j)). It is straight forward to verify that

Pr [Sp(xk) | S(success)] = (1±O(ε))xpk/Fp(x)

as required.
Finally, we show that it suffices to maintainO(logn) `p-samplers

on each vector a(i,j).

LEMMA 18. With high probability, repeating O(s logn) times
procedure Sp, we obtain s independent `p-samples. Furthermore,
we need O(logn) different `p-samples from each good group.

PROOF. As shown above, Pr [Sp(success)] = Ω(1/ logn). The
first claim follows from Chernoff bound. On the other hand, α(i,j) ≤
10r/s for all (i, j) ∈ G. Therefore, the probability that we require
an `p-sample from a good group Ai,j is

α(i,j)/(4dr) = O(1/(s logn)) .

Therefore, for appropriate choice of constants, the probability that
a good group needs more than O(logn) `p-samples is less than
1/poly(n). Finally, appealing to the union bound over allO(s logn)
good groups concludes the second claim.

5. CONCLUSIONS
We gave four main algorithms for estimating the number of tri-

angles in the arbitrary order and adjacency list data stream models.



Algorithm FAST `p SAMPLING

1. During the stream,

(a) Maintain r = (1± ε)Fp(x) and α(i,j) = (1± ε)Fp(a(i,j)) for each vector a(i,j).

(b) Maintain O(logn) `p-samplers on each vector a(i,j).

(c) Run the Heavy-Hitters algorithm with φ = 1/s on the vector x.

2. In post-processing:

(a) H ′ ← the indices returned by the Heavy-Hitters algorithm and compute β :=
∑
k∈H′ x̃

p
k.

(b) Compute the set G := {(i, j) : α(i,j) < 10r/s} and compute α :=
∑

(i,j)∈G α
(i,j).

(c) Repeat the following procedure Sp until s samples are retrieved:

i. Toss a fair coin.
ii. If HEAD:

A. Randomly pick k ∈ H ′ where k = k′ with probability x̃pk′/β.
B. Reject with probability 1− β/(2d · r · g(k)). Otherwise, output (k, x̃k) as a sample.

iii. If TAIL:
A. Randomly pick (i, j) ∈ G where (i, j) = (i′, j′) with probability α(i′j′)/α.
B. Reject the current procedure with probability 1− α/(2 · d · r).
C. Otherwise, use the next `p-sampler on a(i,j) to get (k, x̃k).
D. Reject with probability 1− 1/g(k). Otherwise, output (k, x̃k) as a sample.

Figure 5: The FAST `p-SAMPLING ALGORITHM

These algorithms use less space than the existing state-of-the-art
algorithms for either all parameter settings (the number of nodes,
edges, triangles etc.) or a large range of parameters depending on
whether one or two passes over stream are permitted.
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