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ABSTRACT
Document similarity tasks arise in many areas of information re-
trieval and natural language processing. A fundamental question
when comparing documents is which representation to use. Topic
models, which have served as versatile tools for exploratory data
analysis and visualization, represent documents as probability dis-
tributions over latent topics. Systems comparing topic distribu-
tions thus use measures of probability divergence such as Kullback-
Leibler, Jensen-Shannon, or Hellinger. This paper presents novel
analysis and applications of the reduction of Hellinger divergence
to Euclidean distance computations. This reduction allows us to
exploit fast approximate nearest-neighbor (NN) techniques, such
as locality-sensitive hashing (LSH) and approximate search in k-d
trees, for search in the probability simplex. We demonstrate the ef-
fectiveness and efficiency of this approach on two tasks using latent
Dirichlet allocation (LDA) document representations: discovering
relationships between National Institutes of Health (NIH) grants
and prior-art retrieval for patents. Evaluation on these tasks and on
synthetic data shows that both Euclidean LSH and approximate k-
d tree search perform well when a single nearest neighbor must be
found. When a larger set of similar documents is to be retrieved,
the k-d tree approach is more effective and efficient.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval; I.5.3 [Pattern Recognition]: Clustering—Similarity
measures

General Terms
Experimentation, Performance
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1. INTRODUCTION
Many tasks in information retrieval (IR) and natural language

processing (NLP) involve performing document similarity compar-
isons. These tasks include document clustering, retrieving the most
relevant documents for a given query, and finding document trans-
lation pairs in a large multilingual collection.

Most practical applications of document similarity represent doc-
uments in a common feature space. For many tasks, such as IR with
bag-of-words models, this shared space is sparse: if our document
features are the counts of single words, only a few hundred unique
words will have non-zero counts in document of a few thousand
words. For such representations, inverted indexes of features pro-
vide efficient performance. Although boolean, vector-space, and
probabilistic methods all compute different similarity functions,
their inner loop is a dot product that inspects the sparse set of over-
lapping features.

A natural question, therefore, is what feature space to select.
Representing documents in a shared feature space abstracts away
from the specific sequence of words used in each document and,
with appropriate representations, can also facilitate the analysis of
relationships between documents written using different vocabu-
laries.1 As a concrete example, identifying academic communities
working on related scientific topics can involve comparing the di-
vergent terminology in different subfields [36]. A more extreme
form of vocabulary mismatch occurs when documents are written
in different languages. Mapping documents in different languages
into a common shared space can therefore be an effective method of
detecting documents or passages that are translations of each other
[27, 31, 23].

Although a sparse word or n-gram vector is a popular represen-
tational choice, some researchers have explored “deeper” represen-
tations, such as Latent Semantic Indexing (LSI) [14]. LSI has been
recast as a generative model of text with Probabilistic Latent Se-

1Feature vectors can, of course, represent some sequence informa-
tion with, e.g., n-grams of terms, but the degenerate case of an indi-
cator function that matched entire documents would be ineffective
for similarity comparisons.



mantic Indexing (PLSI) [20]. More recently, statistical topic mod-
els, such as latent Dirichlet allocation (LDA) [8], have proven to be
highly effective at discovering hidden structure in document col-
lections [e.g., 18].

One of the greatest advantages in using topic models to analyze
large document collections is their ability to represent documents
as probability distributions over a small number of topics, thereby
mapping documents into a low-dimensional latent space—the T -
dimensional probability simplex, where T is the number of topics.
A document, represented by some point in this simplex, is said
to have a particular “topic distribution”. This type of document
representation makes it appealing for the IR community. As such,
feasibility and effectiveness of the topic models have previously
been explored in the IR community. For example, Wei and Croft
[39] inferred topics over words using LDA to improve document
smoothing and ad-hoc retrieval. More recently, Andrzejewski and
Buttler [4] showed that LDA has the potential to improve on the
task of query expansion for specialized domain collections with a
small user base.

As a result of the broad applications of topic modeling, it is
appealing and natural to ask whether representing documents in
this low-dimensional topic space would yield advantages to vari-
ous document similarity tasks; however, to date, this question has
not really been explored, especially on big, real-world data sets. Al-
though there has been some work on sparse priors for topic models
[38], topic distributions are not as sparse as discrete term feature
vectors; moreover, they are continuous. Exact similarity compu-
tations for most topic distributions therefore require O(N2) com-
parisons for near-neighbor detection tasks orO(kN) computations
when k queries are compared against a data set of N documents.

To perform similarity search on large collections efficiently, we
frame the computation as an approximate nearest neighbor (NN)
search problem. NN search is an optimization problem that deals
with the task of finding nearest neighbors of a given query q in a
metric space of N points. We are consequently able to use differ-
ent data structures and approximation algorithms to trade off speed
and accuracy. In the past, this type of formulation for the docu-
ment similarity comparison problem has been proven to yield good
results in the metric space due to the fact that NN search prob-
lem has been designed to handle distance metrics (e.g. cosine,
Euclidean, Manhattan, etc.) and therefore could be applied di-
rectly (LSH, k-d trees, etc.). For example, locality sensitive hashing
(LSH) approaches to approximate NN search using cosine distance
have been previously used for tasks such as noun clustering [33],
first-story detection on Twitter [30] and ranking document pairs by
overlapping words [22].

For points in the probability simplex, similarity comparison is
performed by measuring the difference between two probability
distributions. As such, distance metrics are not appropriate in the
probability simplex, and divergence based measurements are used
instead—in particular, information-theoretic measurements of sim-
ilarity such as Kullback-Leibler and Jensen-Shannon divergence
and Hellinger distance.

While LSH schemes exist for both cosine and Euclidean (L2)
distances [10, 3] and k-d trees and their variants work with the
Minkowski metrics (L1, L2, etc.) [16, 5], these cannot be directly
applied to measuring distances in the probability simplex. There-
fore, performing document similarity in large datasets where docu-
ments are represented as points in the simplex cannot be addressed
with the same NN search algorithmic instances as described in the
previous paragraph. The inability to perform fast document simi-
larity computations when documents are represented in the simplex

has thus limited researchers’ ability to explore the potential of these
representations on large scales.

This paper introduces a technique for performing nearest neigh-
bor search in the probability simplex, thereby facilitating efficient
document similarity computations when documents are represented
as (continuous) probability distributions. Our approach works with
both LSH and k-d tree methods. We give speed and accuracy re-
sults on our approach on two representative document similarity
tasks—scientific community discovery and prior-art retrieval for
patents—and two approximate NN techniques (Euclidean LSH and
k-d trees). Despite our emphasis on document similarity tasks, the
techniques presented in this paper could be applied to other proba-
bility distribution comparisons tasks that deal with large data sets.
These methods should be generally useful for the growing com-
munity working on representing the latent structure in documents
using probability distributions such as those induced by LDA.

2. FAST NN SEARCH
Comparing all pairs ofN documents implies computational com-

plexity ofO(N2). Even if a single query is known a priori, a linear
scan through the corpus is in general required. Since this asymp-
totic growth rate is impractical for large datasets, sub-linear ap-
proximate solutions for retrieving the nearest neighbors of a query
point have been proposed. In this paper, we concentrate on LSH
and k-d trees. In an early paper on LSH, Indyk and Motwani
[21] defined the problem as follows. Given a query point q, return
point p that is an ε-approximate nearest neighbor of q such that ∀p′
nearest neighbors that satisfy the inequality: Distance(q, p) ≤
(1+ε)Distance(q, p′), or more succinctly (1+ε)r nearest neigh-
bors, where r is the radius of data set points considered for each
query point. This approach hashes the original data points into sep-
arate buckets using a family of hash functions such that the proba-
bility of collision between query point q and points p in the dataset
increases with the similarity between them. More formally, the
function p(t) = Pr[h(q) = h(p) :‖ q − p ‖= t] is strictly de-
creasing in t. Once points are hashed into a bucket, the closest
point(s) out of those already in the bucket is returned. Utilizing
multiple hash functions improves the accuracy. Varying the radius
r changes the number of data set points considered for each query
point and therefore directly affects the accuracy of the results as
well as the running time of the algorithm. Charikar [10] expanded
this approach and showed that it could be used to perform approx-
imate cosine distance computation.Other sub-linear solutions or-
ganizes points in space by partitioning with optimized data struc-
tures. Bentley [6] introduced the multidimensional binary search
tree or k-d tree. With k-d trees, points in metric space are stored
in a partitioning data structure where data points are represented
with nodes along with two pointers and a discriminator variable
whose range of values is the dimensionality of the space. The two
data pointers point to subtrees or to null based on whether the value
of the chosen point dimension (based on the discriminator value) is
greater or smaller then the split value for that dimension. In the next
section we describe how common probability divergence measure-
ments could be used with these sub-linear nearest neighbor search
approaches.

2.1 Transforming Divergences
The original LSH and k-d trees approaches to the nearest neigh-

bor problem were introduced in the Euclidean space where the fol-



lowing distance metric is used:

Eu(p, q) =

√√√√ n∑
i=1

(pi − qi)2 (1)

In the probability simplex, distributions are compared using in-
formation-theoretic measurements such as Jensen-Shannon and He-
llinger divergence. Jensen-Shannon divergence and Hellinger dis-
tance are f-divergences [13] as they both measure the similarity
between two probability distributions. Jensen-Shannon (JS) diver-
gence was originally derived from Kullback-Leibler (KL) diver-
gence (also known as relative entropy) as its symmetric version
[32, 25]:
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Hellinger (He) distance is also symmetric and is used along with
JS divergence in various fields where a comparison between two
probability distributions is required [7, 18, 9]:

He(p, q) =
n∑

i=1

(√
p(xi)−

√
q(xi)

)2
(4)

These three information-theoretic measurements are not considered
metrics since they do not satisfy the triangle inequality. KL diver-
gence is also not symmetric. While being non-negative, this mea-
surement could have a value of infinity [11]. JS divergence on the
other hand is bound by one [25] and it could easily be shown that its
unnormalized version is bounded by 2. It is worth noting that there
are several variations of the actual Hellinger measurement formula
and usually the difference is the constant of 1

2
placed in front of

the sum as well as the square root of the whole equation. Here,
we use the most straightforward version. Hellinger distance is also
non-negative and bounded by 1, 2, or

√
2 depending on the version

of the formula. It can easily be shown that the upper bound for the
He version in (4) is 2.

Comparison of the Euclidean distance metric and the Hellinger
divergence measurement shows that both measurements have simi-
lar algebraic expressions which differs in how the square root func-
tion is applied. If we discard the square root used in the Euclidean
distance, Hellinger distance (4) becomes equivalent to the Euclidean
distance metric (1) between

√
pi and

√
qi. For tasks that involve

creating ranked lists, such as the NN-search task, the square root of
the Euclidean distance can be discarded since this function is com-
puted across all data points and as such doesn’t affect the overall
similarity ranking for a given query point. Furthermore, the same
function is not consistent across all variations of the Hellinger dis-
tance.

Hellinger distance can therefore be computed by first computing
the square root of the distributions to be compared and then com-
puting the Euclidean distance between these transformed distribu-
tions. Mapping each probability distribution of interest pi to

√
pi

therefore allows us to utilize an already established approximation
approach for computing Euclidean distance metric such as LSH
and k-d trees. Here, we use LSH approach for Euclidean spaces
developed by Andoni et al. [3], which is implemented in the exact
Euclidean LSH (E2LSH) package [2], and the k-d tree implemen-
tation in the ANN library [28].

Aside from the Hellinger distance, another widely used diver-
gence measurement is the Jensen-Shannon divergence. Compared
to the Hellinger distance, the algebraic form of this measurement

doesn’t resemble any of the distance measurements used in the Eu-
clidean space. As such, simple transformations as in the case of the
Hellinger distance can’t be applied that would allow us to utilize ap-
proximate NN-search methods in the Euclidean space to compute
it. If we simply view Jensen-Shannon divergence as a function,
we could utilize approximation theory to explore ways to approx-
imate this divergence measurement using the Hellinger distance.
One way to proceed in this direction is to empirically show a con-
stant factor relationship between these two measurements. In an
earlier work by Topsøe [37] it was shown that Jensen-Shannon di-
vergence (referred to as capacitory discrimination) behaves simi-
larly with the triangle divergence (triangular discrimination):

1

2
4 (p, q) ≤ JS(p, q) ≤ ln(2)4 (p, q) (5)

Topsøe [37] has also pointed out that a close relationship between
Hellinger distance and triangle divergence exists:

He(p, q) ≤ 4(p, q) ≤ 2He(p, q) (6)

As in the case with [17] we represent the relationship between
Jensen-Shannon and Hellinger in a more concise form:

1

2
He(p, q) ≤ 1

2
4 (p, q)

≤ JS(p, q)

≤ ln(2)4 (p, q)

≤ 2 ln(2)He(p, q)

From the above bounds it is clear there exists an explicit constant
factor relationship between the Hellinger distance and Jensen-Shan-
non divergence:

1

2
He(p, q) ≤ JS(p, q) ≤ 2 ln(2)He(p, q) (7)

This allows us to approximate Jensen-Shannon divergence with
Hellinger distance but to continue further we need to empirically
prove and conclude how tightly the above theoretical bounds hold.
For this reason, we ran experiments on synthetic data that was gen-
erated by drawing samples from a Dirichlet distribution. (In LDA,
the posterior distribution of topics for documents follows a Dirich-
let distribution.) We generated 100 samples from Dirichlet distri-
butions that varied across different order i.e. dimension values D
and values of a symmetric hyperparameter α. For each generated
sample set of 100 probability distributions we performed all pairs
JS divergence and He measurement. Figure 1 shows the relation-
ship between JS and Hellinger across values of D = 50, 100, 200
and 500 and values of α = 0.001, 0.01, 0.1, 1, 10, 100. From the
plots, it is evident that we could approximate Jensen-Shannon di-
vergence with Hellinger distance. Varying the hyperparameter α
we vary the sparsity of the distribution across the dimensions. This
sparsity is reflected on the range of values that both measurements
take. In case of large values of α the divergence range is very small
while with very small values (i.e. α<1) the bulk of the divergence
mass has tendency to reside in the area close to the upper bound.
As we increase the dimension value this mass shifts towards the
upper limit of both measurements. Varying the dimension values
we also confirm that the constant factor relationship is not affected
by the dimensionality of the probability simplex.

We used the same synthetic dataset to explore the performance
of the two approximate NN methods considered here: Euclidean
LSH (in the E2LSH package) and approximate search in k-d trees
(in the ANN package). Figure 2 shows that when the α parameter
of the Dirichlet distribution is high, the synthetic topic distributions
are uniform and both methods perform quite well at retrieving the



Figure 1: Empirical evidence of the bounds presented in Eq. 7
on 10k document pairs across discrete probability distributions
of different lengths and value of the hyperparameter. The lower
bound is He(p, q) = 1

2 ln(2)
JS(p, q) while the upper bound is

He(p, q) = 2JS(p, q).

points at ranks 1 through 10. When the α of the Dirichlet prior is
low and the topic distributions are sparser, approximate search in
k-d trees is much more robust than E2LSH. It is also worth noting
that, if all we want is the nearest neighbor, which appears on these
graphs at rank 2, E2LSH often achieves acceptable performance,
though it falls off steeply at higher ranks.

3. FAST NN SEARCH RESULTS
Document similarity occurs in wide variety of areas in IR and

NLP. Furthermore, tasks in other fields, such as computer vision,
also utilize similarity comparisons across vector representations.
In order to demonstrate the effectiveness and efficiency of the ap-
proximation approach for retrieving similar documents in large data
sets represented in the probability simplex, we explore two differ-
ent tasks. For our first task, we will use document-topics represen-
tations of National Institutes of Health (NIH) grants and perform
comparison between speed and accuracy of using regular all-pairs
comparison and approximate comparison in the probability sim-
plex. Next, we apply approximate nearest neighbor computations
in topic space to the task of prior-art retrieval for patents.

Both tasks involve comparison of documents in a mutual, shared
space and as such could be formulated as NN search problem. They
are diverse as they offer us a variety of objectives for the NN search
problem ranging from 1-NN to k-NN. We use the probability sim-
plex as the shared space. For each task we consider as a baseline the
probability distribution similarity of the document representations.
The reader should note that our goal is not the performance compar-
isons across different document representations in a shared space—
metric space vs. probability simplex nor it is to compare probability
simplexes of different natures—LDA generated probability distri-
butions vs. other type of probability distributions. Rather, we are
going to compare LSH and k-d tree approximation of the Hellinger
distance to regular Hellinger distance and therefore showing the
loss in performance when using the approximate approach. Fur-
thermore, we are going to compare approximation of the Hellinger
distance to Jensen-Shannon divergence and therefore showing the
performance difference between using Hellinger distance over JS
divergence and using approximate Hellinger over JS divergence.

We will demonstrate that for two diverse document similarity tasks,
we are able to use our fast approximate NN search to perform the
necessary similarity comparisons between documents represented
as points in the probability simplex. This results in significant
speed increase while maintaining small loss in accuracy.

3.1 Mapping NIH Funding
In previous work, Talley et al. [36] showed that LDA could be

useful in facilitating categorization and relationship discovery in
large document collections. In particular, this work explores the
usefulness of LDA in mapping documents into a common vector
space in order to perform similarity discovery in the probability
simplex. The United States NIH, which consists of 27 Centers and
Institutes, funds between 70-80K grants. These organizational en-
tities, while having independent missions, often, as research goals
expand, fund grants in areas that overlap one another’s missions.
Exploring relationships between grants is hard given the continu-
ously increasing number of funded grants. Talley et al. [36] con-
structed a graph-based layout of grants, where grants were arranged
based on a weighted sum of KL divergence computed on word
probability distributions and topic distributions.

In our task the objective is to showcase the speed benefits and
quantify the accuracy tradeoff of using approximate, LSH and k-d
trees based, version of the Hellinger distance rather than JS for a
real-world task. As such, we use the pre-computed topics distri-
bution representations of the documents used by Talley et al. [36].
Since the goal of Talley et al. [36] is to construct a graph-based lay-
out of grants there is no absolute best approach in terms of the type
of similarity measurements to be used and therefore there are no
base results that could be used to show difference in performance.
We show that clustering approaches as in Talley et al. [36] could
be practical to use and used on larger collections. In addition they
could also be used in combination with online learning algorithms
as in Langford et al. [24].

3.1.1 Data Set and Results
The NIH data consists of abstracts and titles of grants from 2007–

2010 as well as MEDLINE journal articles published between 2007–
2010 that cite NIH grants and intramural and sub-awards. We use
the topics distribution representations of these documents as in Tal-
ley et al. [36]. In other words, the topic modeling setup is identical
in terms of the number of topics, hyperparameter values and num-
ber of Gibbs sampling iterations.

We computed JS divergence across all pairs of ∼350K docu-
ments where each document was represented as a distribution over
550 topics. We use the top 10 ranked document pairs for each query
grant as a set of relevant grants. As pointed out earlier, for a cluster-
ing task of this nature, where the objective is to create graph-based
layout, there is no absolute best approach and as such we did not
try to compare this clustering approach with existing IR approaches
whose document representations are in the metric space and use
different similarity score functions, such as BM25.

We create a query set of 10,000 randomly chosen grants and we
use the E2LSH algorithm to compute approximate LSH Hellinger
similarity across the remaining database of∼343K grants. We also
computed the k-d trees based approximate Hellinger similarity us-
ing the ANN implementation of k-d trees configured with default
parameters. Performance is evaluated by computing the precision
of the top 5 (P@5), recall of the top 5 (R@5), and mean average
precision (MAP) over each query result given the top 10 closest
grants obtained in our exhaustive all-pairs JS similarity compari-
son. Since the total number of nearest neighbor grants reported
by the LSH approach depends on the preset value of the radius R,



(a) E2LSH: Euclidean LSH

(b) ANN: Approximate search in k-d trees

Figure 2: Comparison of approximate nearest-neighbor search techniques on synthetic data. The nearest neighbor at rank 1 is the original
point. When the Dirichlet α parameter used to generate the synthetic data is low and the data are drawn from sparse multinomial distributions,
E2LSH with R = 0.6 (2a) performs poorly. In some cases, however, it still achieves good recall at rank 2, which may be acceptable if there
is only a single true neighbor. Also, neighbors are easier to find in lower-dimensional (D) spaces. In later experiments, these dimensions
correspond to LDA topics. Approximate search in k-d trees (2b) performs much better across all dimensionalities and degrees of uniformity.

Divergence Type MAP P@5 R@5 Speedup
He LSH R=0.4 0.14 0.26 0.13 983.88
He LSH R=0.6 0.53 0.70 0.35 654.22
He LSH R=0.8 0.92 0.99 0.49 336.27
He k-d trees 0.92 0.99 0.49 1425.23

Table 1: Finding similar NIH grants: Performance comparison be-
tween the all pairs JS divergence, the LSH, and approximate k-d
trees using Hellinger distance. Grants are represented by distribu-
tions over 550 topics.

we evaluated the relative performance of LSH with R set to R=0.4,
R=0.6 (the default value), and R=0.8. We also had E2LSH and
ANN configured to return only the top 10 nearest neighbors dis-
covered in the given radius. Table 1 shows the results obtained
along with the relative difference in time between all pairs JS di-
vergence, the approximate LSH based Hellinger distance with dif-
ferent value of R and the approximate k-d trees based Hellinger
distance. When running all-pairs JS based similarity computation,
the code implementation could significantly affect the processing
time. Due to the size of the test collection, in our implementation,
for each query document k we go over the list of n documents in
the test collection. When R=0.6, we are able to retrieve only half of
the 10 relevant documents for each query; for a radius of R=0.8, we
end up obtaining MAP of 0.92 and since we retrieve only the top
10 nearest neighbors we could interpret this value as recall at ten
which means that on average 9.2 out of the 10 relevant documents
were retrieved. We obtain the same performance with the ANN im-
plementation of k-d trees. When R=0.8, we achieve almost perfect

P@5. From this relative comparison between the three all-pairs
comparison approaches one could infer that the approximate meth-
ods manages to retrieve almost the whole mass of the documents
discovered by the JS divergence without a significant loss in preci-
sion and recall. Overall, the difference between the E2LSH based
divergence measurements is heavily influenced by the settings of
the Euclidean LSH algorithm.

3.2 Retrieving Related Patents
In the process of reviewing patent applications, an important step

is the search for prior art. In that step, patent examiners compare
the patent application with previously granted patents in order to
evaluate its novelty. Patent applications, from document structure
perspective, are very complex as they contain several different sec-
tions written in different styles and language. Since their goal is to
protect their inventions, patent authors intentionally use vague vo-
cabulary and come up with new terminology in order to extend the
patent coverage. In addition, authors also try to use esoteric lan-
guage in order to make the patent application appear different from
previously granted applications. Also, since patents deal with in-
ventions in different domains, they tend to be written with different
vocabularies while conveying the same idea. All these issues cause
significant effort for patent examiners in reviewing applications.

Prior-art search involves composing a proper query or a set of
queries and evaluating the relevance of the obtained search results.
Unlike typical retrieval systems, the goal is to be able to retrieve all
relevant patents and thus it is mostly recall oriented. Some of these
challenges are discussed as part of the TREC Chemistry Track [26]
and other conferences and workshops [35]. While topic models
have been previously used to augment the traditional task of infor-
mation retrieval [41], topic model representations for the prior-art



patent search, to the best of our knowledge have not been explored
before. We believe that it might be beneficial to explore this type of
representation especially due to the fact that patents have definite
vocabulary differences because they are often written with obfus-
catory goals and as such, representing patents in low-dimensional
latent space, such as the topic space, abstracts beyond the specific
words used in each document. The latter may be very beneficial
when performing prior-art patents search in different languages.
Exploring topic representations for this task may be useful either as
a standalone representation and/or as part of other representations
or a combination of them. Using representations in the probabil-
ity simplex allows us to formulate the patent retrieval task as NN
search problem in the probability simplex but in order to be used in
real-world scenarios we need to first empirically confirm a fast NN
approach. In this section, we explore using a topic representation
of patent applications inferred by LDA to perform prior-art search.
We use the same training and test set as in [40].

While our goal is not to show absolute performance results over
the task we do make a comparison of the performance of our ap-
proach with the approach explained in [40]. We do however fo-
cus on three objectives—to show that our approximate technique
massively speeds up the NN search task—to compare whether JS
divergence or Hellinger distance is most suited for this task—and
to provide new, first exploratory results on using topic space for
patents representation. As part of the latter task, we show improve-
ments over the approach explained in [40] by performing rank ag-
gregation over the ranked lists obtained from our LDA based rep-
resentation using fast NN search and ranked lists obtained from the
representation in [40].Results from rank aggregation are presented
in Section 3.2.3 .

3.2.1 Experimental Setup
For our experiments we use the USPTO collections which con-

sists of∼1.6M patents published between 1980 and 1997 [29]. We
first represent each patent by extracting the text found in the fol-
lowing six fields: title of invention (TTL), abstract field (ABST),
primary claim (PCLM), drawing description (DRWD), detail de-
scription (DETD) and background summary (BSUM). This same
set of fields was previously used by Xue and Croft [40] in their
exploratory analysis of the impact of each field on retrieval perfor-
mance. We then map each patent into a latent topic space using
LDA. Due to the size of the collection and in order to perform effi-
cient per document topics distribution inference we use an on-line
variational Bayes (VB) algorithm developed by Hoffman et al. [19].
To further speed up estimating the posterior per-document topics
distributions, we utilize the Vowpal Wabbit [24] implementation of
this algorithm.

Out of the original vocabulary of∼4.5M tokens found in the col-
lection, we use a small subset of 32,609 to represent patents. We
derived this vocabulary by filtering out all tokens whose frequency
of occurrence is less than 1K and more than 350K. We further fil-
tered out numeric tokens and tokens with fewer than four charac-
ters.

3.2.2 Evaluation Task and Results
Evaluating prior-art search requires relevance judgments which,

due to the nature of the problem, are infeasible to obtain and there-
fore previous work on this topic has used the patent’s citation fields
(UREF) entries as relevance judgments. As in the previous work
by Xue and Croft [40], we use patents published in the time period
between 1980–1996 as test collection. We filter out patents that do
not contain the following five fields: TTL, ABST, PCLM, DRWD
and DETS. The query data consists of patents published in 1997

Method type MAP P@10 R@10
Xue and Croft 0.204 0.416 0.138
JS 0.172 0.343 0.111
He 0.178 0.345 0.112
He LSH R=0.4 0.056 0.161 0.051
He LSH R=0.6 0.091 0.248 0.078
He LSH R=0.8 0.161 0.344 0.111
He k-d trees 0.159 0.345 0.112
Agg. rank 0.232 0.442 0.145

Table 2: Prior-art patent search performance comparison using
MAP, P@10 and R@10 between all pairs JS divergence, all pairs
Hellinger distance, the approximate LSH based Hellinger distance
and k-d trees using LDA with T=500.

whose total number of citation fields is more than 20 and contain
all five previously mentioned fields. We evaluate the performance
of exhaustively computing JS divergence, Hellinger distance, the
approximate k-d trees and LSH Hellinger distance with values of
R=0.4, R=0.6 and R=0.8. Accuracy was evaluated using MAP, pre-
cision of the top 10 (P@10) and recall of the top 10 (R@10) while
speed performance was evaluated by measuring the relative differ-
ence in time between all pairs JS divergence, approximate k-d trees
based Hellinger and different variations of the approximate LSH
Hellinger for different value of R across different topics dimension-
ality. As with the NIH grants, we computed the Hellinger distance
approximation using E2LSH [2]. E2LSH is configured to run with
probability of success set to default value of (1 − δ) = 0.9. We
also use the same k-d trees implementation in the ANN package
[28] configured with default parameters.

Shown in Table 2 are results obtained when using the same query
set as in [40] and 70k patents chosen from the complete test collec-
tion as in [40] that also contain the relevant patents for the query
set. The goal of this test was to compare the relative performance of
the three similarity measurements on the task of performing patent
retrieval and therefore we experimented with only one set of top-
ics T=500. We ran Vowpal Wabbit [24] implementation of LDA
with default values of the hyper-parameters α = 0.1 and β = 0.1
and number of training passes set to five. Along with our results
we also show results of re-running the approach of Xue and Croft
[40] with all five patent fields (field=“all”) and weight set to tf on
the same test collection of 70k patents. We decided to utilize this
particular configuration of their approach as it uses all application
fields for constructing the query (as it is in our case). In addition,
we show results of using the tf weight as it yields best P@10 over
the other two weight types as reported by Xue and Croft [40].

While using LDA representation we don’t achieve better perfor-
mance compared to our baseline results derived using the approach
by Xue and Croft [40] we do show that using approximate LSH
based Hellinger distance with R=0.8 and approximate k-d trees
based Hellinger we achieve almost the same P@10 and R@10 re-
sults as in the case of regular JS divergence and Hellinger distance.
We don’t achieve the same MAP value since both approximate
approaches are configured to return the top 200 nearest neighbor
points compared to the regular JS divergence and Hellinger dis-
tance where we evaluate across all points.

Shown in Table 3 are P@10 results obtained using LDA with
number of topics set to T=50, T=100, T=200, T=500 across re-
sults obtained when using all-pairs JS divergence, Hellinger dis-
tance and the approximate LSH Hellinger distance with values of
R=0.4, R=0.6 and R=0.8. The goal is to show how sensitive the
retrieval is to the topic dimensionality.



Metric Type T=50 T=100 T=200 T=500
JS 0.212 0.266 0.306 0.343
He 0.222 0.273 0.320 0.345
He LSH R=0.4 0.168 0.170 0.181 0.161
He LSH R=0.6 0.219 0.252 0.276 0.248
He LSH R=0.8 0.223 0.274 0.319 0.344
He k-d trees 0.223 0.274 0.320 0.345

Table 3: Prior-art patent search performance comparison between
the all pairs JS divergence, all pairs Hellinger distance and the ap-
proximate LSH based Hellinger distance over P@10 for LDA mod-
els with topic dimensionality T=50, T=100, T=200 and T=500.

Div. T=50 T=100 T=200 T=500
JS 6.4 4 2.3 1
He LSH R=0.4 85.6 75.3 57.8 35.6
He LSH R=0.6 59.2 53.4 38.1 27.9
He LSH R=0.8 46.1 33.0 29.0 16.7
He k-d trees 793.6 410.4 224.6 98.4

Table 4: Relative speed improvement on prior-art patent search be-
tween all-pairs JS divergence and approximate He divergence via
k-d trees and LSH across different values of radius R.

Table 4 shows the relative differences in time between all pairs
JS divergence and approximate LSH based Hellinger distance with
different value of R. Results shown are based on comparing the
running time of E2LSH and ANN against the all-pairs similarity
comparison using JS divergence. As in the case of the NIH grants,
due to the size of the test collection, we compute JS divergence
using an implementation where for each query document k we go
over the list of n documents in the test collection. Compared to
computing Hellinger distance with LSH, approximating Hellinger
with k-d trees gives us a significant improvement in speed across
all values of T while maintaining the same performance across all
three evaluation metrics (MAP, P@10 and R@10).

3.2.3 Rank Aggregation
Using the ranked lists obtained through the approach by Xue

and Croft [40] we perform rank aggregation with the ranked lists
obtained by our LDA representation. The goal of our task was
to show whether using our LDA approach as a standalone simi-
larity retrieval approach we could improve an existing IR system.
Since both types of ranked lists were generated using different re-
trieval models and using different scoring functions we first nor-
malize both types of ranked lists. We explored two approaches for
score and rank normalization as in [12]. With the first approach,
scores are normalized using the maximum and the minimum score
values in the original ranked list:

norm_similarity = unnorm_similarity−min_similarity
max_similarity−min_similarity

(8)

With the rank based normalization approach actual rank values
are used to generate normalized similarity scores using the follow-
ing formula:

rank_similarity = 1− rank−1
num_of_retrieved_docs (9)

Rank aggregation is a topic which has been extensively explored
and various different approaches for combining ranked lists have
been proposed. An overview of these approaches is given in [12].
Examples of rank aggregation approaches are given in [15], [1] and
[34], to name a few. In our case we explored the approaches pro-
posed by Shaw and Fox [34]. In particular we explore and ex-

Aggr. type & baseline norm. score norm. rank
Xue and Croft 0.173 0.173
JS 0.158 0.158
CombMIN 0.077 0.143
CombMAX 0.174 0.178
CombSUM 0.174 0.187
CombANZ 0.079 0.151
CombMNZ 0.174 0.187

Table 5: Prior-art patent search: P@10 on held-out development
set across various rank aggregation approaches using normalized
scoring and rank function values.

perimented with the following five approaches CombMIN, Comb-
MAX, CombSUM, CombANZ and CombMNZ.

For two given ranked lists and for a given ranked document that
exists in both lists, CombMIN and CombMAX use the minimum
and the maximum score of the two respectfully. CombSUM as the
name implies, for a given ranked document that exists in both lists
assign the sum of the two individual scores. CombANZ combines
the two scores of the given document that exists in both lists by
computing its average while CombMNZ sums the two scores and
multiplies them by the number of ranked lists where that document
exists which in our case is two. For the remaining documents in
both ranked lists than exist in only one of them all of the five ap-
proaches retain the original score. To determine the most suitable
rank aggregation approach from the five mentioned before, we ran
experiments using the same patents training set as in [40].

Table 5 shows that the best improvement over the Xue and Croft
baseline uses rank-based normalization. Since we deal with only
two sets of ranked lists, both the CombSUM and CombMNZ ag-
gregation approaches yield the same performance. Table 2 shows
the rank aggregation result when we applied the rank based nor-
malization along with the CombMNZ rank aggregation approach
on our test collection.

4. CONCLUSIONS
Approximate nearest-neighbor techniques have been effectively

applied in many areas of IR and NLP. We have shown that these
methods can be extended to comparing distributions in the proba-
bility simplex. Empirical results in searching topic distributions to
find similar NIH grants and prior art for patents show that accurate
results can be obtained while achieving significant improvements
in runtime.
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