
Noname manuscript No.
(will be inserted by the editor)

Space-Efficient Estimation of Statistics over Sub-Sampled
Streams

Andrew McGregor · A. Pavan ·
Srikanta Tirthapura · David Woodruff

the date of receipt and acceptance should be inserted later

Abstract In many stream monitoring situations, the data arrival rate is so high that it is not
even possible to observe each element of the stream. The most common solution is to sub-
sample the data stream and use the sample to infer properties and estimate aggregates of the
original stream. However, in many cases, the estimation of aggregates on the original stream
cannot be accomplished through simply estimating them on the sampled stream, followed
by a normalization. We present algorithms for estimating frequency moments, support size,
entropy, and heavy hitters of the original stream, through a single pass over the sampled
stream.

Keywords data streams, frequency moments, sub-sampling

1 Introduction

In many stream monitoring situations, the data arrival rate is so high that it is possible to
observe each element in the stream. The most common solution is to sub-sample the data
stream and use the sample to infer properties of the original stream. For example, in an IP
router, aggregated statistics of the packet stream are maintained through a protocol such
as Netflow [9]. In high-end routers, the load due to statistics maintenance can be so high
that a variant of Netflow called sampled Netflow has been developed. In randomly sampled
netflow, the monitor gets to view only a random sample of the packet stream, and must
maintain statistics on the original stream, using this view.

In such scenarios of extreme data deluge, we are faced with two constraints on data
processing. First, the entire data set is not seen by the monitor; only a random sample is
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seen. Second, even the random sample of the input is too large to be stored in main memory
(or in secondary memory), and must be processed in a single pass through the data, as in the
usual data stream model.

While there has been a large body of work that has dealt with data processing using a
random sample (see for example, [3, 4]), and extensive work on the one-pass data stream
model (see for example, [1, 29, 33]), there has been little work so far on data processing
in the presence of both constraints, where only a random sample of the data set must be
processed in a streaming fashion. We note that the estimation of frequency moments over a
sampled stream is one of the open problems from [31], posed as Question 13, “Effects of
Subsampling”.

1.1 Problem Setting

We assume the setting of Bernoulli sampling, described as follows. Consider an input stream
P = 〈a1,a2, . . . ,an〉 where ai ∈ {1,2, . . . ,m}. For a parameter p, 0 < p≤ 1, a sub-stream of
P, denoted L is constructed as follows. For 1 ≤ i ≤ n, ai is included in L with probability
p. The stream processor is only allowed to see L, and cannot see P. The goal is to estimate
properties of P through processing stream L. In the following discussion, L is called the
sampled stream, and P is called the original stream.

1.2 Our Results

We present algorithms and lower bounds for estimating key aggregates of a data stream
by processing a randomly sampled substream. We consider the basic frequency related ag-
gregates, including the number of distinct elements, the frequency moments, the empirical
entropy of the frequency distribution, and the heavy hitters.

1. Frequency Moments: For the frequency moments Fk for k ≥ 2, we present (1+ ε,δ )-
approximation algorithms with space complexity1 Õ(p−1m1−2/k). This result yields an
interesting tradeoff between the sampling probability and the space used by the algo-
rithm. The smaller the sampling probability (up to a certain minimum probability), the
greater is the streaming space complexity of our algorithm. The algorithm is presented
in Section 3.

2. Distinct Elements: For the number of distinct elements, F0, we show that the current
best offline methods for estimating F0 from a random sample can be implemented in
a streaming fashion using very small space. While it is known that random sampling
can significantly reduce the accuracy of an estimate for F0 [7], we show that the need
to process this stream using small space does not. The upper and lower bounds are
presented in Section 4.

3. Entropy: For estimating entropy we first show that no multiplicative approximation
is possible in general even when p is constant. However, we show that estimating the
empirical entropy on the sampled stream yields a constant factor approximation to the
entropy of the original stream if the entropy is larger than some vanishingly small func-
tion of p and n. These results are presented in Section 5.

1 Where Õ notation suppresses factors polynomial in 1/ε and 1/δ and factors logarithmic in m and n.
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4. Heavy Hitters: We show tight bounds for identifying a set of O(1/α) elements whose
frequency exceeds αF1/k

k for k∈{1,2}. In the case of k = 1, we show that existing heavy
hitter algorithms can be used if the stream is sufficiently long compared with p. In the
case of k = 2, we show how to adapt ideas used in Section 3 to arrive at an algorithm
that uses space Õ(1/p).

Another way of interpreting our results is in terms of time-space tradeoffs for data stream
problems. Almost every streaming algorithm has a time complexity of at least n, since the
algorithm reads and processes each stream update. We show that for estimating Fk (and other
problems) it is unnecessary to process each update; instead, it suffices for the algorithm
to read each item independently with probability p, and maintain a data structure of size
Õ(p−1 ·m1−2/k). Interestingly, the time to update the data structure per sampled stream item
is still only Õ(1). The time to output an estimate at the end of observation is Õ(p−1 ·m1−2/k),
i.e., roughly linear in the size of the data structure. As an example of the type of tradeoffs
that are achievable, for estimating F2 if n = Θ(m) we can set p = Θ̃(1/

√
n) and obtain an

algorithm using Õ(
√

n) total processing time and Õ(
√

n) workspace.

1.3 Related Work

There is a large body of prior work related at the intersection of random sampling and data
stream processing. Some of this work is along the lines of methods for random sampling
from a data stream, including the reservoir sampling algorithm, attributed to Waterman (also
see [37]). There has been much follow up on variants and generalizations of reservoir sam-
pling, see for example [2,16,20,30,36]. While this line of work focuses on how to efficiently
sample from a stream, our work focuses on how to process a stream that has already been
sampled.

Stream sampling is a well-researched method for managing the load on network mon-
itors, while enabling accurate measurement. Packets are grouped into flows based on the
values of certain attributes within the packet header. One commonly used sampling method
is the “sampled netflow” model (NF) [23], which is the same as the Bernoulli sampling
that we consider here, where packets are sampled independent of each other. Other meth-
ods of sampling are also considered under the general umbrella of sampled netflow, such
as deterministic sampling (one of out every n packets). Another sampling method is the
sample-and-hold model (SH) [22], where, once a packet is sampled from a flow, all other
packets belonging that flow are also sampled. The priority sampling procedure [19] is a
method for sampling from a weighted stream so that we can get unbiased estimators of in-
dividual weights with small variance. Szegedy [35] has shown that the priority sampling
method of [19] essentially gets the smallest possible variance, given a fixed sample size.
In addition, various combinations and enhancements to these sampling mechanisms have
been proposed [10–12, 21]. In particular, [12] presents methods for better tuning sampling
parameters and for exporting partial summaries to slower storage, [21] presents methods
that dynamically adapt the sampling rate to achieve a desired level of accuracy, [10] present
structure-aware sampling methods that provide improved accuracy (when compared with
NF) on specific range queries of interest, and [11] presents stream sampling schemes for
variance-optimal estimation of the total weight of an arbitrary subset of the stream of a
certain size. There is much other work along the lines of optimizing sampling methods for
accurate estimation of a specific class of aggregates on the original stream. Typical aggre-
gates of interest include the distribution of the number of packets in different flows, and
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aggregates over sub-populations of all flows. The above line of work tailors the sampling
scheme towards specific goals, while we consider a simple but general sampling scheme,
Bernoulli sampling, and explore how to efficiently process data under this sampling strat-
egy. In many situations, including with sampled netflow, the sampling strategy is already
decided by an external entity, such as the router, over which we may not have control.

Duffield et al. [17] consider the estimation of the sizes of IP flows and the number of IP
flows in a packet stream through observing the sampled stream. In a follow up work [18],
they provide methods for estimating the distribution of the sizes of the input flows by ob-
serving samples of the original stream; this can be viewed as constructing an approximate
histogram. The techniques used here are maximum likelihood estimation, as well as pro-
tocol level detail at the IP and TCP level. Other work along this lines includes the work
on inverting sampled traffic [26] which aims to recover the distribution of the original traf-
fic through analyzing the sample, and work in [5, 13] which seeks to answer top-k queries
and rank flows through analyzing the sample. While this line of work deals with inference
from a random sample in detail, it does not consider the issue of processing the sample in a
streaming manner using limited space, as we do here.

Further, we consider aggregates such as frequency moments and entropy, which do not
seem to have been investigated in detail on sampled streams in prior work on network mon-
itoring. In particular, even when the space complexity of an algorithm is high, we present
space lower bounds that help understand the extend to which these aggregates can be esti-
mated.

Rusu and Dobra [34] consider the estimation of the second frequency moment of a
stream, equivalently, the size of the self-join, through processing the sampled stream. Our
work differs from theirs in the following ways. While [34] do not explicitly mention the
space bound of their algorithm, we derived an (1+ ε,δ ) estimator for F2 based on their
algorithm and found that the estimator took Õ(1/p2) space. We improve the dependence
on the sampling probability and obtain an algorithm that only requires Õ(1/p) space. This
dependence on the sampling probability p is optimal. Our technique is also different from
theirs. Ours relies on counting the number of collisions in the sampled stream, while theirs
relies on scaling an estimate of the second frequency moment of the sampled stream. We
also consider higher frequency moments Fk, for k > 2, as well as the entropy, while they do
not.

Bhattacharya et al. [6] consider stream processing in the model where the stream pro-
cessor can adaptively “skip” past stream elements, and look at only a fraction of the input
stream, thus speeding up stream computation. In their model, the stream processor has the
power to decide which elements to see and which to skip past, hence it is “adaptive”; in our
model, the stream processor does not have such power, and must deal with the randomly
sampled stream that is presented to it. Our model reflects the setup in current network mon-
itoring equipment, such as Randomly Sampled Netflow [9]. They present a constant factor
approximation for F2, while we present (1+ε,δ ) approximations for all frequency moments
Fk for k ≥ 2.

Bar-Yossef [3] presents lower bounds on the sampling probability, or equivalently, the
number of samples needed to estimate certain properties of a data set, including the fre-
quency moments. This yields a minimum sampling probability for the Bernoulli sampler
that we consider, below which it is not possible to estimate aggregates accurately, whether
streaming or otherwise. This is relevant to Theorem 1 in our paper, which assumes that the
sampling probability must be at least a certain value.

There is work on probabilistic data streams [14,28], where the data stream itself consists
of “probabilistic” data, and each element of the stream is a probability distribution over a
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set of possible events. Unlike in our model, the stream processor gets to see the entire input
in the probabilistic streams model.

Remark. The preliminary conference version of this paper claimed matching lower bounds
for estimating Fk and heavy hitters [32]. The claimed lower bounds crucially depend on
lower bounds obtained in an earlier work of Guha and Huang [24]. However, a problem has
been found with the bounds of [24]. Thus the lower bound proofs that were presented in [32]
do not hold.

2 Notation and Preliminaries

Throughout this paper, we will denote the original length-n stream by P = 〈a1,a2, . . . ,an〉
and will assume that each element ai ∈ {1,2, . . . ,m}. We denote the sampling probability
with p. The sampled stream L is constructed by including each ai in L with probability p,
independent of the other elements. It is assumed that the sampling probability p is fixed in
advance and is known to the algorithm.

Throughout let fi be the frequency of item i in the original stream P. Let gi be the
frequency in the sub-sampled stream and note that gi ∼ Bin( fi, p). The streams P and L
define frequency vectors f = ( f1, f2, . . . , fm) and g = (g1,g2, . . . ,gm) respectively.

When considering a function F on a stream (e.g., a frequency moment or the entropy) we
will denote F(P) and F(L) to indicate that value of the function on the original and sampled
stream respectively. When the context is clear, we will also abuse notation and use F to
indicate F(P). We are primarily interested in randomized multiplicative approximations.

Definition 1 For α > 1 and δ ∈ [0,1], we say X̃ is an an (α,δ )-estimator for X if

Pr
[
α
−1 ≤ X/X̃ ≤ α

]
≥ 1−δ .

We use the notation Õ to suppress factors polynomial in 1/ε , 1/δ and logarithmic in
n. More precisely, given two functions f and g and constants ε > 0, and δ > 0, we write
f (n) ∈ Õ(g(n)) to denote f (n) ∈ O((poly(1/ε,1/δ , logn)g(n)). Similarly we write f (n) ∈
Ω̃(g(n)) to denote f (n) ∈Ω((poly(1/ε,1/δ , logn)g(n)).

3 Frequency Moments

In this section, we present an algorithm for estimating the kth frequency moment Fk. The
main theorem of this section is as follows.

Theorem 1 For k≥ 2, there is a one pass streaming algorithm which observes L and outputs
a (1+ε,δ )-estimator for Fk(P) using Õ(p−1m1−2/k) space, assuming p= Ω̃(min(m,n)−1/k).

For p = õ(min(m,n)−1/k) there is not enough information in the sampled stream to
obtain an (1+ ε,δ ) approximation to Fk(P) with any amount of space, see Theorem 4.33
of [3].

Definition 2 For 1 ≤ ` ≤ k define the number of `-wise collisions to be C`(P) = ∑
m
i=1
( fi
`

)
and C`(L) = ∑

m
i=1
(gi
`

)
.
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Our algorithm is based on the following connection between the `th frequency moment
of a stream and the `-wise collisions in the stream.

Lemma 1 For 1≤ `≤ k,

F̀ (P) = `! ·C`(P)+
`−1

∑
l=1

β
`
l Fl(P) (1)

where β `
l = (−1)`−l+1

∑1≤ j1<...< j`−l≤(`−1) ( j1 · j2 · · · j`−l).

Proof The relationship follows from

`! ·C`(P) =
m

∑
i=1

fi( fi−1) . . .( fi− (`−1))

=
m

∑
i=1

(
f `i − f `−1

i ·

(
∑

1≤ j1≤`−1
j1

)
+ f `−2

i ·

(
∑

1≤ j1< j2≤`−1
j1 · j2

)
− . . .

)

=
m

∑
i=1

f `i −

(
∑

1≤ j1≤`−1
j1

)
·

m

∑
i=1

f `−1
i +

(
∑

1≤ j1< j2≤`−1
j1 · j2

)
·

m

∑
i=1

f `−2
i − . . .

= F̀ (P)−
`−1

∑
l=1

β
`
l Fl(P) .

ut

The following lemma relates the expectation of C`(L) to C`(P) and bounds the variance.

Lemma 2 For 1≤ `≤ k, E [C`(L)] = p`C`(P) and V [C`(L)] = O(p2`−1F2−1/`
` ).

Proof Let C denote C`(L). Since each `-wise collision in P appears in L with probability
p`, we have E [C] = p`C`(P). For each i ∈ [m], let Ci be the number of `-wise collisions in L
among items that equal i. Then C = ∑i∈[m]Ci. By independence of the Ci,

V [C] = ∑
i∈[m]

V [Ci] .

Fix an i ∈ [m]. Let Si be the set of indices in the original stream equal to i. For each
J ⊆ Si with |J|= `, let XJ be an indicator random variable if each of the stream elements in
J appears in the sampled stream. Then Ci = ∑J XJ . Hence,

V [Ci] = ∑
J,J′

E [XJXJ′ ]−E [XJ ]E [XJ′ ]

= ∑
J,J′

p|J∪J′|− p2`

=
`

∑
j=1

(
fi

j

)
·
(

fi− j
2`−2 j

)
·
(

2`−2 j
`− j

)
· (p2`− j− p2`)

=
`

∑
j=1

O( f 2`− j
i p2`− j).
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Since F1/(2`− j)
2`− j ≤ F1/`

` for all j = 1, . . . , `, we have

V [C] = O(1) ·
`

∑
j=1

F2`− j · p2`− j = O(1) ·
`

∑
j=1

F2− j/`
` · p2`− j.

If we can show that the first term of this sum dominates, the desired variance bound
follows. This is the case if p ·F1/`

` ≥ 1, since this is the ratio of two consecutive summands.
Note that F̀ is minimized for a fixed F0 and F1 when there are F0 frequencies each of value
F1/F0. In this case,

F1/`
` = (F0 · (F1/F0)

`)1/` = F1/F1−1/`
0 .

Hence, p≥ 1/F1/`
` if p≥ F1−1/`

0 /F1, which holds by assumption. ut

We next describe the intuition behind our algorithm. To estimate Fk(P), by Eq. 1, it
suffices to obtain estimates for F1(P), F2(P), . . . ,Fk−1(P) and Ck(P) (one of the caveats is
that some of the coefficients of Fi(P) are negative, which we handle as explained below).
Our algorithm attempts to estimate F̀ (P) for ` = 1,2, . . . inductively. Since, by Chernoff
bounds, F1(P) is very close to F1(L)/p, F1(P) can be estimated easily. Thus our problem
reduces to estimating Ck(P) by observing the sub-sampled stream L. Since the expected
number of collisions in L equals pkCk(P), our algorithm will attempt to estimate Ck(L), the
number of k-wise collisions in the sub-sampled stream. However, it is not possible to find a
good relative approximation of Ck(L) in small space if Ck(L) is small. However, when Ck(L)
is small, it does not contribute significantly to the final answer and we do not need a good
relative error approximation! We only need that our estimator does not grossly over estimate
Ck(L). Our algorithm to estimate Ck(L) will have the following property: If Ck(L) is large,
then it outputs a good relative error approximation, and if Ck(L) is small the it outputs a value
that is at most 3Ck(L). Another caveat is that some of the β `

i ’s could be negative. Thus apriori
it is not clear that our strategy of estimating F̀ (P) by estimating F1(P), F2(P), . . . ,Fk−1(P),
Ck(P), and applying Equation 1 works. However, by using a careful choice of approximation
errors and the fact that Fi(P) ≥ Fj(P), when i > j, we argue that this approach succeeds in
obtaining a good approximation of F̀ (P).

3.1 The Algorithm

Define a sequence of random variables φ`:

φ1 =
F1(L)

p
, and φ` =

C`(L)`!
p`

+
`−1

∑
i=1

β
`
i φi for ` > 1.

Algorithm 1 inductively computes an estimate φ̃i for each φi. Note that if C`(L)/p` takes its
expected value of C`(P) and we could compute C`(L) exactly, then Eq. 1 implies that the
algorithm would return Fk(P) exactly. While this is excessively optimistic we will show that
C`(L)/p` is sufficiently close to C`(P) with high probability and that we can construct an
estimate for C̃`(L) for C`(L) such that the final result returned is still a (1+ε) approximation
for Fk(P) with probability at least 1−δ .
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Algorithm 1: Fk(P)
1 Compute F1(L) exactly and set φ̃1 = F1(L)/p.
2 for `= 2 to k do
3 Let C̃`(L) be an estimate for C`(L), computed as described in the text.
4 Compute

φ̃` =
C̃`(L)`!

p`
+

`−1

∑
i=1

β
`
i φ̃i

5 end
6 Return φ̃k .

We compute our estimate of C̃`(L) via an algorithm by Indyk and Woodruff [27]. This
algorithm attempts to obtain a 1+ε`−1 approximation of C`(L) for some value of ε`−1 to be
determined. The estimator is as follows. For i = 0,1,2, . . . define

Si = { j ∈ [m] : η(1+ ε
′)i ≤ g j < η(1+ ε

′)i+1}

where η is randomly chosen between 0 and 1 and ε ′ = ε`−1/4. The algorithm of Indyk and
Woodruff [27] returns an estimate s̃i for |Si| and our estimate for C`(L) is defined as

C̃`(L) := ∑
i

s̃i

(
η(1+ ε ′)i

`

)
The space used by the algorithm is Õ(p−1m1−2/`). We defer the details to Section 3.2.

We next define an event E that corresponds to our collision estimates being sufficiently
accurate and the sampled stream being “well-behaved.” The next lemma establishes that
Pr [E ]≥ 1−δ . We will defer the proof until Section 3.2.

Lemma 3 Define the event E = E1∩E2∩ . . .∩Ek where

E1 : φ̃1 ∈ (1± ε1)F1(P)

E` : |C̃`(L)/p`−C`(P)| ≤ ε`−1F̀ (P)/`! for `≥ 2

where εk = ε , ε`1 =
ε`

(A`+1) , and A` = ∑
`−1
i=1 |β `

i |. Then Pr [E ]≥ 1−δ .

The next theorem establishes that, conditioned on the event E , the algorithm returns a
(1± ε) approximation of Fk(P) as required.

Lemma 4 Conditioned on E , we have φ̃` ∈ (1± ε`)F̀ (P) for all ` ∈ [k].

Proof The proof is by induction on `. Since we are conditioning on event E (and thus event
E1), we have that φ̃1 is an (1± ε1) approximation of F1(P). Thus the induction hypothesis
ensures that φ̃i, 1≤ i≤ `−1, is a (1± εi) approximation of Fi(P). Therefore,

|φ̃`− F̀ (P)| =

∣∣∣∣∣C̃`(L)`!
p`

+
`−1

∑
i=1

β
`
i φ̃i− F̀ (P)

∣∣∣∣∣
≤

∣∣∣∣∣`!C`(P)+
`−1

∑
i=1

β
`
i Fi(P)− F̀ (P)

∣∣∣∣∣+ ε`−1F̀ (P)+
`−1

∑
i=1
|β `

i |Fi(P)

= ε`−1F̀ (P)+
`−1

∑
i=1
|β `

i |εiFi(P)
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where the first inequality follows since we are conditioning on event E` which ensures that∣∣∣∣C̃`(L)`!
p`

− `!C`(P)
∣∣∣∣≤ ε`−1F̀ (P),

and the induction hypothesis ensures that∣∣∣∣∣`−1

∑
i=1

β
`
i φ̃i−

`−1

∑
i=1

β
`
i Fi(P)

∣∣∣∣∣≤ `−1

∑
i=1
|β `

i |εiFi(P) .

The second equality follows due to Equation 1. Note that i≤ j implies εi ≤ ε j and Fi(P)≤
Fj(P). Hence, by the definition of ε`,

ε`−1F̀ (P)+
`−1

∑
i=1
|β `

i |εiFi(P)≤ ε`−1F̀ (P)

(
1+

`−1

∑
i=1
|β `

i |

)
= ε`F̀ (P) .

Therefore φ̃` ∈ (1± ε`)F̀ (P) as required. ut

3.2 Proof of Lemma 3.

Our goal is to show that Pr [E1∩E2∩ . . .∩Ek]≥ 1−δ . To do this it will suffice to show that
for each ` ∈ [k], Pr [E`]≥ 1−δ/k and appeal to the union bound.

We first observe that, by Chernoff bounds, the event E1 happens with probability at least
1−δ/k. Let Xi denote the 0-1 random variable whose value if 1 if the i item of the original
stream appears in the sampled stream. Note that E[Xi] = 1, 1≤ i≤ n, and F1(L) = ∑

n
i=1 Xi.

Since φ̃1 = F1(L)/p, we have φ̃1 = ∑
n
i=1 Xi/p. Recall that n = F1(P).

Pr
[
E1
]
= Pr

[
|φ̃1−F1(P)| ≥ F1(P)ε1

]
= Pr

[
|∑Xi

p
−F1(P)| ≥ F1(P)ε1

]
= Pr

[
| ∑Xi

F1(P)
− p≥ pε1

]
≤ 2e−ε2

1 F1(P)p/2( By Chernoff Bound)

≤ δ/k

The last inequality follows because our condition on p implies p > poly(1/ε) log1/δ

F1(p) .
To analyze Pr [E`] for 2≤ `≤ k we consider the events:

E 1
` :

∣∣∣C`(L)/p`−C`(P)
∣∣∣≤ ε`−1F̀ (P)

2`!

E 2
` :

∣∣∣C̃`(L)/p`−C`(L)/p`
∣∣∣≤ ε`−1F̀ (P)

2`!
.

By the triangle inequality it is easy to see that Pr
[
E 1
` ∩E 2

`

]
≤ Pr [E`] and hence it suffices to

show that Pr
[
E 1
`

]
≥ 1−δ/(2k) and Pr

[
E 2
`

]
≥ 1−δ/(2k). The first part follows easily from

the variance bound in Lemma 2.

Lemma 5 Pr
[
E 1
`

]
≥ 1− δ

4k .
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Proof There are two cases depending on the value of E [C`(L)].

Case I: First assume E [C`(L)]≤
δε`−1 p`F̀

8k`! . Therefore, by Lemma 2, we also know that

C`(P)≤
δε`−1F̀

8k`!
. (2)

By Markov’s bound

Pr
[
C`(L)≤

ε`−1 p`F̀
2`!

]
≥ 1− δ

4k
. (3)

Eq. 2 and Eq. 3 together imply that with probability at least 1− δ

4k∣∣∣C`(L)/p`−C`(P)
∣∣∣≤max

(
C`(L)/p`,C`(P)

)
≤ ε`−1F̀

2`!

Case II: Next assume E [C`(L)] >
δε`−1 p`F̀

8k`! . By Chebyshev’s bound, and using Lemma 2,
we get:

Pr
[
|C`(L)−E [C`(L)] | ≥

ε`−1E [C`(L)]
2

]
≤ 4V [C`(L)]

ε2
`−1(E [C`(L)])2

≤ Dk2(`!)2

δ 2ε4
`−1 pF1/`

`

≤ Dk2(`!)2

δ 2ε4
`−1 p

F1−1/`
0
F1

≤ Dk2(`!)2

δ 2ε4
`−1 p

1

min(F1/l
0 ,F1/l

1 )

=
Dk2(`!)2

δ 2H4ε4 p
1

min(F1/l
0 ,F1/l

1 )
≤ δ

4k

where D and H are sufficiently large constants. The third inequality follows because F1/`
` ≥

F1/F1−1/`
0 . The equality follows because ε = H× ε`−1. The last inequality follows because

our assumption on p implies that p≥ poly(1/ε,1/δ )min(F0,F1)
−1/k.

Since E [C`(L)] = p`C`(P) and C`(P)≤ F̀ (P)/`!, we have that

Pr
[∣∣∣C`(L)/p`−C`(P)

∣∣∣≤ ε`−1F̀ (P)
2`!

]
≥ 1− δ

4k

as required. ut

We will now show that E 2
` happens with high probability by analyzing the algorithm

that computes C̃`(L). We need the following result due to Indyk and Woodruff [27]. Recall
that ε ′ = ε`−1/4.

Theorem 2 (Indyk and Woodruff [27]) Let G be the set of indices i for which

|Si|(1+ ε
′)2i ≥ γF2(L)

poly(ε ′−1 logn)
, (4)
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then

Pr
[
∀i ∈ G, s̃i ∈ (1± ε

′)|Si|
]
≥ 1− δ

8k
.

For every i (whether it is in G or not) s̃i ≤ 3|Si|. Moreover, the algorithm runs in space
Õ(1/γ).

We say that a set Si contributes if

|Si| ·
(
(1+ ε ′)i

`

)
>

C`(L)
B

.

where B = poly(ε ′−1 logn). Given i the event that Si contributes holds with certain (con-
ceivably 0) probability. We first show that if Si contributes, then Si is a good set with high
probability. More precisely, we show that for every Si that contributes, Eq. (4) holds with
high probability with γ = pm−1+2/`.

Lemma 6 Suppose that C`(L) >
ε`−1 p`F̀ (P)

4`! , and also suppose that the event Si contributes
happened. Then

Pr
[
|Si|(1+ ε

′)2i ≥ δ pF2(L)
m1−2/` poly(ε ′−1 logn)

]
≥ 1− δ

8k
.

Proof Consider a set Si that contributes. Note that the probability that η < 1/poly(δ−1ε ′−1 logn)
with is at most 1/poly(δ−1ε ′−1 logn). Without loss of generality we can take this probabil-
ity to be less than δ/16k. By our assumption on C`(L) and the fact that Si contributes,

|Si|(1+ ε
′)`i ≥ ε ′p`F̀ (P)

B`!

holds with probability at least 1−δ/8k. Thus

|Si|(1+ ε
′)2i ≥

ε ′2/`p2F2/`
` (P)

(B`!)2/` ≥ p2F2(P)
m1−2/` poly(ε ′−1 logn)

where the second inequality is an application of Hölder’s inequality.
Note that

E [F2(L)] = p2F2(P)+ p(1− p)F1(P)≤ pF2(P) .

Thus, an application of the Markov bound,

Pr
[

F2(L)≤
16kpF2(P)

δ

]
≥ 1− δ

16k
. (5)

The lemma follows as the following inequalities hold with probability at least 1−δ/8k.

|Si|(1+ ε
′)2i ≥ p2F2(P)

m1−2/` poly(ε ′−1 logn)

≥ δ p16kpF2(P)
16km1−2/` poly(ε ′−1 logn)

≥ δ pF2(L)
m1−2/` poly(ε ′−1 logn)

(By 5)

ut
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Now we are ready to prove that the event E 2
` holds with high probability.

Lemma 7 Pr
[
E 2
`

]
≥ 1− δ

2k

Proof There are two cases depending on the size of C`(L).

Case I: Assume C`(L)≤
ε`−1 p`F̀ (P)

4`! . By Theorem 2, it follows that C̃`(L)≤ 3C`(L). Thus

∣∣C̃`(L)−C`(L)
∣∣≤ 2C`(L)≤

ε`−1 p`F̀ (P)
2`!

Case 2: Assume C`(L)>
ε`−1 p`F̀

4`! . By Lemma 6, for every Si that contributes,

Pr
[
|Si|(1+ ε

′)2i ≥ δ pF2(L)
m1−2/` poly(ε ′−1 logn)

]
≥ 1− δ

8k
.

Now by Theorem 2 for each Si that contributes s̃i ∈ (1± ε ′)|Si|, with probability at least
1− δ

8k . Therefore,

Pr
[∣∣C̃`(L)−C`(L)

∣∣≤ ε
′C`(L)

]
≥ 1− δ

4k
.

If E 1
` is true, then:

C`(L) ∈C`(P)p`± ε`−1F̀ (P)p`

2`!
.

Since E 1
` holds with probability at least 1− δ

4k , the following inequalities hold with proba-
bility at least 1− δ

2k .

∣∣C̃`(L)−C`(L)
∣∣ ≤ ε

′C`(L)≤ ε
′C`(P)p`+

ε`−1ε ′F̀ (P)p`

2`!

≤ ε ′F̀ (P)p`

`!
+

ε`−1ε ′F̀ (P)p`

2`!

≤ F̀ (P)p`

4`!
(ε`−1 + ε`−1ε`−1)

≤ F̀ (P)p`ε`−1

2`!
ut

4 Distinct Elements

There are strong lower bounds for the accuracy of estimating the number of distinct values
through random sampling. The following theorem is from Charikar et al. [7], which we have
restated slightly to fit our notation (the original theorem is about database tables). Let F0 be
the number of elements in a data set T of total size n. Note that T maybe a stored data set,
and need not be processed in a one-pass streaming manner.

Theorem 3 (Charikar et al. [7]) Consider any (randomized) estimator F̂0 for the number
of distinct values F0 of T , that examines at most r out of the n elements in T . For any γ > e−r,
there exists a choice of the input T such that with probability at least γ , the multiplicative
error is at least

√
(n− r)/(2r) lnγ−1.



Space-Efficient Estimation of Statistics over Sub-Sampled Streams 13

The above theorem implies that if we observe o(n) elements of P, then it is not possible
to get even an estimate with a constant multiplicative error. This lower bound for the non-
streaming model leads to the following lower bound for sampled streams.

Theorem 4 (F0 Lower Bound) For sampling probability p ∈ (0,1/12], any algorithm that
estimates F0 by observing L, there is an input stream such that the algorithm will have a
multiplicative error of Ω

(
1/
√

p
)

with probability at least (1− e−np)/2.

Proof Let E1 denote the event |L| ≤ 6np. Let β denote the multiplicative error of any algo-

rithm (perhaps non-streaming) that estimates F0(P) by observing L. Let α =
√

ln2
12p . Let E2

denote the event β ≥ α .
Note that |L| is a binomial random variable. The expected size of the sampled stream is

E [|L|] = np. By using a Chernoff bound:

Pr [E1] = 1−Pr [|L|> 6E [|L|]]≥ 1−2−6E[|L|] > 1− e−np

If E1 is true, then the number of elements in the sampled stream is no more than 6np.
Substituting r = 6np and γ = 1/2 in Theorem 3, we get:

Pr [E2|E1]≥ Pr

[
β >

√(
n−6np

12np

)
ln2

∣∣∣∣∣ E1

]
≥ 1

2

Simplifying, and using p≤ 1/12, we get:

Pr [E2]≥ Pr [E1∧E2] = Pr [E1] ·Pr [E2|E1]≥
1
2
(1− e−np)

ut

We now describe a simple streaming algorithm for estimating F0(P) by observing L(P, p),
which has an error of O(1/

√
p) with high probability.

Algorithm 2: F0(P)
1 Let X denote a (1/2,δ )-estimate of F0(L), derived using any streaming algorithm for F0 (such

as [29]).
2 Return X/

√
p

Lemma 8 (F0 Upper Bound) Algorithm 2 returns an estimate Y for F0(P) such that the
multiplicative error of Y is no more than 4/

√
p with probability at least 1−(δ +e−pF0(P)/8).

Proof Let D = F0(P), and DL = F0(L). Let E1 denote the event (DL ≥ pD/2), E2 denote
(X ≥ DL/2), and E3 denote the event (X ≤ 3DL/2). Let E = ∩3

i=1Ei.
Without loss of generality, let 1,2, . . . ,D denote the distinct items that occurred in stream

P. Define Xi = 1 if at least one copy of item i appeared in L, and 0 otherwise. The different
Xis are all independent. Thus DL = ∑

D
i=1 Xi is a the sum of independent Bernoulli random

variables and

E [DL] =
D

∑
i=1

Pr [Xi = 1] .
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Since each copy of item i is included in DL with probability p, we have Pr [Xi = 1] ≥ p.
Thus, E [DL]≥ pD. Applying a Chernoff bound,

Pr
[
E1
]
= Pr

[
DL <

pD
2

]
≤ Pr

[
DL <

E [DL]

2

]
≤ e−E[DL]/8 ≤ e−pD/8 . (6)

Suppose E is true. Then we have the following:

pD
4
≤ DL

2
≤ X ≤ 3DL

2
≤ 3D

2

The last inequality is because DL is at most D. Therefore X/
√

p has a multiplicative error
of no more than 4/

√
p.

We now bound the probability that E is false.

Pr
[
E
]
≤

3

∑
i=1

Pr
[
Ei
]
≤ δ + e−pD/8

where we have used the union bound, Eq. (6), and the fact that X is a (1/2,δ )-estimator of
DL. ut

5 Entropy

In this section we consider approximating the entropy of a stream.

Definition 3 The entropy of a frequency vector

f = ( f1, f2, . . . , fm)

is defined as H(f) = ∑
m
i=1

fi
n lg n

fi
where n = ∑

m
i=1 fi.

Unfortunately, in contrast to F0 and Fk, it is not possible to multiplicatively approximate
H(f) even if p is constant.

Lemma 9 No multiplicative error approximation is possible with probability 9/10 even
with p > 1/2 . Furthermore,

1. There exists f such that H(f) =Θ(logn/pn) but H(g) = 0 with probability at least 9/10.
2. There exists f such that |H(f)−H(g)| ≥ | lg(2p)| with probability at least 9/10.

Proof First consider the following two scenarios for the contents of the stream. In Scenario
1, f1 = n and in Scenario 2, f1 = n− k and f2 = f3 = . . . = fk+1 = 1. In the first case the
entropy H(f) = 0 whereas in the second,

H(f) =
n− k

n
(lge) ln

n
n− k

+
k
n

lgn

=
n− k

n
Θ(k/(n− k))+

k
n

lgn

= (Θ(1)+ lgn)
k
n
.
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Distinguishing these streams requires that at least one value other that 1 is present in the
subsampled stream. This happens with probability (1− p)k > 1− pk and hence with k =
p−1/10 this probability is less than 9/10.

For the second part of the lemma consider the stream with f1 = f2 = . . . = fm = 1 and
hence H(f) = lgm. But H(g) = lg |L| where |L| is the number of elements in the sampled
stream. By an application of the Chernoff bound |L| is at most 2pm with probability at least
9/10 and the result follows. ut

Instead we will show that it is possible to approximate H(f) up to a constant factor with
an additional additive error term that tends to zero if p=ω(n−1/3). It will also be convenient
to consider the following quantity:

Hpn(g) =
m

∑
i=1

gi

pn
lg

pn
gi

.

The following propositions establishes that Hpn(g) is a very good approximation to H(g).

Proposition 1 With probability 199/200, |Hpn(g)−H(g)|= O(logm/
√

pn).

Proof By an application of the Chernoff bound, with probability 199/200

|pn−
m

∑
i=1

gi| ≤ c
√

pn

for some constant c > 0. Hence, if n′ = ∑
m
i=1 gi and γ = n′/pn it follows that γ = 1±

O(1/
√

pn). Then

Hpn(g) =
m

∑
i=1

gi

pn
lg

pn
gi

=
m

∑
i=1

γgi

n′
lg

n′

γgi
= H(g)+O(1/

√
pn)+O(H(g)/

√
pn) .

ut

The next lemma establishes that the entropy of g is within a constant factor of the entropy
of f plus a small additive term.

Lemma 10 With probability 99/100, if p = ω(n−1/3),

1. Hpn(g)≤ O(H(f)).
2. Hpn(g)≥ H(f)/2−O

(
1

p1/2n1/6

)
Proof For the first part of the lemma, first note that

E [Hpn(g)] =
m

∑
i=1

E
[

gi

pn
lg

pn
gi

]
≤

m

∑
i=1

E [gi]

pn
lg

pn
E [gi]

=
m

∑
i=1

p fi

pn
lg

pn
p fi

= H(f)

where the inequality follows from Jensen’s inequality since the function x lgx−1 is concave.
Hence, by Markov’s inequality

Pr [Hpn(g)≤ 100H(f)]≥ 99/100 .
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To prove the second part of the lemma, define f ∗ = cp−1ε−2 logn for some sufficiently
large constant c and ε ∈ (0,1). We then partition [m] into A = {i : fi < f ∗} and B = {i : fi ≥
f ∗} and consider H(f) = HA(f)+HB(f) where

HA(f) = ∑
i∈A

fi

n
lg

n
fi

and HB(f) = ∑
i∈B

fi

n
lg

n
fi
.

By applications of the Chernoff and union bounds, with probability at least 299/300,

|gi− p fi| ≤

{
ε p f ∗ if i ∈ A
ε p fi if i ∈ B

.

Hence,

HB
pn(g) = ∑

i∈B

gi

pn
lg

pn
gi

= ∑
i∈B

fi(1± ε)

n
lg

n
(1± ε) fi

= (1± ε)HB(f)+O(ε) .

For HA
pn(g) we have two cases depending on whether ∑i∈A fi is smaller or larger than

θ := cp−1ε−2. If ∑i∈A fi ≤ θ then

HA(f) = ∑
i∈A

fi

n
lg

n
fi
≤ θ lgn

n
.

On the other hand if ∑i∈A fi ≥ θ then by an application of the Chernoff bound,

|∑
i∈A

gi− p ∑
i∈A

fi| ≤ ε p ∑
i∈A

fi

and hence

HA
pn(g) = ∑

i∈A

gi

pn
lg

pn
gi

≥ lg
n

(1+ ε) f ∗ ∑
i∈A

gi

pn

≥ (1− ε) lg
n

(1+ ε) f ∗ ∑
i∈A

fi

n

≥
(

1− ε− lg(1+ ε) f ∗

lgn

)
HA(f) .

Combining the above cases we deduce that

Hpn(g)≥ (1− ε− lg(p−1ε−2 logn)
lgn

)H(f)−O(ε)− ε−2 lnn
pn

.

Setting ε = p−1/2n−1/6 we get

Hpn(g) ≥ (1− p−1/2n−1/6− lg(n1/3 logn)
lgn

)H(f)−O(p−1/2n−1/6)−O
(

logn
n2/3

)
≥ H(f)/2−O(p−1/2n−1/6) .

ut
Therefore, by using an existing entropy estimation algorithm (e.g., [25]) to multiplica-

tively estimate H(g) we have a constant factor approximation to H(f) if H(f)=ω(p−1/2n−1/6).
The next theorem follows directly from Proposition 1 and Lemma 10.

Theorem 5 It is possible to approximate H(f) up to a constant factor in O(polylog(m,n))
space if H(f) = ω(p−1/2n−1/6).
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6 Heavy Hitters

There are two common notions for finding heavy hitters in a stream: the F1-heavy hitters,
and the F2-heavy hitters.

Definition 4 In the Fk-heavy hitters problem, k ∈ {1,2} we are given a stream of updates to
an underlying frequency vector f and parameters α,ε , and δ . The algorithm is required to
output a set S of O(1/α) items such that: (1) every item i for which fi ≥α(Fk)

1/k is included
in S, and (2) any item i for which fi < (1− ε)α(Fk)

1/k is not included in S. The algorithm
is additionally required to output approximations f ′i with

∀i ∈ S, f ′i ∈ [(1− ε) fi,(1+ ε) fi] .

The overall success probability should be at least 1−δ .

The intuition behind the algorithm for heavy hitters is as follows. Suppose an item i was
an Fk heavy hitter in the original stream P, i.e. fi ≥ α(Fk)

1/k. Then, by a Chernoff bound, it
can be argued that with high probability, gi the frequency of i in the sampled stream is close
to p fi. In such a case, it can be shown that i is also a heavy hitter in the sampled stream
and will be detected by an algorithm that identifies heavy hitters on the sampled stream
(with the right choice of parameters). Similarly, it can be argued that an item i such that
fi < (1− ε)α(Fk)

1/k cannot reach the required frequency threshold on the sampled stream,
and will not be returned by the algorithm. We present the analysis below assuming that the
heavy hitter algorithm on the sampled stream is the CountMin sketch. Other algorithms for
heavy hitters can be used too, such as the Misra-Gries algorithm [33]; note that the Misra-
Gries algorithm works on insert-only streams, while the CountMin sketch works on general
update streams, with additions as well as deletions.

Theorem 6 Suppose that

F1(P)≥Cp−1
α
−1

ε
−2 log(n/δ )

for a sufficiently large constant C > 0. There is a one pass streaming algorithm which ob-
serves the sampled stream L and computes the F1 heavy hitters of the original stream P with
probability at least 1−δ . This algorithm uses O(ε−1 log2(n/(αδ ))) bits of space.

Proof The algorithm runs the CountMin(α ′,ε ′,δ ′) algorithm of [15] for finding the F1-
heavy hitters problem on the sampled stream, for α ′ = (1− 2ε/5) ·α , ε ′ = ε/2, and δ ′ =
δ/4. We return the set S of items i found by CountMin, and we scale each of the f ′i by 1/p.

Recall that gi the frequency of item i in the sampled stream L. Then for sufficiently large
C > 0 given in the theorem statement, for any i, by a Chernoff bound,

Pr
[

gi > max
{

p
(

1+
ε

5

)
fi,

C
2ε2 log

( n
δ

)}]
≤ δ

4n
.

By a union bound, with probability at least 1−δ/4, for all i ∈ [n],

gi ≤max
{

p
(

1+
ε

5

)
fi,

C
2ε2 log

( n
δ

)}
. (7)
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We also need the property that if fi ≥ (1−ε)αF1(P), then gi ≥ p(1−ε/5) fi. For such i, by
the premise of the theorem we have

E [gi]≥ p(1− ε)αF1(P)≥C(1− ε)ε−2 log(n/δ ) .

Hence, for sufficiently large C, applying a Chernoff and a union bound is enough to conclude
that with probability at least 1−δ/4, for all such i, gi ≥ p(1− ε/5) fi.

We set the parameter δ ′ of CountMin to equal δ/4, and so CountMin succeeds with
probability at least 1−δ/4.

Also, E [[F1(L)]= pF1(P)≥Cα−1ε−2(logn/δ ), the inequality following from the premise
of the theorem. By a Chernoff bound,

Pr
[(

1− ε

5

)
pF1(P)≤ F1(L)≤

(
1+

ε

5

)
pF1(P)

]
≥ 1− δ

4
.

By a union bound, all events discussed thus far jointly occur with probability at least
1−δ , and we condition on their joint occurrence in the remainder of the proof.

Lemma 11 If fi ≥ αF1(P), then

gi ≥ (1−2ε/5) ·αF1(L) .

If fi < (1− ε)αF1(P), then
gi ≤ (1− ε/2)αF1(L) .

Proof Since gi ≥ p(1− ε/5) fi and also F1(L)≤ p(1+ ε/5)F1(P). Hence,

gi ≥
1− ε/5
1+ ε/5

·αF1(L)≥ (1−2ε/5) ·αF1(L).

Next consider any i for which fi < (1− ε)αF1(P). Then

gi ≤ max
{

p
(

1+
ε

5

)
(1− ε)αF1(P),

C
2ε2 log

( n
δ

)}
≤ max

{(
1− 3ε

5

)
αF1(L),

C
2ε2 log

( n
δ

)}
≤ max

{(
1− ε

2

)
αF1(L),

α

2
·E [F1(L)]

}
≤ max

{(
1− ε

2

)
αF1(L),

(
1+

ε

5

)
α

2
F1(L)

}
≤
(

1− ε

2

)
αF1(L).

ut

It follows that by setting α ′ = (1− 2ε/5) ·α and ε ′ = ε/2, CountMin(α ′,ε ′,δ ′) does
not return any i ∈ S for which fi < (1− ε)αF1(P), since for such i we have gi ≤ (1−
ε/2)αF1(L), and so gi < (1− ε/10)α ′F1(L). On the other hand, for every i ∈ S for which
fi ≥ αF1(P), we have i ∈ S, since for such i we have gi ≥ α ′F1(L).

It remains to show that for every i∈ S, we have f ′i ∈ [(1−ε) fi,(1+ε) fi]. By the previous
paragraph, for such i we have fi ≥ (1− ε)αF1(P). By the above conditioning, this means
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that gi ≥ p(1− ε/5) fi. We will also have gi ≤ p(1+ ε/5) fi if p
(
1+ ε

5

)
fi ≥ C

2ε2 log
( n

δ

)
.

Since fi ≥ (1− ε)αF1(P), this in turn holds if

F1(P)≥
1

2(1− ε)(1+ ε/5)
·Cp−1

α
−1

ε
−2 log

( n
δ

)
,

which holds by the theorem premise provided ε is less than a sufficiently small constant.
This completes the proof. ut

Theorem 7 Suppose that F1/2
2 ≥ Cp−3/2α−1ε−2 log(n/δ ) and p = Ω̃(m−1/2). There is a

one pass streaming algorithm which observes the sampled stream L and computes (α,1−
p1/2(1− ε)) F2-heavy hitters of the original stream with high probability.

Proof The algorithm runs the CountSketch(α ′,ε ′,δ ′) algorithm [8] for finding the F2-heavy
hitters on the sampled stream, for appropriate α ′,ε ′, and δ ′ specified below. We return the
set S of items i found by CountSketch.

As before we can show that if fi≥ (1−ε)αF1/2
2 , then with probability at least (1−δ/4),

gi ≥ p(1− ε/5) fi. Next we bound the variance of F2(L). Since each gi is drawn from a
binomial distribution Bin( fi, p) on fi items with probability p,

E [F2(L)] =
n

∑
i=1

E
[
(gi)

2]= n

∑
i=1

(p2 f 2
i + p(1− p) fi) = p2F2(P)+ p(1− p)F1(P).

Moreover,

Var[F2(L)] =
n

∑
i=1

Var[(gi)
2]≤

n

∑
i=1

E
[
(gi)

4]− (p2 f 2
i + p(1− p) fi)

2)≤
n

∑
i=1

E
[
(gi)

4]− p4 f 4
i .

It is known that the 4-th moment of Bin( fi, p) is

fi p(1−7p+7 fi p+12p2−18 fi p2 +6 f 2
i p2−6p3 +11 fi p3−6 f 2

i p3 + f 3
i p3),

and subtracting p4 f 4
i from this, we obtain

fi p−7 fi p2 +7 f 2
i p2 +12 fi p3−18 f 2

i p3 +6 f 3
i p3−6 fi p4 +11 f 2

i p4−6 f 3
i p4 + f 4

i p4− f 4
i p4,

which is O( fi p + f 2
i p2 + f 3

i p3). Hence, Var[F2(L)] = O(pF1 + p2F2(P) + p3F3(P)). By
Chebyshev’s inequality,

Pr
[
|F2(L)−E [F2(L)] | ≥ ε p2F2

]
= O

(
pF1 + p2F2 + p3F3

ε2 p4F2
2

)
= O

(
F1

ε2 pF2
2
+

1
ε2F2

+
pF3

ε2F2
2

)
= O

(
1

ε2 pF2
+

1
ε2F2

+
pF3/2

2

ε2F2
2

)
= O

(
1

ε2 pF2
+

1
ε2F2

+
p

ε2F1/2
2

)

Thus with probability at least (1−δ/4)(
1− ε

5

)
pF1/2

2 ≤ (F2(L))1/2 ≤ 2p1/2F1/2
2 .

By union bound all events discussed so far jointly occur with probability at least 1−δ , and
we condition on them occurring in the remainder of the analysis.
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Suppose that fi ≥ αF1/2
2 in the original stream. Then

gi ≥ p(1− ε/5) fi ≥ αF1/2
2 p(1− ε/5)≥ α p1/2(1− ε/5)F1/2

2 (L)

Next consider any i for which fi < (1− ε)p1/2αF1/2
2 . Then

gi ≤ max
{

p
(

1+
ε

5

)
(1− ε)p1/2

αF1/2
2 (P),

C
2ε2 log

( n
δ

)}
≤ max

{(
1+

ε

5

)(
1− 4ε

5

)(
1− ε

5

)
p3/2

αF1/2
2 (P),

C
2ε2 log

( n
δ

)}
≤
(

1− 3ε

5

)(
1− ε

5

)
p3/2F1/2

2 (P)

≤
(

1− ε

2

)
p1/2

α(F2(L))1/2

It follows that by setting α ′=(1−2ε/5)·α · p1/2, δ ′= δ/4, and ε ′= ε/10, CountSketch(α ′,ε ′,δ ′)
does not return any i ∈ S for which fi < (1− ε)p1/2αF1/2

2 (P), since for such i we have
gi ≤ (1−ε/2)p1/2α(F2(L))1/2. On the other hand, for every i ∈ S for which fi ≥ αF1/2

2 , we
have i ∈ S, since for such i we have gi ≥ α ′(F2(L))1/2.

ut

7 Conclusion

We presented small-space stream algorithms and lower bounds for estimating functions of
interest when observing a random sample of the original stream. The are numerous direc-
tions for future work, and we mention some of them.

– As we have seen, our results imply time/space tradeoffs for several natural streaming
problems. What other data stream problems have interesting time/space tradeoffs?

– Also, we have so far assumed that the sampling probability p is fixed, and that the
algorithm has no control over it. Suppose this was not the case, and the algorithm can
change the sampling probability in an adaptive manner, depending on the current state
of the stream. Is it possible to get algorithms that can observe fewer elements overall
and get the same accuracy as our algorithms? For which precise models and problems
is adaptivity useful?

– It is also interesting to obtain matching space lower bounds for the case of estimating
frequency moments.
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