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Abstract
We present data stream algorithms for estimating the size or weight of the maximum matching in
low arboricity graphs. A large body of work has focused on improving the constant approximation
factor for general graphs when the data stream algorithm is permitted O(n polylogn) space where
n is the number of nodes. This space is necessary if the algorithm must return the matching.
Recently, Esfandiari et al. (SODA 2015) showed that it was possible to estimate the maximum
cardinality of a matching in a planar graph up to a factor of 24 + ε using O(ε−2n2/3 polylogn)
space. We first present an algorithm (with a simple analysis) that improves this to a factor
5 + ε using the same space. We also improve upon the previous results for other graphs with
bounded arboricity. We then present a factor 12.5 approximation for matching in planar graphs
that can be implemented using O(logn) space in the adjacency list data stream model where the
stream is a concatenation of the adjacency lists of the graph. The main idea behind our results
is finding “local” fractional matchings, i.e., fractional matchings where the value of any edge e
is solely determined by the edges sharing an endpoint with e. Our work also improves upon the
results for the dynamic data stream model where the stream consists of a sequence of edges being
inserted and deleted from the graph. We also extend our results to weighted graphs, improving
over the bounds given by Bury and Schwiegelshohn (ESA 2015).
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1 Introduction

A large body of work has focused on finding better approximation algorithms for finding
large graph matchings in the data stream model [1, 4, 7, 8, 11, 13, 15–21,23,24]. In this model,
the edges of an input graph on n nodes arrive in an arbitrary order and the algorithm has a
limited amount of memory available. A sequence of papers have presented algorithms using
O(n polylogn) bits of space that have steadily reduced the best known approximation ratio
for maximum weighted matching: Feigenbaum et al. [13] initially presented a 6 approximation;
McGregor [23] then presented a 5.828 approximation; this was reduced to 5.585 by Zelke [24];
and then to 4.911 by Epstein et al. [11]; and the best known result is a 4 approximation due
to Crouch and Stubbs [7]. The best known result for maximum cardinality matching is a
trivial 2 factor that follows by constructing a greedy matching. Konrad et al. [20] showed
that this can be slightly improved if the edges are ordered randomly. Kapralov [17] proved a
lower bound of e/(e− 1) ≈ 1.58 on the best possible approximation factor when using only
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O(n polylogn) space. Note that all the above algorithms return the large matching rather
than just estimating its weight.

A natural question is whether constant approximation is possible using o(n) space if we
only need to estimate the weight of the matching. Recently, Esfandiari et al. [12] showed the
surprising result that it was indeed possible in the case of planar graphs and more generally,
bounded arboricity graphs. Recall that a graph G has arboricity α if the set of edges of G
can be partitioned into at most α forests. For example, a planar graph has arboricity α = 3.
Esfandiari et al. presented a (5α+9)(1+ ε) approximation using O(αε−2n2/3 polylogn) space.
In the case of planar graphs this corresponds to a 24+ ε approximation. Very recently Chitnis
et al. [5] and Bury and Schwiegelshohn [4], showed that the same approximation was possible
in the dynamic graph model where the stream consists of edges being added and deleted
from the underlying graph. Bury and Schwiegelshohn [4] also showed that it was possible to
extend the result to weighted graphs but with an O(α4) approximation factor. All of these
results rely on an interesting structural result proved by Esfandiari et al. [12] that relates
the size of the maximum cardinality matching in a graph G of arboricity α to the number
of nodes of “high” degree and the number of edges whose endpoints are both “low” degree.
Specifically:

I Theorem 1 (Esfandiari et al. [12]). Let match(G) be the size of the maximum cardinality
matching in G. Then

match(G)/2 ≤ (h+ s)/2 ≤ max(h, s) ≤ (2.5α+ 4.5) match(G)

where h is the number of nodes with degree greater than 2α+ 3 and s is the number of edges
that remain after all such nodes are removed.

The result then reduces the problem of estimating the matching to estimating the quantities
h and s. A similar, but weaker bound, is implicit in Czygrinow et al. [9].

1.1 Our Results
The first contribution of this paper is to identify a new quantity that a) yields tighter bounds
for match(G) and b) can be approximated in the data stream model.

I Theorem 2 (Structural Result). For an edge e = {u, v} define xe = min
(

1
deg(u) ,

1
deg(v) ,

1
α+1

)
.

Then,

match(G) ≤ (α+ 1)
∑
e∈E

xe ≤ (α+ 2) match(G)

For example, for a planar graph α = 3 and hence
∑
e∈E xe determines match(G) up to a

factor of 5. For a bipartite planar graph (for such graphs, α = 2) the result can be further
improved to a factor of 3. The proof of Theorem 2 can be found in Section 2.2 and has the
advantage of being conceptually simpler than the proof of Theorem 1. The main idea is
to prove the result via consideration of fractional matchings, specifically “local” fractional
matching where the value of any edge e can be determined by only considering the edges
incident to e. We also show a result for local fractional matchings for weighted graphs.

Using Theorem 2, we show that match(G) on unweighted graphs can be approximated
up to a factor (α+ 2)(1 + ε) using O(ε−2αn2/3 polylogn) bits of space. Furthermore, this
result can be generalized to weighted graphs with approximation factor 2(α+ 2)(1 + ε) and
to the dynamic graph stream model with a slight increase in space. We also show that it is
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possible to estimate match(G) up to a factor (α+ 2)2/2 using only the degree sequence of
G. This result immediately leads to a O(logn) space algorithm in the adjacency list stream
model where the stream is a concatenation of the adjacency lists of the graph.

2 Graph Properties

In this section we present a variety of results relating the size or weight of a maximum
matching in a low arboricity graph to “simpler” quantities. We start with some necessary
preliminaries about fractional matchings.

2.1 Preliminaries
Define the fractional matching polytope for a graph G as:

FM(G) = {x ∈ RE : xe ≥ 0 for all e ∈ E,
∑

e∈E:u∈e
xe ≤ 1 for all u ∈ V } .

We say any x ∈ FM(G) is a fractional matching. The size of this fractional matching is∑
e∈E xe and for a graph where edge e has weight we, the weight of the matching is

∑
e∈E wexe.

A standard result on fractional matching is that the maximum size of a fractional matching
is at most a factor 3/2 larger than the maximum size of an (integral) matching. We will also
make use of the following lemma which is a simple corollary of Edmonds Matching Polytope
theorem [10].

I Lemma 3. For U ⊂ V , let G[U ] denote the induced subgraph on U . Let x ∈ FM(G) and
suppose there exist λ3, λ5, λ7 . . . such that

∀U ⊂ V where |U | ∈ {3, 5, 7, . . .} ,
∑

e∈G[U ]

xe ≤ λ|U |
(
|U | − 1

2

)
.

Then for any edge weights {we}e∈E,∑
e∈E

wexe ≤ max(1, λ3, λ5, . . .) match(G)

where match(G) is the weight of the maximum weighted (integral) matching.

Proof. By Edmonds theorem, match(G) = maxz∈IM(G)
∑
e weze where

IM(G) = {x ∈ RE : xe ≥ 0 for all e ∈ E,
∑

e∈E:u∈e
xe ≤ 1 for all u ∈ V ,

∑
e∈G[U ]

xe ≤
(
|U | − 1

2

)
for all U ⊂ V of odd size} .

But x
max(1,λ3,λ5,...) ∈ IM(G) and so

∑
e∈E wexe ≤ max(1, λ3, λ5, . . .) match(G) as required.

J

For the streaming applications we will be interested in fractional matchings that can be
computed locally.

I Definition 4. For a given graph G, we say a fractional matching x ∈ FM(G) is local if
every xe is only a function of the edges (and their weights in the case of a weighted graph)
that share an end point with e.

APPROX/RANDOM’16
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2.2 Local Fractional Matching
Define x ∈ RE where for e = {u, v} ∈ E, we set

xe = min
(

1
deg(u) ,

1
deg(v) ,

1
α+ 1

)
.

The next two theorems show that x is a local fractional matching and

1
α+ 1 ·match(G) ≤ score(x) ≤ α+ 2

α+ 1 ·match(G)

where score(x) =
∑
e xe. This proves Theorem 2 and we note that the upper bound can

be improved slightly if α is even. In Section 3.1, we show that it is possible to efficiently
estimate score(x) in the data stream model.

I Theorem 5. x ∈ FM and

score(x)
match(G) ≤

{
α+2
α+1 if α odd
α+3
α+2 if α even

.

Furthermore, if G is bipartite then score(x) ≤ match(G).

Proof. First note that xe ≥ 0 for each e ∈ E and for any u ∈ V ,∑
e∈E:u∈e

xe ≤
∑

e∈E:u∈e
1/ deg(u) = 1 .

and hence x ∈ FM. The bound for bipartite graphs follows because the maximum size of a
fractional matching in a bipartite graph equals the maximum size of an integral matching. For
the rest of the result, we appeal to Lemma 3. Since x ∈ FM, it is simple to show that x satisfies
the conditions of the lemma with λt ≤ t/(t− 1); this follows because

∑
e∈G[U ] xe ≤ |U |/2 for

any x ∈ FM. Furthermore, since there are at most
(|U |

2
)
edges in G[U ] and xe ≤ 1/(α+ 1)

for all e,∑
e∈G[U ]

xe ≤
(
|U |
2

)
1

α+ 1 = |U | − 1
2 · |U |

α+ 1 .

Therefore, λt ≤ min (t/(t− 1), t/(α+ 1)). Consequently,

max
t odd

λt =
{
α+2
α+1 if α odd
α+3
α+2 if α even

.

J

We next bound score(x) in terms of the number of high degree vertices and edges that
are not incident to high degree vertices. As observed in previous work, these two quantities
can then easily be related the size of the maximum matching.

I Theorem 6. Let h be the number of “heavy” nodes with degree at least α+ 2 and s be the
number of “shallow” edges whose endpoints are both not heavy. Then,

score(x) ≥ 2h/(α+ 2) + s/(α+ 1) .

Furthermore, match(G) ≤ (α+ 1) score(x).
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L1

L2

L3

Figure 1 A tight example for Theorem 6. Let L1 consist of α nodes whereas L2 and L2 consist
of n � α nodes. The edges are a complete bipartite graph of L1 and L2 and a matching between L2

and L3. Then score(x) = αn× 1/n+ n× 1/(α+ 1) and match(G) = n. Hence match(G)/ score(x)
tends to α+ 1 as n tends to infinity.

Proof. Let di be the degree of node i and assume d1 ≥ d2 ≥ d3 ≥ . . .. Let bi = |{j < i :
{i, j} ∈ E}| and ci = |{i < j : {i, j} ∈ E}|, i.e., the number of neighbors of node i that
have higher or lower degree respectively than node i where ties are broken by the ordering
supposed in the above line. Consider labeling an edge e with weight xe where we first
label edges incident to node 1, then the (remaining unlabeled) edges incident to node 2,
etc. Then c1 = d1 edges get labeled with min(1/d1, 1/(α + 1)), c2 edges get labeled with
min(1/d2, 1/(α+ 1)), c3 edges get labeled with min(1/d3, 1/(α+ 1)) etc. Let θ = α+ 2, then

score(x) =
∑
i

ci min(1/di, 1/(α+ 1))

=
∑
i:di≥θ

ci/di +
∑

i:di≤θ−1
ci/(α+ 1)

= h−
∑
i:di≥θ

bi/di +
∑

i:di≤θ−1
ci/(α+ 1)

≥ h− (
∑
i:di≥θ

bi)/θ + (
∑

i:di≤θ−1
ci)/(α+ 1)

Note that
∑
i:di≥θ bi is the number of edges in the induced subgraph on heavy nodes.

This is at most αh because these edges in this induced subgraph can be partitioned into at
most α forests. Similarly,

∑
i:di≤θ−1 ci is the number of shallow edges. Therefore

score(x) ≥ h(1− α/θ) + s/(α+ 1) = 2h/(α+ 2) + s/(α+ 1)

as required. Note that h+ s ≥ match(G) because every edge in a matching is either shallow
or has at least one heavy node as an endpoint. Therefore

score(x) ≥ (h+ s)/(α+ 1) ≥ match(G)/(α+ 1) .

J

See Figure 1 for an example that shows that the above theorem is tight.

2.3 Local Fractional Matchings for Weighted Graphs
In this section we show how to find a good local fractional matching for weighted graphs. We
will not use this result in our algorithm for approximating the maximum weighted matching

APPROX/RANDOM’16
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in Section 3 since a better approximation can be achieved using other ideas combined with
the fractional matching proposed for the unweighted case. However, we think the structural
result is interesting and could be useful in other computational models.

Define y ∈ RE where for e = {u, v} ∈ E, we set

ye = min
(

1
dege(u) ·H(deg(u)) ,

1
dege(v) ·H(deg(v)) ,

1
α+ 1

)
where dege(u) and dege(v) are the number of edges at least as heavy as e that are incident
to u and v respectively and H(r) = 1/1 + 1/2 + . . .+ 1/r is the harmonic function.

The next two theorems show that y is a local fractional matching and

1
H(D) · (α+ 1) match(G) ≤ score(y) ≤ α+ 2

α+ 1 match(G)

where score(y) =
∑
e weye and D is the maximum degree of the graph. Note that D can be

as large as n− 1 even for a low arboricity graph. However, since the average degree of G
is at most 2α, we expect D to typically be much smaller for many low arboricity graphs of
interest.

I Theorem 7. y ∈ FM and

score(y)
match(G) ≤

{
α+2
α+1 if α odd
α+3
α+2 if α even

.

Furthermore, if G is bipartite then score(y) ≤ match(G).

Proof. For all u ∈ V ,∑
e∈E:u∈e

xe ≤
1

H(deg(u))
∑

e∈E:u∈e

1
dege(u) ≤

1
H(deg(u)) (1/1 + 1/2 + . . .+ 1/ deg(u)) = 1 ,

and hence y ∈ FM. The result of the proof follows as in the proof of Theorem 5 since
ye ≤ 1/(α+ 1) for all e. J

I Theorem 8. match(G) ≤ H(D)(α+ 1) score(y) where D is the maximum degree.

Proof. Let ze be the optimum weighted integral matching. Let 0 < w1 < w2 < w3 < . . . be
the distinct weights in the graph and let w0 = 0. Let Gk be the unweighted graph formed
from the original weighted graph where all edges whose weight is < wk are deleted and the
other edges are given weight 1. Let zke be the optimum unweighted integral matching for Gk
and let degk(u) be the degree of node u in Gk.

Then,

score(z) =
∑
e

zewe ≤
∑
k

(wk − wk−1)
∑
e∈Gk

zke

≤ (α+ 1)
∑
k

(wk − wk−1)
∑
e∈Gk

min
(

1
degk(u) ,

1
degk(v) ,

1
α+ 1

)

where the last inequality follows by our result for the unweighted case.
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But for any e ∈ E,

∑
k:e∈Gk

(wk − wk−1) min
(

1
degk(u) ,

1
degk(v) ,

1
α+ 1

)

≤
∑

k:e∈Gk

(wk − wk−1) min
(

1
dege(u) ,

1
dege(v) ,

1
α+ 1

)

≤ we min
(

1
dege(u) ,

1
dege(v) ,

1
α+ 1

)
≤ H(D)weye

where the first inequality follows because degk(u) ≥ dege(u) for all k such that e ∈ Gk.
Therefore match(G) ≤ H(D)(α+ 1) score(y) as claimed. J

2.4 Exact Degree Distribution

Using ideas from the previous sections, we now show that the size of the maximum matching
can be approximated up to a O(α2) factor given just the degree distribution of G. Specifically,
consider the following estimate:

M̃ =
∑
u∈V

min(α+ 1− deg(u)/2, deg(u)/2) .

The next theorem shows that M̃ is a O(α2) approximation for match(G).

I Theorem 9. match(G) ≤ M̃ ≤ (α+2)2

2 ·match(G).

Proof. Let h be the number of “heavy” nodes with degree at least α+ 2. Partition the edges
E into E0, E1, and E2 depending on whether the edge has zero, one, or two heavy endpoints.
Note that E0 is just the set of shallow edges. Then,∑

u∈V
min(α+ 1− deg(u)/2,deg(u)/2)

=
∑
u∈V

deg(u)/2−max(deg(u)− α− 1, 0)

= |E0|+ |E1|+ |E2| −

 ∑
u:deg(u)≥α+2

max(deg(u)− α− 1, 0)


= |E0|+ |E1|+ |E2| −

 ∑
u:deg(u)≥α+2

deg(u)

+ h(α+ 1)

= |E0|+ |E1|+ |E2| − |E1| − 2|E2|+ h(α+ 1)
= |E0| − |E2|+ h(α+ 1)

First note that |E2| ≤ αh because the number of edges in any induced subgraph is at most
α times the number of nodes in that subgraph. Hence,

|E0| − |E2|+ h(α+ 1) ≥ |E0|+ h ≥ match(G) .

APPROX/RANDOM’16
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By appealing to Theorem 6 and Theorem 5

|E0| − |E2|+ h(α+ 1) ≤ |E0|+ h(α+ 1)

≤ (α+ 2)(α+ 1)
2 · (|E0|/(α+ 1) + 2h/(α+ 2))

≤ (α+ 2)(α+ 1)
2 · α+ 2

α+ 1 ·match(G)

≤ (α+ 2)2

2 ·match(G) .

J

3 Data Stream Algorithms

In this section we briefly discuss the improved algorithmic results that can be achieved via
the results from the previous section.

3.1 Arbitrary Order Graph Streams
In the arbitrary order graph stream model, the stream consists of the edges of the input
graph G in arbitrary order. The goal is to estimate the size of the maximum cardinality
matching using only a single pass over this stream and limited memory.

From Theorem 2, we know we can estimate the size of the maximum cardinality via the
following quantity,

A :=
∑

{u,v}∈E

min
(

1
deg(u) ,

1
deg(v) ,

1
α+ 1

)
.

To do this we first show that A can be estimated via the quantity,

AS :=
∑

{u,v}∈E:u,v∈S

min
(

1
deg(u) ,

1
deg(v) ,

1
α+ 1

)
.

where S is a subset of V formed by sampling each node independently with probability p.
The next lemma shows that AS is within a 1 + ε factor of Ap2 with probability at least 3/4
assuming p is sufficiently large.

I Lemma 10. If p ≥
√

12ε−2A−1, then P
[
|AS −Ap2| ≤ ε ·Ap2] ≥ 3/4.

Proof. For each edge e = {u, v} ∈ E, let xe = min (1/deg(u), 1/deg(v), 1/(α+ 1)) and
define a random variable Xe where Xe = xe if u, v ∈ S and Xe = 0 otherwise. Note that
AS =

∑
e∈E Xe. Then, the expectation and variance of AS are E [AS ] = Ap2 and

V [AS ] =
∑
e∈E

∑
e′∈E

E [XeXe′ ]− E [Xe]E [Xe′ ] .

Note that

∑
e′∈E

E [XeXe′ ]− E [Xe]E [Xe′ ] =


x2
e(p2 − p4) if e = e′

xexe′(p3 − p4) if e and e′ share exactly one endpoint
0 if e and e′ share no endpoints

.
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Since the sum of all xe′ that share an endpoint with e is at most 2 because x ∈ FM,

V [AS ] ≤
(∑
e∈E

x2
e(p2 − p4)

)
+ 2A(p3 − p4) ≤ 3Ap2 .

We then use Chebyshev’s inequality to obtain

P
[
|AS −Ap2| ≤ εAp2] ≤ 3Ap2

ε2A2p4 = 3
ε2Ap2 ≤ 3/4 .

J

Given this key lemma, the algorithm and analysis proceed similarly to that of Esfandiari
et al. [12]. Specifically, two algorithms are run in parallel: a greedy matching algorithm and
a sampling-based algorithm. The greedy matching algorithm uses O(n2/3 logn) space to find
a maximal matching of size at least min(n2/3,match(G)/2). The sampling-based algorithm
uses O(αn2/3 logn) space to sample each node with probability p = Θ(ε−1/n2/3) and then
find all edges whose endpoints are both sampled along with the degrees of the sampled edges.
If the greedy matching has size less than n2/3 then it is necessarily a 2 approximation of
match(G). If not, we can use the estimate of A based on the nodes sampled since in this case
A = Ω(n2/3). Similarly, extensions of the above approach for dynamic graph streams [4,5]
go through with the improved approximation factor. To summarize:

I Theorem 11. There exists a single pass data stream algorithm using O(αε−1nr log δ−1)
space that returns a (α+ 2)(1 + ε) approximation of the maximum matching with probability
at least 1− δ. In the insert-only model, r = 2/3 and in the insert-delete model r = 4/5.

3.2 Adjacency List Graph Streams

In the adjacency list model1 the edges incident to each node v appear consecutively in the
stream [2,3,22]. Thus, every edge {u, v} will appear twice: once when we view the adjacency
list of u and once for v. Aside from that constraint, the stream is ordered arbitrarily. For
example, for the graph consisting of a cycle on three nodes V = {v1, v2, v3}, a possible
ordering of the stream could be 〈v3v1, v3v2, v2v3, v2v1, v1v2, v1v3〉. Note that in this model it
is trivial to compute

M̃ =
∑
u∈V

min(α+ 1− deg(u)/2, deg(u)/2) .

in O(logn) space since the degree of a node can be calculated exactly when the adjacency
list of that node appears. The next theorem immediately follows from Theorem 9.

I Theorem 12. An (α + 2)2/2-approximation of the size of maximum matching can be
computed using O(logn) in the adjacency list model. In particular, this yields a 12.5-
approximation for planar graphs.

1 The adjacency list order model is closely related to the vertex arrival model [15, 17] and row-order
arrival model considered in the context of linear algebra problems [6, 14].

APPROX/RANDOM’16
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3.3 Extension to Weighted Graphs
Let G = (V,E) be a weighted graph where edge e has weight we ∈ [1,W ] where W = poly(n).
In this section we show that it is possible to reduce the problem of finding a large weighted
matching in G to finding large cardinality matchings. Specifically, we show that given a
t-approximation algorithm for the unweighted problem, there is a 2(1 + ε)t-approximation
the maximum weighted problem where the latter algorithm using a factor O(ε−1 logn) more
space. This reduction uses ideas from work by Crouch and Stubbs [7]. This immediately
implies 2(2 + α)(1 + ε)-approximation algorithms for weighted graph in the arbitrary order
model and (2 + α)2(1 + ε)-approximation algorithms for weighted graph in the adjacency list
model.

Reduction to Unweighted Matchings

For k = 0, 1, . . . , blog1+εW c, define the unweighted graph Gk = (V,Ek) where e ∈ Ek
iff we ≥ (1 + ε)k where we is the weight of e in the original weighted graph. Note that
E0 ⊆ E1 ⊆ E2 ⊆ . . . and E0, E1, . . . is not a partition of E.

I Lemma 13. Let match(G) be the weight of the maximum weighted matching in G and let
m̃k is a t-approximation of the size of the maximum cardinality matching in Gk. Then,

match(G)/t ≤
∑
k≥0

f(k) · m̃k ≤ 2 · (1 + ε) ·match(G)

where

f(k) =
{

(1 + ε)k+1 − (1 + ε)k if k > 0
(1 + ε) if k = 0

.

Proof. Let mk be the size of the maximum cardinality matching in Gk and let M is the set
of edges in the maximum weighted matching in G. To prove the left inequality, observe that∑

k≥0
f(k) · m̃k ≥

∑
k≥0

f(k) ·mk/t ≥
∑
k≥0

f(k) · |M ∩ Ek|/t ≥ match(G)/t ,

where the last inequality follows since

(1 + ε)we ≥
∑

k:we≥(1+ε)k

f(k) ≥ we .

We now prove the right inequality. Consider the matching R formed by taking a maximal
matching in Er where r = blog1+εW c; extending this to a maximal matching in Er−1;
extending this to a maximal matching in Er−2 as so on. Note that since R∩Ek is a maximal
matching in Ek and m̃k ≤ mk,∑

k≥0
f(k) · m̃k ≤ 2

∑
k≥0

f(k) · |R ∩ Ek| ≤ 2(1 + ε)
∑
e∈R

we ≤ 2(1 + ε) match(G) .

J

4 Conclusion

We established better approximation ratios for the data stream problem of estimating the max-
imum weight and cardinality matchings in graphs of bounded arboricity α. The main technical
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result is that the relatively simple quantity
∑
{u,v}∈E min (1/deg(u), 1/deg(v), 1/(α+ 1)) de-

termines the size of the maximum cardinality matching up to a factor of (α+ 2), e.g., 5 in
the case of planar graphs, and this quantity can be estimated efficiently in the data stream
model. Other results included establishing that the degree distribution determines the size
of the maximum cardinality matching up to a factor of (α+ 2)2/2, e.g., 12.5 in the case of
planar graphs.
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