
Homomorphic Fingerprints under Misalignments:
Sketching Edit and Shift Distances

Alexandr Andoni
Microsoft Research SVC

andoni@microsoft.com

Assaf Goldberger
Tel Aviv University

assafg@post.tau.ac.il
Andrew McGregor∗

University of Massachusetts
mcgregor@cs.umass.edu

Ely Porat†
Bar-Ilan University and
University of Michigan

porately@cs.biu.ac.il

ABSTRACT
Fingerprinting is a widely-used technique for efficiently ver-
ifying that two files are identical. More generally, linear
sketching is a form of lossy compression (based on ran-
dom projections) that also enables the“dissimilarity”of non-
identical files to be estimated. Many sketches have been pro-
posed for dissimilarity measures that decompose coordinate-
wise such as the Hamming distance between alphanumeric
strings, or the Euclidean distance between vectors. How-
ever, virtually nothing is known on sketches that would ac-
commodate alignment errors. With such errors, Hamming
or Euclidean distances are rendered useless: a small mis-
alignment may result in a file that looks very dissimilar to
the original file according such measures.

In this paper, we present the first linear sketch that is
robust to a small number of alignment errors. Specifically,
the sketch can be used to determine whether two files are
within a small Hamming distance of being a cyclic shift of
each other. Furthermore, the sketch is homomorphic with
respect to rotations: it is possible to construct the sketch of
a cyclic shift of a file given only the sketch of the original
file. The relevant dissimilarity measure, known as the shift
distance, arises in the context of embedding edit distance
and our result addressed an open problem [26, Question 13]
with a rather surprising outcome. Our sketch projects a
length n file into D(n) ·polylogn dimensions where D(n)�
n is the number of divisors of n. The striking fact is that
this is near-optimal, i.e., the D(n) dependence is inherent
to a problem that is ostensibly about lossy compression.

In contrast, we then show that any sketch for estimating
the edit distance between two files, even when small, requires
sketches whose size is nearly linear in n. This lower bound
addresses a long-standing open problem on the low distor-

∗Supported by NSF CAREER Award CCF-0953754.
†This work was supported by a Google award.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’13, June 1–4, 2013, Palo Alto, California, USA.
Copyright 2013 ACM 978-1-4503-2029-0/13/06 ...$15.00.

tion embeddings of edit distance [36, Question 2.15], [24],
for the case of linear embeddings.

Categories and Subject Descriptors
F.2.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

Keywords
fingerprinting; sketching; edit distance; lower bounds

1. INTRODUCTION
Fingerprinting is a widely-used technique for efficiently

verifying that two files are identical. The idea is to map the
files to short bit strings such that with high probability, the
files are identical if and only if the short strings are identical.
Examples include the “rolling” fingerprint of Karp and Ra-
bin [31] and cryptographic hash functions such as MD5 [46].
More generally, linear sketching is a form of lossy compres-
sion based on random linear projections that also enables
one to estimate the “dissimilarity” of two non-identical files.
Concretely, we represent the two files as vectors x, y ∈ Rn
and consider a matrix A ∈ Rk×n chosen from some carefully
chosen distribution. The distance between x and y is then
estimated from the sketches Ax,Ay ∈ Rk. The goal is to
ensure a given approximation guarantee while minimizing
k � n, the dimension or size of the sketch.

The linearity of sketches confers numerous advantages.
For one, the technique is applicable in distributed, parallel,
streaming environments, and in network coding [45] since
the sketch is homomorphic with respect to linear operations,
i.e., αA(x) + βA(y) = A(αx + βy). Furthermore, linearity
often allows for identifying the actual difference x − y, as-
suming it is sparse. Thus, for example, a lot of attention
has been devoted to developping sketches for estimating the
Hamming distance between two strings [14, 30, 41, 42], the
`p norm of their difference [29], as well as determining the
position of mismatches, e.g., heavy hitters or sparse recov-
ery [12, 13, 16, 19, 21, 28, 37, 39, 44]. Note that the problem
of finding mismatches has (re)appeared in various contexts
such as set reconciliation problem; invertible bloom filters;
group testing [38,43]; and others.

However, nearly all the distances considered to date are
not robust to alignment errors. For example, a single inser-
tion at the start of a file will result in a file that looks very

dissimilar to the original file according to the Hamming mea-
sure.

Edit Distance and Shift Distance. To address the issue of
misalignment, researchers have considered distances that are
more robust to misalignments, in particular the edit distance
and the shift distance. The edit distance (also known as the
Levenshtein distance) between two strings x, y ∈ Σn, de-
noted ed(x, y), is defined as the minimum number of charac-
ter insertions, deletions, and substitutions needed to trans-
form one string into the other. Although it has been heavily
studied, edit distance still resists efficient algorithms, includ-
ing good linear sketches. The shift distance sh(x, y) between
x, y ∈ Σn is defined as the minimal Hamming distance be-
tween x and some cyclic shift (rotation) of y. While edit
distance is the canonical distance between strings, shift dis-
tance is also natural in signal processing applications. For
example, two similar periodic signals recorded at different
phases would result in two files that are close under some
cyclic shift.

Numerous connections between edit distance and shift dis-
tance have arisen in the context of metric embeddings. Shift
distance has emerged as a useful distance that is “alignment-
friendly” and simple, yet still captures a core hardness struc-
ture present in the edit distance. As such, shift distance
has already proven instrumental for the discovery of both
lower and upper bounds for the edit distance. For exam-
ple, shift distance has a Ω(logn) lower bound on distortion
(approximation) for embedding into `1 [32], which already
demonstrates the increased difficulty of dealing with mis-
alignments over, say, the simpler Hamming distance. This
lower bound essentially leads to the same bound for edit
distance as well [33]. The shift distance is also the core gad-
get for the lower bound for asymmetric query complexity
of edit distance from [5] (the full construction uses a recur-
sive shift distance). Considering these hard instances has
then led to a (near-tight) upper bound, which also yields a
sub-quadratic time edit distance estimation algorithm with
a polylogarithmic approximation [5].

Sketching shift distance has been raised as an open ques-
tion in [26]. The only previous result is a 1+ε approximation

sketch of size O(
√
n/ε) [18]. Even when allowing an arbi-

trary (non-linear) sketches, the only other result achieves
O(log2 n)-approximation in polylogarithmic space [4]. The
similar question for edit distance has been studied, and the

best approximation for small space is 2Õ(
√

logn) (again, by a
non-linear sketch) [9–11,40].

We note that the question becomes somewhat easier when
only one of the strings is being compressed or sketched. For
example, [17, 27] show how to compute the distance and
difference under the edit distance and other related distances
efficiently if one of the strings is known in full. There is
also a body of work on designing fingerprints that measure
the similarity between sets or item rankings [6–8, 20, 34].
However, these results are not directly relevant since two
sequences may have large edit distance or shift distance even
if they are composed of the same set of elements.

Homomorphic Compression. A larger context for our work is
the study of lossy compression schemes that support a range
of operations on the compressed data without access to the
original data. For example, rather than just having a sketch
L that is homomorphic with respect to linear operations, one

may want to be homomorphic with respect to cyclic shifts.
For example, given sketches L(x) and L(y) of two strings
x = x1x2 . . . xn and y = y1y2 . . . yn, we want to be able to
compute

L(σs(x+ y)) where σs(x+ y)i = xi−s mod n + yi−s mod n

for any s ∈ {0, 1, 2, . . . , n− 1}.
We are interested in exploring the limits of the linear

sketching technique. Specifically, we are interested in devel-
oping a theory of homomorphic compression based on the
fact that the linear property of the sketch ensures that the
projection preserves certain structural properties. For ex-
ample, given x, y, z ∈ Rn, it is not difficult to show that it is
possible to determine whether {x, y, z} is linearly indepen-
dent given Ax,Ay,Az ∈ Rk where A ∈ Rk×n is a random
projection with k = O(logn). A perhaps more surprising
result is that it is possible to determine the connectivity
properties of a graph on n nodes given only a O(polylogn)-
dimensional projection of each of the n adjacency lists [2,3].
While other approximate data structures are “mergable” [1],
the linearity of sketches offers the promise of supporting a
much richer set of algorithmic operations.

1.1 Our Results and Discussion
In this paper we present three main results on homomor-

phic sketches for the alignment distances described above.

1. Shift Distance Sketch: We present a linear sketch of
size k = O(D(n) · polylogn) for the shift distance
where D(n) is the number of divisors of n. The sketch
also supports homomorphic cyclic shifts. Our sketches
can be used for distinguishing between sh(x, y) > 0
and sh(x, y) = 0 where x, y ∈ Znm and m = poly(n).
More generally, our sketches can distinguish between
the cases sh(x, y) = 0, 1, . . . , t and sh(x, y) > t, using
space O((t + D(n)) · polylogn). Since the number of

divisors of n satisfies D(n) = nO(1/ log logn), the size of
the sketch is always significantly sub-linear in n and
typically D(n) = O(logn). We also show efficient al-
gorithms for computing the shift distance using our
sketches, as well as for identifying the shift and any
differing positions.

2. Shift Distance Lower Bound: We present a near match-
ing lower bound for testing whether sh(x, y) = 0 where
x, y ∈ Znm. Specifically, we show that any linear homo-
morphic sketch has dimension Ω(D(n) logm/ lognm).

These first two results address an open question posed
in [26, Question 13] with a rather surprising outcome. When
viewing sketching as a form a compression, it is natural to
view the size of a sketch in terms of the amount information
that needs to be preserved by the sketch. As such, it would
seem natural to assume that the size of an optimal sketch
size would be monotonically increasing in n, the size of the
data being sketched. Instead, our results show that the op-
timal sketch size is proportional to the number of divisors
of the n, and is thus far from being monotonic.

3. Edit Distance Lower Bound: We show that any lin-
ear sketch that distinguishes the cases ed(x, y) = 2
and ed(x, y) = 1 has size Ω(n). More generally, we
show that sketch that distinguishes ed(x, y) ≥ 2α and

ed(x, y) ≤ 2 has size Ω(n/α). This result on edit dis-
tance is in stark constrast to the upper bound for shift
distance from above.

We note also that edit distance lower bound has implica-
tions for a long-standing open question on the best distortion
embeddings for the edit distance [36, Question 2.15], [24].
Namely our result implies that any linear embedding of edit
distance in `1 has Ω(n) distortion.

2. TECHNIQUES AND PRELIMINARIES
In this section, we describe our general approach to the

sketch construction, as well as the required number theoretic
preliminaries.

We will use [n] to denote the set {0, 1, 2, . . . , n − 1}. For
a string x ∈ Σn and index set I ⊂ {1, . . . n}, x|I is the
projection of x onto coordinates in I. Let D(n) denote the
number of divisors of n.

2.1 Our Techniques
We describe the ideas behind the construction of the sketch

for the shift distance as well as fast algorithms for using the
sketches. The ideas for our lower bounds are described in
Section 4.

The departing point of our sketch is the Karp–Rabin fin-
gerprint [31]. The latter maps a string a ∈ Znm into a finger-
print (hash value)

fa =

n−1∑
i=0

riai mod p

for a random prime p and some constant r ∈ Zp \ {0, 1}.
Then, for a different string b ∈ Znm, we have that fa 6= fb
with good probability (over the choice of the prime p). The
advantage of this fingerprint is that, using fa, one can very
efficiently compute the fingerprint of a related string, namely
the string a′ = (t, a0, a1, . . . an−2) where a = (a0, . . . an−1)
and t ∈ Zm. Specifically, one computes the new finger-
print as fa′ = rfa + t − rnan−1. Note that for t = an−1,
we obtain the fingerprint of the cyclic shift of a, namely
fa′ = fσ(a). With such fingerprints, one can verify whether
sh(a, b) = 0 as follows: just check whether fσs(a) − fb = 0
for any s ∈ [n]. However, in our setting, we cannot use this
fingerprint because, to compute fσs(a), one has to also know
an−1, an−2, . . . an−s.

We want to be able to compute the fingerprint fσ(a) of
the shift of a from fa alone, without the knowledge of an−1.
A natural attack is to choose p and r such that rn = 1
mod p since then fσ(a) = rfa. This leads us to consider
using Fermat’s little theorem, which says that, at least when
p = n+ 1 is a prime, we have rn = 1 mod p for all r ∈ Z×p ,
the multiplicative group of integers modulo p. Leaving aside
the issue of a number-theoretic restriction on n, we cannot
choose the prime p randomly anymore (and it can be shown
that there is no deterministic fingerprint with the desired
properties). It is now tempting to choose r randomly and
hope that, for a non-zero polynomial

fa(r) =

n−1∑
i=0

air
i,

we have fa(r) 6= 0 for a random r with good probability. In
order to bound the number of roots r such that fa(r) = 0,

one could use, say, Schwartz-Zippel lemma. However, since
fa(r) may potentially have degree as large as nearly p =
n+1, one obtains a success probability as small as Θ(1/n).1

Instead, our approach is to choose the base r very care-
fully, while continuing to use a random p. In particular, we
choose r such that it is a root of the equation rn = 1 mod p
(i.e., r is an nth root of unity). Implemented naively, this
approach also runs into trouble, stemming from the fact that
no fixed r is sufficient. For example, r = 1 seems like a bad
choice (even in the original Karp-Rabin fingerprint) since
any permutation of a gives precisely the same fingerprint.
But, any other root r 6= 1 is also root of the polynomial
(rn−1 + rn−2 + . . .+ r + 1) since

rn−1 = 0 mod p =⇒ (r−1)(rn−1 + . . .+r+1) = 0 mod p.

In other words, the polynomial fa(r) = rn−1 + . . . + r + 1
for a = (1, 1, . . . 1) is always zero modulo p for any r 6= 1.

To address this difficulty, our sketch will use several roots
r1, r2, . . . , rk so that for a non-zero polynomial fa(r), there
will be at least one root such that fa(ri) 6= 0 with good
enough probability (over the choice of prime p). In partic-
ular, we show that it is enough to (carefully) choose D(n)
such roots ri to satisfy the above property. To construct
the roots r1, r2, . . ., we look at the possible factorizations of
the polynomial rn − 1, which are well characterized by the
cyclotomic polynomials (see below for a definition and the
relevant properties). Furthermore, to prove that our poly-
nomials fa do not have ri’s as roots, we use the theory of
resultants (again, see below).

We also show efficient algorithms for verifying whether
fa(ri) = fσs(b)(ri) for some cyclic shift s. Note that this
amounts to computing the shift s such that fa(ri) = rsi fb(ri).
We show how to do this quickly (faster than enumerating
over all possible shifts s). We note that it is not always
possible to determine s accurately — for example when the
strings are periodic and hence s is not even well defined.
In this case we show that we can determine s mod di for
enough moduli di so that, using the Chinese Remainder The-
orem, one can determine the shift s modulo the period of the
strings.

Finally, to determine the actual difference between a and
σs(b) whenever a − σs(b) is sparse, we further use a fast
syndrome decoding algorithm [15].

2.2 Number Theory Preliminaries
We now summarize the main definitions and results in

number theory that we will use in this paper. The interested
reader may want to consult Hardy and Wright [23] for proofs
and further background.

Lemma 1 (Cyclotomic Polynomials). The d-th cy-
clotomic polynomial is defined as:

Φd(X) =
∏

1≤k≤d,gcd(k,d)=1

(X − e2iπk/d) .

Properties of cyclotomic polynomials include:

1. Φd(X) ∈ Q(X) and is the minimal polynomial in Q
for any primitive root of Xd − 1. In particular it is
irreducible, i.e., has no non-constant factors in Q[X].

1One might hope to get more flexibility by instead appealing
to Euler’s theorem: rϕ(q) = 1 mod q if r and p are co-prime
and ϕ(q) is Euler’s totient function. However this approach
seems to run into the exact same difficulty.

2. Xn − 1 factorizes into cyclotomic polynomials:

Xn − 1 =
∏
d|n

Φd(X)

and therefore the number of factors of Xn−1 is D(n),
the number of divisors of n, including 1 and n.

For example,

X6 − 1 = Φ1(X)Φ2(X)Φ3(X)Φ6(X)

= (X − 1)(X + 1)(X2 +X + 1)(X2 −X + 1) .

Theorem 2 (Abel’s Irreducibility Theorem). Let
g(X) ∈ Q[X] be irreducible over Q and f(X) ∈ Q[X] share
a root with g(X). Then f(X) shares all the roots of g(X).

Therefore, if f(X) and X6 − 1 share a root, there exists
d ∈ {1, 2, 3, 6} such that Φd(X) is a factor of f(X).

Lemma 3 (Resultant). The resultant of two monic
polynomials f(X), g(X) ∈ F[X] is defined as

Res(f, g) =
∏

x,y∈G:f(x)=0,g(y)=0

(x− y)

=
∏

x∈G:f(x)=0

g(x) =
∏

x∈G:g(x)=0

f(x) .

where G is the algebraic closure of F. Note that Res(f, g) = 0
iff f and g have a common root. Furthermore, if f and g
have degree n − 1 and coefficients in the set {−m,−m +
1, . . . ,m}, then

|Res(f, g)| ∈ {0, 1, . . . , (2nm)2n} .

Proof. This follows because the resultant can be ex-
pressed as the determinant of the Sylvester matrix associ-
ated with f and g [47]. Specifically, if f(x) =

∑
0≤i≤n−1 aix

i

and g(x) =
∑

0≤i≤n−1 bix
i then Res(f, g) = detA where A

is the (2n− 2)× (2n− 2) matrix of the form:

A =



an−1 an−2 . . . 0 0
0 an−1 . . . 0 0
...

...
. . .

...
...

0 0 . . . a0 0
0 0 . . . a1 a0

bn−1 bn−2 . . . 0 0
0 bn−1 . . . 0 0
...

...
. . . 0 0

0 0 . . . b0 0
0 0 . . . b1 b0


and so |Res(f, g)| ≤ (2nm)2m if the magnitude of every
coefficient if at most m.

Lemma 4 (Density of Primes). For any n, k ∈ N, de-
fine the following set of primes:

Cn,k = {p prime : p ≤ k, Xn−1 has n distinct roots in Zp} .

Then, |Cn,k| = Ω(k/(n ln k)).

Proof. For every prime p of the form mn + 1, Xn − 1
has n distinct roots. The number of primes less than k, of
the form mn+ 1 is Ω(k/(n ln k)).

3. UPPER BOUNDS
In this section we present the basic linear sketch for de-

termining whether two strings are identical up to a shift.
We then extend the result to handle the case when the two
strings are within small Hamming distance of being identical
after some shift.

3.1 The Basic Sketch
We prove the following theorem.

Theorem 5 (Cyclic Shift Sketch). Let n,m ≥ 1.
There exists a randomized function L : Znm → {0, 1}s where
s = O(D(n) · polylogn) that satisfies the following condi-
tions:

1. Sketch: There is an algorithm such that, given sketches
L(a), L(b) of any two strings a, b ∈ Znm, declares whether
sh(a, b) = 0 with probability of success at least 2/3;

2. Shift homomorphism: Given L(a) for some string a ∈
Znm and cyclic shift σ, one can compute L(σ(a));

3. Linearity: Given L(a) and L(b) for some a, b ∈ Znm,
we can compute the sketch L(a+ b).

Note that the existence of such a sketch naturally leads
to an algorithm for checking whether a is a cyclic shift of b:
first we boost the probability of success to 1− 1/poly(n) by
taking the median result of O(logn) independent sketches
and then compare L(a) to L(σs(b)) for each of the n cyclic
shifts σs. However, this verification algorithm would take
Õ(D(n) · n) time. In Section 3.2, we show how extend the

algorithm to support Õ(D(n)) query time. We prove Theo-
rem 5 below.

Sketch Outline. Before presenting the outline of the basic
sketch algorithm, we introduce some further notation. Given
a vector a, b ∈ [m]n we start by considering the natural
encoding of a as degree n− 1 polynomials fa ∈ Q[X]:

fa(x) =

n−1∑
i=0

aix
i.

Then, given another vector b ∈ [m]n with associated poly-
nomial fb, for each shift s ∈ [n], we define gs ∈ Q[X]

gs(x) = fa(x)− xsfb(x).

Also let hs(x) be the degree n − 1 polynomial formed by
replacing all terms xi in gs(x) by xi mod n. For example,
with n = 3 and s = 2,

gs(x) = a0 + a1x+ (a2 − b0)x2 − b1x3 − b2x4

and hs(x) = (a0 − b1) + (a1 − b2)x+ (a2 − b0)x2.
The components of the sketch are as follows:

1. Initialization. Let p be a random prime with certain
properties to be determined and let r1, r2, . . . , rD(n) be
D(n) specific roots of the equation xn−1 = 0 mod p.

2. Sketch construction. For string a ∈ Znm, we compute
fa(ri) mod p for all i ∈ {1, 2, . . . , D(n)}. Their con-
catenation is our sketch L(a).

3. Shift homomorphism. For L(a) = (fa(r1), . . . fa(rD(n)),
we have L(σ(a)) = (r1fa(r1), . . . rD(n)fa(rD(n)).

4. Identity checking (query algorithm). For two strings
a, b, if there exists s ∈ [n] with gs(ri) = 0 mod p for
all i ∈ D(n), claim strings a and b are identical up to
a cyclic shift, and in particular the shift is s.

Details and Analysis. First, note that “linearity” and “shift
homomorphism” properties of Theorem 5 are automatically
satisfied because the sketch is linear and all the roots ri are
such that rni = 1. We now argue that the “sketch” property
holds.

It is straightforward to argue that the algorithm has no
false negatives. Suppose that b is a cyclic shift of a with
shift s, i.e., for i = 0, . . . , n− 1, bi = ai+s mod n. Then, for
any r with rn − 1 = 0 mod p, we have

gs(r) ≡p hs(r)

≡p (a0 − bn−s) + (a1 − b1+n−s)r + . . .

+ (an−1 − bn−s−1)rn−1

≡p 0.

The challenge is therefore to ensure that the probability
of a false positive is small. To do this we will carefully chose
p, r1, r2, . . . , and rD(n).

Let p be a prime such that Xn − 1 = 0 mod p has n
distinct roots, e.g., a prime p = tn+1 for some t ∈ {1, 2, . . .}.
Consider the factorization of Xn−1 ∈ Q[X] into irreducible
polynomials

Xn − 1 =
∏
d|n

Φd(X) = c1(X)c2(X) . . . cD(n)(X) .

and define ri ∈ Zp to be a root of ci(X) = 0 mod p (chosen
arbitrarily when ci(X) has multiple roots).

Suppose that a and b do not satisfy bi = ai+s mod n for all
i = 0, . . . , n−1 and therefore hs(x) is a non-zero polynomial
of degree n − 1. Given that a, b ∈ Znm, the coefficients of
hs(x) are in {−m,−m+ 1, . . . ,m− 1,m}.

Lemma 6. There exists i such that Res(ci, hs) 6= 0.

Proof. Let c(X) = Xn − 1. Since hs(X) has degree
n− 1 and c(X) has degree n, there exists a root r of c such
that hs(r) 6= 0. Given the factorization of c(X), there exists
ci(X) such that ci(r) 6= 0 and by Lemma 1, ci is irreducible.
Therefore, by appealing to Theorem 2, we know that every
root of ci is not a root of hs. Hence, Res(ci, hs) 6= 0 as
required.

We next need to argue that ci and hs also have no shared
roots (with high probability) when viewed as polynomials
over Zp.

Lemma 7. Let p ∈R Cn,k where k = n5. Then,

Pr[ci, hs share a root over Zp] ≤
2n log(2nm)

|Cn,k|
= O(1/n2) .

Proof. Consider the resultant of ci and hs when viewed
as polynomials over Q:

Res(ci, hs) =
∏

x,y∈C:ci(x)=0,hs(y)=0

(x− y) =
∏

y∈C:ci(y)=0

hs(y)

The resultant of ci and hs when viewed as polynomials over
Zp equals

∏
y∈C:ci(y)=0 hs(y) mod p. By Lemma 3, we know

that
∏
y∈C:ci(y)=0 hs(y) is an integer with maximum absolute

value (2nm)2n and there has at most 2n log(2nm) prime di-
visors. Since p is chosen randomly from Cn,k with probabil-

ity at least 1 − 2n log(2nm)
|Cn,k|

, the resultant of ci and hs when

viewed as polynomials over Zp is non-zero and hence they
do not share a root. The bound follows since for k = n5,
|Cn,k| = Ω(n4/ logn).

By applying the union bound over all choices of s, we
ensure that for a, b ∈ Znm that are not cyclic shifts,

Pr[∀s ∈ [n]; ∃i; gs(ri) 6= 0 mod p] ≥ 1−O(1/n) .

This completes the proof of Theorem 5.

3.2 Reducing the Query Time
We now show how improve the query time of the sketch.

Note that the naive method from the preceding section would
use Õ(nD(n)) time since it required verifying n possible
cyclic shifts. We now show how to reduce this time to

D(n) polylogn+2O(log1/3 n log log2/3 n). In fact, our algorithm
will find the shift j under which the two strings are supposed
to be equal, and then verify whether the strings are indeed
equal under shift j using the result from the previous section.

To accomplish this we choose the roots ri of ci(X) more
carefully. For ci(X) = Φdi , we take ri to be a root that has

exact order di, i.e., rdii = 1 and there is no ` < di such that
r`i = 1. In Section 3.2.1 we prove that ri is indeed a root of
Φdi , as well as show how to construct ri’s.

It is clear that if the strings are not equal under any shift
j, the algorithm will report it so with high probability, due
the result from the previous section. The question then boils
down to finding a shift j under which the strings are equal,
if such exists.

To find the shift j, we consider the equations fa(ri) =
rji fb(ri) = mod p that must be satisfied by the shift j. Given
that fb(ri) 6= 0 we calculate j mod di, using a discrete-log
algorithm in the equation rji = fa(ri)/fb(ri) mod p. Apply-
ing the Chinese Remainder Theorem on the answers for each
ri, we thus determine j.

Next we prove the correctness of the above algorithm. We
will use the following notation: for d′ | n, the index id′ ∈
{1, . . . , D(n)} will stand for the index i such that di = d′.

Lemma 8. Let l be the period of the string where l = n if
the string is aperiodic. Assuming b is not identically zero,
the least common multiple (lcm) of all di for which fb(ri) 6= 0
will be l with high probability. Therefore we can determine
the shift j mod l.

Proof. Assume b = un/l for some string u ∈ Zlm, then

fb(X) = (1 +Xl +X2l + . . .+Xn−l)fu(X) .

Notice that

Xn − 1 = (1 +Xl +X2l + . . .+Xn−l)(Xl − 1) ,

and hence

(1 +Xl +X2l + . . .+Xn−l) =
∏

d′|n∧d′-l

Φd′(X) .

For all d′|n ∧ d′ - l, we have Φd′(X)|fb(x) and therefore
we will get fb(rid′) = 0 mod p. Therefore the lcm can be at
most l.

Now we will prove that the lcm is l with high proba-
bility. We assume that u is the minimal period and 0 <

deg(fu(X)) ≤ l − 1 (which happens whenever b is not iden-
tically zero). Therefore for every d′|l we have

(1 +Xd′ +X2d′ + . . . Xl−d′) - fu(X) .

Assume the lcm is `′ | l, in which case also

(1 +X`′ +X2`′ + . . .+Xl−`′) - fu(X) .

Therefore there exist d′|l ∧ d′ - `′ such that Φd′ - fu(X).
We proved before that choosing p randomly in this case im-
ply that fu(rid′) mod p 6= 0 which also implies that fb(rid′)
mod p 6= 0.

Notice that we do not need to run discrete-log D(n) times.
It is enough to choose i1, i2, . . . , i` such that fb(rij) 6= 0 and
the lcm of dij is equal to the lcm of all di. This means that
in the worst cast we run discrete-log only logD(n) times.

The time complexity of discrete-log [22] is

2O((logn)1/3(log logn)2/3)

and therefore the resulting time to find the shift is

D(n) polylogn+ 2O((logn)
1
3 (log logn)

2
3) .

3.2.1 Constructing the appropriate roots of unity
We now describe how to construct the appropriate roots

ri. First we show that the ri which has exact order di is
indeed a root of Φdi .

Lemma 9. If ri has exact order di, it is a root of Φdi .

Proof. Since ri has exact order di, ri is a root of the
polynomial

Xdi − 1 =
∏
d′|di

Φd′(X) .

On the other hand it is not a root of Xd′−1 for every proper
divisor d′|d and hence not a root of Φd′(X). We conclude
that ri is a root of Φdi .

Fix an integer n, and a prime p with p ≡ 1 mod n. Let
Xn−1 =

∏
d|n Φd(X) be the decomposition into cyclotomic

polynomial. We want to choose elements {rid}d|n in F×p
such that rid is a root of Φd. To do this, consider the prime
factorization of n =

∏r
i=1 p

ei
i . Choose a random element

ri ∈ F×p and compute ti = r
(p−1)/pi
i . Now, the element

si := r
(p−1)/p

ei
i

i

has order dividing peii , and with probability (1 − 1/pi) it
will have the exact order peii . This will happen if and only if
ti 6= 1. Once we find ti with ti 6= 1, we compute si. Having
collected the si for all i, we form the product r =

∏
si

which is an element of exact order n. For every d|n compute

rid = rn/d.

3.3 Extension to Small Number of Errors
In the section, we generalize Theorem 5 to the situation

when a and a cyclic shift of b are at a small Hamming dis-
tance k. In this case we show we can reconstruct the actual
difference using a sketch of size O((t+D(n)) polylogn).

Theorem 10 (Cyclic Shift Sketch with Errors).
Let n,m ≥ 1. There exists a randomized function L : Znm →
{0, 1}s where s = O((t+D(n)) · polylogn) that satisfies the
following conditions:

1. Sketch: There is an algorithm such that given sketches
L(a), L(b) of any two strings a, b ∈ Znm, declares whether
sh(a, b) = 0, 1, . . . , t or sh(a, b) > t with probability of
success at least 2/3. Furthermore, we can reconstruct
the shift s and a− σs(b) if H(a, σs(b)) ≤ t;

2. Shift homomorphism: Given L(a) for some string a ∈
Znm and cyclic shift σ, one can compute L(σ(a));

3. Linearity: Given L(a) and L(b) for some a, b ∈ Znm,
we can compute the sketch L(a+ b).

We assume that t < n/2 since otherwise we could consider
the trivial sketch L(a) = a and still satisfy the required size
bound.

The sketch builds upon the basic sketch in Theorem 5.
In addition to the sketch described earlier we also evaluate
fa(X) and fb(X) on r, r2, . . . , r2t where r is an nth root of
unity with exact order n. Note that r, r2, . . . , r2t are distinct
because 2t < n.

We are going to try each rotation separately. Assuming
that s is the rotation that minimizes sh(a, b), let b′ is the
string formed by rotating b by s positions. Let

g(X) = fa(X)− fb′(X) =

n−1∑
i=0

∆iX
i

where ∆i is the difference between the symbols at position i.
Notice that g(rj) = fa(rj)− (rj)sfb(r

j) due to the fact that
rj also satisfies the equation xn = 1. We know that g(X) is
a t-sparse polynomial and we have 2t different assignments
therefore we can run Reed Solomon syndrome decoding (see,
e.g., [35]) in order to find ∆i.

Running over all possible values of s, we get n sets of
candidates. We use the second sketch in order to verify
which is the correct (if there is one). Due to the fact that
the sketch is linear then we can easily update the sketch
and correct the mismatch and therefore our algorithm will
return that it equal. Due to the fact that we run it n times
then the error probability will be higher by at most factor
n therefore we will choose bigger prime.

The Reed-Solomon syndrome decoding can be run in time
O(t log2 t) [15]. Therefore the running time is bounded by
O(nt log2 t+ nD(n)).

4. LOWER BOUNDS
In this section, we first prove a matching lower bound

for the shift distance sketch presented in the previous sec-
tion. We then prove a bound that establishes that no sim-
ilar sketch is possible for the edit distance. Both lower
bounds are based on careful encodings of long strings into
the shift/edit distances so that, using the linearity (and shift
homomorhism in the case of shift distance), one can do effi-
cient decoding.

4.1 Cyclic Shift Lower Bound
We start by stating the lower bound theorem.

Theorem 11. Let n,m ≥ 1, and let Σ = Zm be the
alphabet. Suppose there is a randomized function (sketch)
L : Σn → {0, 1}s that satisfies the following conditions:

1. Sketch: There is an algorithm such that given sketches
L(a), L(b) of any two strings a, b ∈ Znm, declares whether
sh(a, b) = 0 with probability of success at least 2/3;

2. Shift homomorphism: Given L(x) for some string x ∈
Σn, one can compute L(σ(x));

3. Linearity: Given L(x) and L(y) for some x, y ∈ Σn,
we can compute the sketch L(x+ y).

Then, the sketch size s has to be at least s = Ω(D(n) ·
log |Σ|/ logn|Σ|).

Before proceeding to the proof, we outline the intution
that makes the lower bound possible. One of the ideas is
to exploit symmetries in the group Zn. In particular, sup-
pose n is a product of k primes p1, . . . , pk, in which case
we have Zn ∼= Zp1 × Zp2 × . . . × Zpk , that is we can repre-
sent the string as a function on this k-dimensional rectangle.
Furthermore, a shift by n/pi on the oringinal string corre-
sponds to a shift by 1 in the i coordinate of this rectangle
— thus the string can be seen a product of k strings which
we can shift cyclically independently of each other.

We show how to exploit this product structure in order to
embed a string x of length 2k into a string x̄ so that one can
decode the entire x from the sketch L(x̄) only. To start, we
show how we can embed and decode a string x = (x0, x1)
when n = p1 is just a prime. In particular, the embedding
will be x̄ = (x0, x1, 0, 0, . . . , 0). At decoding, one can learn
the sum of the two characters using rotations as follows:

L((x0 + x1, x0 + x1, . . . x0 + x1)) =

n−1∑
j=0

L(σj(x̄))) .

Hence we can obtain a sketch of the string (x0 +x1, . . . , x0 +
x1). At this moment, the decoder can just enumerate all
possible guesses for the sum x0 +x1, and construct a sketch
to compare against the sketch L((x0 + x1, x0 + x1, . . . x0 +
x1)). Once we learn x0 + x1, we can learn the values of
x0 and x1 by, guessing all possible strings (x0, (x0 + x1) −
x0, 0, 0, . . . , 0) and checking its sketch against the sketch
L((x0, x1, 0, 0, . . . , 0)).

In general, because of the product structure of x̄, we will
be able to do this successive guessing of certain sums of
characters of x in a structured way. We will first learn sums
with more terms, and then proceed to sums with fewer and
fewer terms, until we decode the individual coordinates of
x. In general, the number of “guesses” (sketch comparisons)
will be bounded by 2k · |Σ| ≤ O(nm). Hence, as long as
the sketch works with high probability, all the guesses will
succeed to give the right answer.

Proof of Theorem 11. First of all, note that we can
amplify the probability of success of the sketch L to be 1−
(n|Σ|)−Ω(1). Hence we will assume that“sketch”property al-
ways succeeds. This increases the sketch size by O(logn|Σ|).
We now show that the resulting sketch size must be s =
Ω(D(n) log |Σ|).

To prove this, we show how to encode an arbitrary string
x ∈ ΣD(n) as a string x̄ ∈ Σn such that, given only L(x̄) it is
possible to decode the entire string x with high probability.
This implies that the sketch size of L has to be at least
Ω(D(n) log |Σ|).

Distinct Primes. For now, we assume n = p1p2 · . . . pk, i.e.,
is a product of k primes. We show how to embed a string

x ∈ Σ{0,1}
k

, which has length 2k = D(n). We use the fact
that Zn ∼= Zp1 × Zp2 × . . . × Zpk . In other words, we can
organize {0, 1, 2, . . . n−1} in a k-dimensional rectangle with

side-lengths p1, p2, . . . pk, where a number q ∈ [n] is mapped
into the vector (q mod p1, . . . q mod pk), and this mapping
is bijective. Let this rectangle be N = [p1] × [p2] × . . . [pk].
Thus, from now on we index the output of the embedding
as x̄u, where u ∈ N . In this notation, the embedding is just
x̄u = xu, where u ranges over {0, 1}k, and x̄u = 0 otherwise.

Example 1. For n = 6 and [6] ≡ [2]× [3], the string

x =

(
x00 x01

x10 x11

)
=

(
a b
c d

)
becomes

x̄ =

(
x̄00 x̄01 x̄02

x̄10 x̄11 x̄12

)
=

(
a b 0
c d 0

)
or back in length-n vector notation:

x̄ = (x̄00, x̄11, x̄02, x̄10, x̄01, x̄12) = (a, d, 0, c, b, 0).

Now we introduce a bit more notation. For u ∈ {0, 1, ?}k,
let Su be the sum of the values

{x̄v|vi = ui for all i with ui 6= ?} ,

i.e., the set formed by “collapsing” dimension i if ui = ?.

Example 2. Given the string,

x̄ = (x̄00, x̄11, x̄02, x̄10, x̄01, x̄12) = (a, d, 0, c, b, 0) ,

then S0,? = a+b, S1,? = c+d, S?,0 = a+c, and S?,1 = b+d.

Fix some m|n of the form m = pi1pi2 . . . pit . We call
F = {i1, . . . it} to be the set of free coordinates and C =
{1, . . . k} \F to be the set of collapsed coordinates. Also, let

UF = {u ∈ {0, 1, ?}k | u|F ∈ {0, 1}t, u|C = ?k−t}

be the set of vectors with coordinates in C collapsed.
We prove the following claim.

Claim 12. Given L(x) for some x, we can compute the
sketch L(y) of the string y, defined as: for u ∈ N , we have
yu = Sv where v is such that v|F = u|F and v|C = ?k−t

(and yu is zero whenever u|F has at least a coordinate out-
side {0, 1, ?}). In other words, y is the string composed
of sums where the coordinates i1, . . . it have been collapsed.
This sketch L(y) will be called LF .

Proof. We note that y =
∑n/m−1
j=0 σj·m(x). Hence we

can compute L(y) from L(x) using the “linearity” and “shift”
property of L.

Example 3. If n = 6 and m = 2, and x̄ = (a, d, 0, c, b, 0)
then,

ȳ = (S0,?, S1,?, S0,?, S1,?, S0,?, S1,?)

= (a+ b, c+ d, a+ b, c+ d, a+ b, c+ d) .

The decoding algorithm will proceed in stages, computing
sums Sv for v with an increasing number of free coordinates.
Specifically, in the first stage we learn all sums Su where u
is all ?’s (in fact, one sum); in the second stage we learn all
Su which have all but one ?; in the third, all but two ?’s and
so on. In general, to learn Su for some u ∈ {0, 1, ?}k, we use
LF , where F is the set of coordinates where ui ∈ {0, 1}.

To learn S?k , we use L∅ as follows. Enumerate over all
possible guesses g ∈ Σ, and for each construct L′ = L(gn).
If L′ = L∅, then g = S?k whp.

In general, we show how to learn the set of Sv where
v ∈ UF for a fixed set of free coordinates F ⊆ {1, . . . k}
of size t. Let C = {1, . . . k} \ F be the set of collapsed
coordinates. We guess g = Su0 where u0|F = 0t and u0|C =
?k−t. Assuming the guess is correct, (i.e., it was the case
that g = Su0) we show how we can compute all other Su for
u ∈ UF using only the sums we already learned. Suppose
we already know what is Su for some other u ∈ UF . Then,
if v ∈ UF is such that u, v differ in exactly one coordinate
i ∈ F , we can compute Sv as Sv = Sw(u,v) − Su, where
w(u, v) ∈ UF \ {i} is a vector which coincides with u and
v on all coordinates except the coordinate i where it is ?.
Note that such sums Sw for w ∈ UF\{i} have already been
computed in the previous stages. Thus, following, say, a
Gray code, we can deduce all Su for u ∈ UF from the guess
g = Su0 .

Example 4. If x̄ = (a, d, 0, c, b, 0) then:

F = ∅ ⇒ ȳ = (a+ b+ c+ d, . . . , a+ b+ c+ d) ,

F = {1} ⇒ ȳ = (a+ b, c+ d, a+ b, c+ d, a+ b, c+ d) ,

F = {2} ⇒ ȳ = (a+ c, b+ d, 0, a+ c, b+ d, 0) ,

F = {1, 2} ⇒ ȳ = (a, d, 0, c, b, 0) .

For each such guess g, we compute the string y′ which
satisfies: y′u = Sv where v is such that v|F = u|F and
v|C = ?k−t (and zero whenever u|F has a coordinate outside
{0, 1, ?}). Then we compute L(y′) and compare against LF .
With high probability, they are equal iff y′ = y from which
one obtained LF , i.e., the guess g is correct.

At the end we will have reconstructed the sums Sv for v
where all coordinates are free. Specifically, for v ∈ {0, 1}k,
we have Sv = xv. Note that, in total, there have been
2k · |Σ| ≤ n|Σ| guesses. Hence, they all succeed with high
probability and we can reconstruct x. This completes the
proof of the theorem when n is the product of k primes.

General Case. We now show the general case, when n =
pr11 · · · p

rk
k , which is just a mild generalization of the above

reduction. We embed a string x ∈ Σ(1+r1)·(1+r2)···(1+rk)

into x̄, indexed by the set N = [pr11] × · · · [prkk], which is
isomorphic to Zn. Specifically, for u ∈ [1 + r1] × [1 + r2] ×
· · · × [1 + rk], we construct u′ as u′i = pi

ui − 1 for all i and
set x̄u′ = xu. For the remaining vectors u′ we have x̄u′ = 0.

The decoding algorithm is similar to above and proceeds
as follows. In general, we replace sets F by vectors φ ∈ N ,
with the following meaning. For a coordinate i, φi will mean
i is collapsed, and φi = ri means the variable is free. More
generally, 0 < φi < ri means partial collapse, namely the
coordinate values φi . . . ri are collapsed together and the rest
are free. We will denote such partial collapse with ?φi . Thus,
we define the set of possible sum indexes as the following set
of k-dimensional vectors

Uφ = {u | ∀i : ui ∈ {0, 1, . . . φi − 1, ?φi}}.

Finally, for some vector u ∈ Uφ, we have the sum Su to be
equal to the sum Su =

∑
E(u) xj1,...,jk , where the extended

set E(u) is composed of vectors v such that vi = ui whenever
ui < φi and vi ∈ {φi . . . ri} when ui = ?φi .

Again, we will compute the sums Sφ in a certain lexico-
graphic order over φ’s, where on each coordinate we have ?i
comes before ?j iff i < j.2

Fix some φ and suppose we want to compute all the sums
Su for u ∈ Uφ. Note that we can obtain a sketch Lφ = L(y)
where the vector y (in tensor notation) is as follows: for all
v ∈ N , we have yv = Su where ui = vi whenever vi < φi and
ui = ?φi whenever vi ≥ φi. In particular, take m =

∏
i p
φi
i

and then y =
∑n/m
j=0 σ

jm(x).
We will again construct“guess sketches” for Lφ using sums

already known. First note that some sums are already known:
for u ∈ UF if some ui 6∈ {φi − 1, ?φi}, then the sum Su is
known from a previous φ. We show how to guess all the rest
at the same time. Fix some representative u0 ∈ Uφ for which
we do not yet know the sum Su0 . We guess g = Su0 and
then we decide the consistent sums Su for all u ∈ Uφ. Con-
sider two vectors u, v ∈ UF , for which we still don’t know
Su, Sv and which differ in one coordinate i: say, ui = φi − 1
and vi = ?φi . Then Su + Sv = Sw where w is equal to u on
all coordinates except i and wi = ?φi−1. Note that Sw has
been computed in a previous stage (as it corresponds to a
lexicographically smaller φ). Hence we can guess the entire
string y and compare against Lφ. Once we have completed
computed the sums for φ = (r1, r2, . . . rk) we are done as we
have reconstructed x. In total this takes

O(|Σ| ·
k∏
j=1

(ri + 1)) < O(n|Σ|)

guesses. This completes the proof of the theorem.

4.2 Edit Distance Lower Bound
We now present our lower bound for edit distance, which

essentially states that there is no good linear sketch for the
edit distance.

Theorem 13. Let n ≥ 1, and let the alphabet be Σ = Zm
where m = n3. Assume that, for some given approximation
α ≥ 2, there is a randomized function (sketch) L : Σn →
{0, 1}s that satisfies the following conditions:

1. Sketch: For any two distinct strings x, y ∈ Σn, we
distinguish the case ed(x, y) ≥ 2α from ed(x, y) ≤ 2
with probability at least 2/3;

2. Linearity: Given L(x) and L(y) for some x, y ∈ Σn,
we can compute the sketch L(x+ y).

Then, the sketch size s has to be at least s = Ω(n/α).

Proof. The proof is a reduction from the indexing prob-
lem: Alice has a string x1, x2, . . . , xk ∈ Σk, where k = n/l
and l = 4α, and Bob has an index j ∈ {1, 2, . . . , k} and wants
to determine xj with probability at least 2/3. Suppose there
exists a sketch L with the properties outlined in the theorem
statement. As in the previous proof we can amplify the prob-
ability of success of the sketch L to be 1−(nm)−Ω(1). Hence
we will subsequently assume that “sketch” property always
succeeds. This increases the sketch size by O(logn). We
now show that the resulting sketch size must be Ω(n logn).

Alice generates an encoded string of length n from the
input string x1, . . . xk, using the following function. Let A :
[m]→ [m]l be an encoding function satisfying the following
property:
2This defines a partial order only, but any linearization of it
is sufficient.

• For any distinct i, j ∈ Zm, let A′ be such that A′1 =
A(i)1 + 1 and A′p = A(i)p − A(j)p + A(j)p−1 for 2 ≤
p ≤ |A(i)|. Then ed(A′, A(i)) ≥ 2α.

We note that a random function A works with non-zero
probability (at least) as long as l ≥ 4α and m ≥ n3, hence
there exists such a function A. In particular, if A(i) and
A(j) are random and independent, then ed(A′, A(i)) is at
least the distance between two random strings of length l−1
over alphabet of size n3 > (l−1)3. It is now a standard fact
that the edit distance in this case will be ≥ l/2 = 2α.

Given this function, Alice constructs her string

x̄ = (A(x1), A(x2), . . . , A(xk)) .

Then Alice communicates L(x̄) to Bob. Bob will use L(x̄)
to successively deduce all entries of x.

We now show how Bob decodes characters xk, xk−1, . . . , x1

one by one. Suppose Bob already knows xi+1, . . . xk, and
wants to decode xi. Bob will guess the values of xi and will
check whether the guess is right.

Specifically, for a guess g ∈ Zm of xi, Bob constructs a
sketch of a string y defined as follows. y is equal to the
string x̄ everywhere except in the i-th block, i.e.,

y = (A(x1), . . . A(xi−1), A′, A(xi+1), . . . A(xk)) ,

where A′ is obtained from A(xi) as follows. A′1 = A(xi)1 +1
and A′p = A(xi)p−A(g)p+A(g)p−1. Note that we can obtain
the sketch L(y) from the sketch L(x̄) by a linear operation:

L(y) = L(x̄) + L(0(i−1)·l, 1,−A(g)2 +A(g)1, . . .

−A(g)l +A(g)l−1, 0
(k−i)·l)

.

Now, observe that, if g = xi then

ed(x̄, y) = ed(A(xi), A
′) ≤ 2 .

Furthermore, if g 6= xi, then, using the special property of
A, we also have that ed(x̄, y) = ed(A(xi), A

′) ≥ 2α. Hence,
Bob can distinguish between the two cases by the “sketch”
property of L.

In summary, Bob determines x via O(mn) queries to the
sketch. Hence, he can determine xj as required. Now the
indexing lower bound says that the length of the sketch must
be at least Ω(n logm) = Ω(n logn).

We can also deduce the following corollary using the fact
that there exist constant-sized (linear) sketches for vectors
under the `1 distance, for say (1 + ε)-approximation [25].

Corollary 14. Any linear embedding of edit distance into
`1 must incur distortion Ω(n). Same is true also for any
fixed power α < 1 of the edit distance.

We also note that our lower bound is close to being tight
in at least one case: that of one-way communication com-
plexity. Specifically, there exists a linear, one-way commu-
nication protocol that achieves n1+o(1)/α dimension for any
approximation α ≥ 1 [5].

5. CONCLUSIONS AND OPEN QUESTIONS
Our sketch for the shift metric could be used to compute

sh(·, ·) exactly if the value was small. It would also be in-
teresting to design a sketch that returned a multiplicative

approximation when the the shift metric was large. An-
other direction for further research is to consider transla-
tions in higher dimensions. For example, given two matrices
x, y ∈ Σn×n, does there exist s1, s2 ∈ [n] such that for all

∀i, j ∈ [n], xi,j = yi mod n,j mod n .

Acknowledgements. The authors would like to thank Robi
Krauthgamer, Hossein Jowhari, and Atri Rudra for early
conversations about the problem, as well as the anonymous
referees for their valueable comments.

6. REFERENCES
[1] P. K. Agarwal, G. Cormode, Z. Huang, J. M. Phillips,

Z. Wei, and K. Yi. Mergeable summaries. In PODS,
pages 23–34, 2012.

[2] K. J. Ahn, S. Guha, and A. McGregor. Analyzing
graph structure via linear measurements. In SODA,
pages 459–467, 2012.

[3] K. J. Ahn, S. Guha, and A. McGregor. Graph
sketches: sparsification, spanners, and subgraphs. In
PODS, pages 5–14, 2012.

[4] A. Andoni, P. Indyk, and R. Krauthgamer. Earth
mover distance over high-dimensional spaces. In
SODA, pages 343–352, 2008.

[5] A. Andoni, R. Krauthgamer, and K. Onak.
Polylogarithmic approximation for edit distance and
the asymmetric query complexity. In FOCS, 2010. A
full version is available at arxiv.org/abs/1005.4033.

[6] Y. Bachrach and R. Herbrich. Fingerprinting ratings
for collaborative filtering — theoretical and empirical
analysis. In String Processing and Information
Retrieval, pages 25–36. Springer, 2010.

[7] Y. Bachrach and E. Porat. Fast pseudo-random
fingerprints. arXiv preprint arXiv:1009.5791, 2010.

[8] Y. Bachrach, E. Porat, and J. S. Rosenschein.
Sketching techniques for collaborative filtering. In
Proceedings of the 21st international joint conference
on Artificial intelligence, pages 2016–2021. Morgan
Kaufmann Publishers Inc., 2009.

[9] Z. Bar-Yossef, T. S. Jayram, R. Krauthgamer, and
R. Kumar. Approximating edit distance efficiently. In
FOCS, pages 550–559, 2004.

[10] T. Batu, F. Ergün, J. Kilian, A. Magen,
S. Raskhodnikova, R. Rubinfeld, and R. Sami. A
sublinear algorithm for weakly approximating edit
distance. In STOC, pages 316–324, 2003.

[11] T. Batu, F. Ergün, and C. Sahinalp. Oblivious string
embeddings and edit distance approximations. In
SODA, pages 792–801, 2006.

[12] E. Candes, J. Romberg, and T. Tao. Robust
uncertainty principles: Exact signal reconstruction
from highly incomplete frequency information. IEEE
Transactions on Information Theory, 52:489 – 509,
2006.

[13] M. Charikar, K. Chen, and M. Farach-Colton. Finding
frequent items in data streams. In Proc. of ICALP,
2002.

[14] R. Clifford, K. Efremenko, E. Porat, and
A. Rothschild. k -mismatch with don’t cares. In ESA,
pages 151–162, 2007.

[15] R. Clifford, K. Efremenko, E. Porat, and
A. Rothschild. From coding theory to efficient pattern
matching. In SODA, pages 778–784, 2009.

[16] G. Cormode and S. Muthukrishnan. An improved
data stream summary: the count-min sketch and its
applications. J. Algorithms, 55(1):58–75, 2005.

[17] G. Cormode, M. Paterson, S. C. Sahinalp, and
U. Vishkin. Communication complexity of document
exchange. In SODA, pages 197–206, 2000.

[18] M. S. Crouch and A. McGregor. Periodicity and cyclic
shifts via linear sketches. In APPROX-RANDOM,
pages 158–170, 2011.

[19] D. L. Donoho. Compressed sensing. IEEE
Transactions on Information Theory, 52(4):1289–1306,
2006.

[20] G. Feigenblat, E. Porat, and A. Shiftan. Exponential
time improvement for min-wise based algorithms.
Information and Computation, 209(4):737–747, 2011.

[21] A. C. Gilbert, Y. Li, E. Porat, and M. J. Strauss.
Approximate sparse recovery: optimizing time and
measurements. In STOC, pages 475–484, 2010.

[22] D. M. Gordon. Discrete logarithms in GF (p) using the
number field sieve. SIAM J. Discrete Math.,
1(6):124–138, 1993.

[23] G. Hardy and E. Wright. An Introduction to the
Theory of Numbers. Oxford Science Publications.
Oxford University Press, USA, 1980.

[24] P. Indyk. Algorithmic aspects of geometric
embeddings (tutorial). In FOCS, pages 10–33, 2001.

[25] P. Indyk. Stable distributions, pseudorandom
generators, embeddings and data stream computation.
J. ACM, 53(3):307–323, 2006.

[26] P. Indyk, A. McGregor, I. Newman, and K. Onak,
editors. Open Problems in Data Streams, Property
Testing, and Related Topics, 2011. Available at:
people.cs.umass.edu/∼mcgregor/papers/11-
openproblems.pdf.

[27] H. Jowhari. Efficient communication protocols for
deciding edit distance. In ESA, pages 648–658, 2012.

[28] H. Jowhari, M. Saglam, and G. Tardos. Tight bounds
for lp samplers, finding duplicates in streams, and
related problems. In PODS, pages 49–58, 2011.

[29] D. M. Kane, J. Nelson, E. Porat, and D. P. Woodruff.
Fast moment estimation in data streams in optimal
space. In STOC, pages 745–754, 2011.

[30] D. M. Kane, J. Nelson, and D. P. Woodruff. An
optimal algorithm for the distinct elements problem.
In PODS, pages 41–52, 2010.

[31] R. M. Karp and M. O. Rabin. Efficient randomized
pattern-matching algorithms. IBM Journal of
Research and Development, 31(2):249–260, 1987.

[32] S. Khot and A. Naor. Nonembeddability theorems via
fourier analysis. Mathematische Annalen, 334:821–852,
2006.

[33] R. Krauthgamer and Y. Rabani. Improved lower
bounds for embeddings into L1. In SODA, pages
1010–1017, 2006.

[34] P. Li and A. Christian König. Theory and applications
of b-bit minwise hashing. Communications of the
ACM-Association for Computing Machinery-CACM,
54(8):101, 2011.

[35] J. H. v. Lint. Introduction to Coding Theory.
Springer-Verlag New York, Inc., Secaucus, NJ, USA,
1982.

[36] A. Naor and J. Matoušek. Open problems on
embeddings of finite metric spaces. 2011.

[37] H. Q. Ngo, E. Porat, C. Ré, and A. Rudra. Worst-case
optimal join algorithms: [extended abstract]. In
PODS, pages 37–48, 2012.

[38] H. Q. Ngo, E. Porat, and A. Rudra. Efficiently
decodable error-correcting list disjunct matrices and
applications - (extended abstract). In ICALP (1),
pages 557–568, 2011.

[39] H. Q. Ngo, E. Porat, and A. Rudra. Efficiently
decodable compressed sensing by list-recoverable codes
and recursion. In STACS, pages 230–241, 2012.

[40] R. Ostrovsky and Y. Rabani. Low distortion
embedding for edit distance. J. ACM, 54(5), 2007.
Preliminary version appeared in STOC’05.

[41] B. Porat and E. Porat. Exact and approximate
pattern matching in the streaming model. In FOCS,
pages 315–323, 2009.

[42] E. Porat and O. Lipsky. Improved sketching of
hamming distance with error correcting. In CPM,
pages 173–182, 2007.

[43] E. Porat and A. Rothschild. Explicit non-adaptive
combinatorial group testing schemes. In ICALP (1),
pages 748–759, 2008.

[44] E. Porat and M. J. Strauss. Sublinear time,
measurement-optimal, sparse recovery for all. In
SODA, pages 1215–1227, 2012.

[45] E. Porat and E. Waisbard. Efficient signature scheme
for network coding. In ISIT, pages 1987–1991, 2012.

[46] R. Rivest. The md5 message-digest algorithm, 1992.

[47] J. Sylvester. A method of determining by mere
inspection the derivatives from two equations of any
degree. Phil. Mag., 16:132–135, 1840.

