
Spectral Sparsification
in Dynamic Graph Streams

Kook Jin Ahn1?, Sudipto Guha1?, and Andrew McGregor2??

1 University of Pennsylvania
{kookjin,sudipto}@seas.upenn.edu

2 University of Massachusetts Amherst
mcgregor@cs.umass.edu

Abstract. We present a new bound relating edge connectivity in a sim-
ple, unweighted graph with effective resistance in the corresponding elec-
trical network. The bound is tight. While we believe the bound is of inde-
pendent interest, our work is motivated by the problem of constructing
combinatorial and spectral sparsifiers of a graph, i.e., sparse, weighted
sub-graphs that preserve cut information (in the case of combinatorial
sparsifiers) and additional spectral information (in the case of spectral
sparsifiers). Recent results by Fung et al. (STOC 2011) and Spielman
and Srivastava (SICOMP 2011) show that sampling edges with proba-
bility based on edge-connectivity gives rise to a combinatorial sparsifier
whereas sampling edges with probability based on effective resistance
gives rise to a spectral sparsifier. Our result implies that by simply in-
creasing the sampling probability by a O(n2/3) factor in the combina-
torial sparsifier construction, we also preserve the spectral properties of
the graph. Combining this with the algorithms of Ahn et al. (SODA
2012, PODS 2012) gives rise to the first data stream algorithm for the
construction of spectral sparsifiers in the dynamic setting where edges
can be added or removed from the stream. This was posed as an open
question by Kelner and Levin (STACS 2011).

1 Introduction

The main result of this paper is a bound between two basic graph quantities.
First, let λe denote the edge-connectivity of edge e = (s, t) in an unweighted
graph G, i.e., the size of the minimum s-t cut. Second, consider the electrical
network corresponding to G where every edge has unit resistance. Then, let re
denote the effective resistance of edge e = (s, t), i.e., the potential difference
induced between s and t when a unit of current is injected at s and extracted at
t. Then we show that λ−1e ≤ re ≤ O(n2/3)λ−1e .

Furthermore, there exist graphs where this inequality is tight. The first in-
equality is well known but the best existing upper bound for re in terms of λe

? Research supported by NSF awards CCF-0644119, CCF-1117216 and a gift from
Google.

?? Research supported by NSF award CCF-0953754.

is O(
√
m)λ−1e where m is the number of edges in the graph [6]. Hence, our new

bound is a strict improvement when m = Ω(n4/3). Indirectly related is work
by Lyons et al. [17] that showed that for some classes of graphs, the effective
resistance is within a constant factor of the corresponding edge connectivity if
the graph is randomly weighted.

Graph Sparsification. The main idea in graph sparsification [4,20] is to approx-
imate a given graph G = (V,E) by a sparse, weighted subgraph H = (V,E′, w).
Throughout this paper, we will assume that G is unweighted and simple. A use-
ful application of sparsifiers is in the design of faster algorithms for a range of
problems including approximate max-flow [4] and sparsest cut [16]. The idea is
that if H is a good approximation of G in an appropriate sense, then it suffices
to solve the problem of interest on H rather than on G which would potentially
have had many more edges. We say that H is a combinatorial sparsifier if

(1− ε)λG(U) ≤ λH(U) ≤ (1 + ε)λG(U) ∀ cuts (U, V \ U) (1)

where λG(U) is the cardinality of the edges in E that cross the cut and λH(U) is
the total weight of the edges in E′ that cross the cut. A more powerful sparsifier
is a spectral sparsifier defined as follows. Let LG, LH ∈ Rn×n by the Laplacian
matrices of G and H respectively.3 Then we say H is a spectral sparsifier of G if

(1− ε)xTLGx ≤ xTLHx ≤ (1 + ε)xTLGx ∀x ∈ Rn . (2)

It is not hard to show that condition (2) implies condition (1) by relaxing the
condition to only hold for x ∈ {0, 1}n.

It is perhaps surprising that, given any graph G, there exist sparsifiers for
G with only O(ε−2n polylog n) edges. It is also possible to construct these sub-
graphs in near-linear time. In fact, construction is possible via the following two
simple and elegant sampling algorithms:

1. Combinatorial Sparsification [11]: Sample each edge e ∈ E independently
with probability pe = ρ/λe where ρ = Θ(ε−2 log2 n). Add each sampled edge
e to H with weight 1/pe.

2. Spectral Sparsification [19]: Sample Ω(ε−2n log n) edges with replacement
where the probability pe of picking e is proportional to re. Add each sampled
edge e to H with weight se/pe where se is the number of times e was sampled.

Roughly speaking, sampling e with respect to 1/λe is sufficient for preserving
cut sizes whereas sampling e with respect to re also preserves additional spectral
properties. In a sense, re is a more “nuanced” quantity since it takes into account
not just the number of edge-disjoint paths between the end points of e but
also the lengths of these paths. However, a consequence of our result is that
if we simply over-sample by a factor O(n2/3) in the above construction of a
combinatorial sparsifier, we automatically preserve spectral information.

3 Recall that LG = DG − AG where AG is the adjacency matrix of G and DG is the
diagonal matrix whereDG(i, i) is the degree of the ith node. Similarly LH = DH−AH

where AH is the weighted adjacency matrix of H and DH is the diagonal matrix
where DH(i, i) =

∑
j:(i,j)∈E′ wij is the weighted degree of the ith node.

Dynamic Graph Streams and Sketches. The motivation for this work was the
design and analysis of graph sketching algorithms, i.e., algorithms that use a
(random) linear projection to compress a graph in such a way that relevant
properties of the graph can be estimated from the projection with high accuracy
and confidence. This use of linear projections is well-studied in the context of
processing numerical data, e.g., signal reconstruction in compressed sensing [5,
8], Johnson-Lindenstrauss style dimensionality reduction [1, 12], and estimating
properties of the frequency vectors that arise in data stream applications [7,13].
However, it is only recently that it has been shown that this technique can be
applied to more structured data such as graphs [2, 3].

Specifically, a sketch of a graph is defined as follows:

Definition 1 (Graph Sketches). A linear measurement of a graph on n nodes
is defined by a set of coefficients {ce : e ∈ [n]× [n]}. Given a graph G = (V,E),
the evaluation of this measurement is defined as Mλ(G) =

∑
e∈E ce. A sketch is

a collection of (non-adaptive) linear measurements. The size of this collection is
referred to as the dimensionality of the sketch

It was recently shown that there existO(ε−2n polylog n)-dimensional sketches
from which a combinatorial sparsifier can be constructed [2, 3]. This naturally
gave rise to the first data stream algorithm for cut estimation when the stream is
fully-dynamic, i.e., contains both edge insertions and deletions. The space-use of
the algorithm is essentially the dimensionality of the sketch, i.e.,O(ε−2n polylog n)
and is therefore referred to as a semi-streaming algorithm [10]. This follows be-
cause each linear measurement can be evaluated on the stream using a single
counter: on the insertion of e, we add ce and on the deletion of e, we subtract
ce. In this paper, we develop the first data stream algorithm for constructing a
spectral sparsifier. The algorithm uses O(ε−2n5/3 polylog n) space. In the case
where there are no edge deletions, Kelner and Levin [15] designed an algorithm
that used O(ε−2npolylog n) space. They posed the fully-dynamic case as an open
problem.

2 Edge Connectivity vs. Effective Resistance

The proof is pleasantly simple and proceeds by considering the execution of the
Edmonds-Karp algorithm [9], i.e., the Ford-Fulkerson algorithm that uses the
shortest augmenting path first. Let de be the length of the dλe/2e-th augmenting
path when executing the algorithm.

We will use the following basic properties of effective resistances:

1. The resistance of a path is the sum of the resistances along the path.
2. The resistance of parallel paths is the harmonic mean of the resistances of

the individual paths.
3. The resistance does not increase if edges are added to a graph.

Therefore the main idea would be to construct a suitable subgraph with the
desired resistance and the result would follow.

Lemma 1. The effective resistance on e is at most 2deλ
−1
e .

Proof. From the first t = dλe/2e augmenting paths, we can construct t edge-
disjoint paths say p1, p2, . . . , pt. Note that the augmenting paths are directed
and two augmenting paths can use the same original edge in both directions.
Moreover the length of these directed flow augmenting paths is nondecreasing.
As a consequence

∑
i pi ≤ tde.

We now construct actual flow paths `1, `2, . . . , `t. In this process we elimin-
inate cycles formed by using the edge in both directions. But as a result the
length of a particular flow path can increase. However the cycle cancellation en-
sures that the total length is nonincreasing and

∑
i `i ≤

∑
i pi which is sufficient

for our proof here.
First assume these paths are vertex disjoint. If there were no other edges in

the graph, re would be the harmonic mean of `1, . . . , `t. However, adding extra
edges will only decrease the effective resistance and hence

re ≤
1

1
`1

+ 1
`2

+ · · ·+ 1
`t

≤
∑
i `i
t2
≤ de

t
≤ 2de

λe
.

where the second inequality is an application of the HM-AM inequality.
For the general case, we reduce to the vertex-disjoint case by removing all

edges not in `1, . . . , `t to create circuit C1 where any node v that is used in
multiple paths is replaced by multiple copies (such that each path uses a distinct
copy). Then, the effective resistance of e in the resulting circuit C1 is at most
the harmonic mean of `1, . . . , `t as before. Now consider adding 0 ohm resisters
between each of the copies of an original node to give a new circuit C2. Note
that effective resistances in C2 are less than in C1 because C2 was formed by
adding edges. But then note that effective resistance in C2 is the same as the
effective resistance in the subgraph of G defined by these subset of edges because
the voltage (potential) in each of the copies of an original node will be the same.
Finally, adding additional edges to this subgraph does not increase the effective
resistance. The lemma follows. �

Theorem 1. In a simple, unweighted graph, the effective resistance on e is at

most O(nλ
−3/2
e).

Proof. Consider the residual graph after dλe/2e steps. The connectivity of e in
the residual graph is bλe/2c and the shortest path length is at least de. It can

then be shown4 [14] that de = O(nλ
−1/2
e). Therefore, by appealing to Lemma 1,

the effective resistance of e is at most 2deλ
−1
e ≤ O(nλ

−3/2
e). �

Corollary 1. For simple, unweighted graphs, λ−1e ≤ re ≤ O(n2/3)λ−1e .

4 For completeness we include the argument here. Let e = (s, t) and let Γi(s) be the
set of nodes with distance exactly i from s. Because there are still at least bλe/2c
edge disjoint paths between s and t we know (|Γi(s)|+ |Γi+1(s)|)2 ≥ bλe/2c for each

i. Hence, Ω(de
√
λe) =

∑de
i=1 |Γi(s)| ≤ n and therefore de = O(nλ

−1/2
e) as required.

Proof. First, note that re ≤ 1 and so if nλ
−3/2
e ≥ 1, we have

re ≤ 1 ≤ (nλ−3/2e)2/3 = n2/3λ−1e ,

as required. On the other hand, if nλ
−3/2
e ≤ 1, then by Theorem 1 we also have

re ≤ O
(
nλ−3/2

e

)
≤ O

(
n2/3λ−1

e

)
.

�

2.1 A Tight Example

We next show that the bound in Corollary 1 is tight. Consider a layered graph
with layers L0 = {s}, L1, . . . , Lk, Lk+1 = {t} with edges

E = {(u, v) : u ∈ Li, v ∈ Li+1 for some i ∈ {0, 1, 2, . . . , k}} ∪ {(s, t)} .

Let e = (s, t). Let k = n/
√
λe. Setting |L1| = |Lk| = λe − 1 and |L1| = |L2| =

. . . = |Lk−1| =
√
λe − 1 ensures that the minimum s − t cut has size λe. The

total number of nodes is Θ(n) on the assumption that λe = O(n). The graph is
illustrated in Figure 1.

ts

L

L L L L

L
1

32

k

k−2 k−1

Fig. 1. Tight example for Corollary 1

The above network, when considered from the perspective of s and t is the
same as the following network in Figure 2; the nodes in L1, . . . , Lk all have
the same potential and the capacity (parallel edges) between adjacent nodes is
λe− 1. Therefore, using the fact that for parallel edges the effective resistance is
the harmonic mean of the resistances, the effective resistance between Li, Li+1 is
1/(λe−1) when we ignore edge e. It follows that, if we ignore the edge (s, t), then

s t

L L LL
1 2 k−1 k

Fig. 2. Network Equivalent to Figure 1 (from the perspective of s, t)

the effective resistance between s and t is Θ(kλ−1e) = Θ(nλ−1.5e) since resistances
connected in series are additive. If we set λe = n2/3 then nλ−1.5e = 1 and
consequently re = Θ(1). Therefore, the edge e = (s, t) satisfies re = Θ(n2/3/λe)
and hence Corollary 1 is tight.

3 Spectral Sparsification

Our sparsification result uses the following theorem5 due to Spielman and Sri-
vastava [19].

Theorem 2. Given a graph G, let {ze}e∈E be a set of positive values that satisfy:

1. ze ≥ re for all e ∈ E
2.
∑
e ze = β

∑
e re for some β ≥ 1

Sample q ≥ c0βε
−2n log n edges with replacement where edge e is chosen with

probability pe = ze/
∑
e ze where c0 is an absolute constant. Let H be the weighted

graph where edge e has weight se/(qpe) where se is the number of times e was
sampled. Then,

(1− ε)xTLGx ≤ xTLHx ≤ (1 + ε)xTLGx ∀x ∈ Rn ,

with probability at least 1/2.

In what follows ze will take a known value between α/λe and 4α/λe where
α = Θ(n2/3) is chosen according to Corollary 1 such that α/λe ≥ re. Since
re ≥ 1/λe, we have ∑

e

ze ≤
∑
e

4α/λe ≤ 4α
∑
e

re

as required. Therefore, to construct a spectral sparsifier of a dynamic graph
stream, it suffices to emulate that above sampling procedure. To do this, we
divide the procedure into the following two steps:

1. Independent Edge Sampling: We first show how to sample edges such that
each edge is sampled independently and e is sampled with probability ye =
min{8c0zeε−2 log n, 1}. This will be performed in a single-pass over a dy-
namic graph stream using O(ε−2n5/3 polylog n) space. Let S be the set of
samples returned.

2. Emulate Sampling with Replacement: Given the sampled edges S along with
{ze}e∈S and Z =

∑
e ze, we show that it is possible to emulate the required

sampling with replacement. This will be performed in post-processing with-
out requiring an additional pass over the data stream.

In the next section we show how to perform the independent edge sam-
pling with the required parameters. However, emulating sampling replacement
is straight-forward and is described in the proof of the next lemma.

5 The theorem follows from Corollary 6 in [19] after a re-parameterization of ε and by
scaling ze such that we ensure ze ≥ re.

Lemma 2. Let S = {e1, e2, . . .} be the edges returned by the independent edge
sampling and let {ze}e∈E be the sampling parameters with Z =

∑
e∈E ze. Then,

given a positive integer q ∈ [c0βε
−2n log n, 2c0βε

−2n log n] suppose that we sam-
ple each edge e with probability at least ye = min{8c0zeε−2 log n, 1}, then after
the independent edge sampling is done, we can emulate the process of sampling q
edges with replacement such that each edge is chosen with probability proportional
to ze.

Proof. Consider a Poisson process with parameter ze for each edge e and collect
the first q edges. This sampling process is equivalent to sample q edges with
replacement where the probability of sampling an edge e is ze/Z. Recall Z =
β
∑
e re = β(n− 1) since

∑
e re = n− 1 for any graph [6, 19].

We use the independent sampling to emulate this process with high proba-
bility. Then, the expected number of edges sampled in a unit time in the above
Poisson process is Z and therefore, we sample q edges in 2q/Z time with high
probability assuming that q is sufficiently large (note that q ≥ Ω(nε−2 log n)).

Let te be the random variable which indicates the first time when e appears
in the above Poisson process. If te > 2q/r, we can safely ignore e because then
e is not going to be sampled with high probability. Otherwise, we want to store
e to emulate the process. By the definition, te ∼ Exp(ze) and we have

P
[
te ≤

2q

Z

]
= 1− exp

(
−ze

2q

Z

)
≤ 2qze

Z
≤ 4c0βnε

−2 log n

β(n− 1)
ze ≤ 8c0zeε

−2 log n

Therefore, if we sample e with the stated probability or higher, we can emulate
the Poisson process for e upto time 2q/Z which is equivalent to emulate the
sampling with replacement with high probability. �

3.1 Independent Edge Sampling

Our sampling makes use of the following two existing algorithms for dynamic
graph streams [2, 3]:

1. k-edge-connect: Given a dynamic graph stream defining a graph G, this
algorithm returns a subgraph S = k-edge-connect(G) such that with high
probability

λS(U) ≥ min(k, λG(U)) for any cut (U, V \ U)

The algorithm uses O(knpolylog n) bits of space.
2. cut-sparsifier: Given a dynamic graph stream defining a graph G, this

algorithm returns a weighted subgraph H = cut-sparsifier(G) such that
with high probability

λG(U) ≤ λH(U) ≤ 2λG(U) for any cut (U, V \ U)

The algorithm uses O(n polylog n) bits of space.

The idea behind our sampling algorithm is to subsample the edges of the
graph at O(log n) different rates, 1/2, 1/4, 1/8, At each sampling rate, or
level, we maintain a “skeleton” that ensures that we have at least a certain
number of edges across each cut. We then return an edge e if it appears in
the skeleton at a particular level where the level should be chosen proportional
to 1/λe. We use cut-sparsifier as an oracle that can provide estimates for
every λe value in post-processing. Specifically, the new edge-sampling algorithm
operates as follows:

1. During a single pass of the stream:

– Construct H = cut-sparsifier(G).

– Construct Ti = k-edge-connect(Gzi) for i = 0, 1, 2, . . . , 2 lg n where
Gzi = (V,Ezi) is the graph formed by sampling each edge in G with
probability 2−i and k is set to 16 lnn.

– Construct Si = k-edge-connect(Gi) for i = 0, 1, 2, . . . , 2 lg n where
Gi = (V,Ei) is the graph formed by sampling each edge in G with
probability 2−i and k is set to 64c0αε

−2 log n.

2. Post-Processing:

– From H, let λ̃e be an estimate of λe and note that λe ≤ λ̃e ≤ 2λe by the
guarantee of the cut-sparsifier algorithm.

– Using F = {e : e ∈ Ti where i = max(0,
⌊
lg(λ̃e/ lnn)

⌋
− 1)}, estimate

Z =
∑
e ze:

(a) For e ∈ F , compute fe = 2min(0,−blg(λ̃e/ lnn)c+1) and ze = 2α/λ̃e.
(b) Return Z̃ =

∑
e∈F ze/fe as an estimation of Z (See Lemma 4).

– Let ze = 2α/λ̃e and ye = min{8c0zeε−2 log n, 1}. Note that,

ze ≤
2α

λe
≤ 2αre and ze =

2α

λ̃e
≥ 2α

2λe
=

α

λe
≥ re ,

which satisfies the desiderata of Theorem 2.

– Return {e : e ∈ Si where i = blg 1/yec} as the required set of samples for
Lemma 2. We now have a set of independent samples with replacement
which satisfies Theorem 2 and the sparsifier can be constructed as stated
therein. This is proved in Lemma 3.

Note that, for the sake of analysis, we assume each edge is included in Gi
independently. However, to implement that algorithm in small space we would
actually use Nisan’s pseudo-random generator [18]. While this is not necessarily
the most efficient way to generate the random variables (it adds additional log-
arithmic terms to the running time and space complexity), this approach leads
to a simpler description of the algorithm.

Lemma 3. For all e ∈ E and i = blg 1/yec, the edge e is sampled in Gi with
probability between ye and 2ye. With high probability, e ∈ Si iff e ∈ Gi.

Proof. Clearly e ∈ Si implies e ∈ Gi since Si is a subgraph of Gi. For the
other direction, assume e = (s, t) ∈ Gi and let Ee ⊆ E be the edges across the
minimum s-t cut in G. In particular, |Ee| = λe. But

E [|Ee ∩ Ei|] ≤ 32c0αε
−2 log n

and by an application of the Chernoff bound, |Ee∩Ei| < 64c0αε
−2 log n with high

probability. Hence e ∈ Si for k = 64c0αε
−2 log n by appealing to the guarantees

of the k-edge-connect algorithm. By an application of the union bound, this
is true for all e ∈ E with high probability as well. �

The next lemma establishes that we also have a good estimate of Z =
∑
e ze.

Lemma 4. With high probability, (1− ε)Z ≤ Z̃ ≤ (1 + ε)Z.

Proof. Using an argument almost identical to the proof of Lemma 3 we argue that
the algorithm (with high probability) samples each edge e in F with probability
fe. Since fe is the probability that e ∈ F ,

E
[
Z̃
]

= E

[∑
e∈F

ze/fe

]
=
∑
e∈E

ze .

In addition, ze/fe ≤ ε2Z/log n. By an application of the Chernoff bound, (1 −
ε)Z ≤ Z̃ ≤ (1 + ε)Z with high probability. �

4 Conclusions

While the bound we establish relating λe and re is tight up to constant factors,
the resulting data stream algorithm need not be optimal. Specifically, we conjec-
ture that spectral sparsification is possible in the semi-streaming model where
the algorithm may use O(n polylog n) space.

References

1. D. Achlioptas. Database-friendly random projections: Johnson-lindenstrauss with
binary coins. J. Comput. Syst. Sci., 66(4):671–687, 2003.

2. K. J. Ahn, S. Guha, and A. McGregor. Analyzing graph structure via linear
measurements. In SODA, pages 459–467, 2012.

3. K. J. Ahn, S. Guha, and A. McGregor. Graph sketches: sparsification, spanners,
and subgraphs. In PODS, pages 5–14, 2012.

4. A. A. Benczúr and D. R. Karger. Approximating s-t minimum cuts in õ(n2) time.
In STOC, pages 47–55, 1996.

5. E. J. Candès, J. K. Romberg, and T. Tao. Robust uncertainty principles: exact
signal reconstruction from highly incomplete frequency information. IEEE Trans-
actions on Information Theory, 52(2):489–509, 2006.

6. P. Christiano, J. A. Kelner, A. Madry, D. A. Spielman, and S.-H. Teng. Electrical
flows, laplacian systems, and faster approximation of maximum flow in undirected
graphs. In STOC, pages 273–282, 2011.

7. G. Cormode. Sketch techniques for approximate query processing. In G. Cormode,
M. Garofalakis, P. Haas, and C. Jermaine, editors, Synposes for Approximate Query
Processing: Samples, Histograms, Wavelets and Sketches, Foundations and Trends
in Databases. NOW publishers, 2011.

8. D. L. Donoho. Compressed sensing. IEEE Transactions on Information Theory,
52(4):1289–1306, 2006.

9. J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic efficiency
for network flow problems. In Combinatorial Optimization, pages 31–33, 2001.

10. J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang. On graph problems
in a semi-streaming model. Theor. Comput. Sci., 348(2-3):207–216, 2005.

11. W. S. Fung, R. Hariharan, N. J. A. Harvey, and D. Panigrahi. A general framework
for graph sparsification. In STOC, pages 71–80, 2011.

12. W. B. Johnson and J. Lindenstrauss. Extensions of Lipshitz mapping into Hilbert
Space. Contemporary Mathematics, Vol 26, pages 189–206, May 1984.

13. D. M. Kane, J. Nelson, and D. P. Woodruff. An optimal algorithm for the distinct
elements problem. In PODS, pages 41–52, 2010.

14. A. Karzanov. Determining a maximal flow in a network by the method of preflows.
Soviet Math. Dokl., 15(2), 1974.

15. J. A. Kelner and A. Levin. Spectral sparsification in the semi-streaming setting.
In STACS, pages 440–451, 2011.

16. R. Khandekar, S. Rao, and U. V. Vazirani. Graph partitioning using single com-
modity flows. J. ACM, 56(4), 2009.

17. R. Lyons, R. Pemantle, and Y. Peres. Resistance bounds for first-passage percola-
tion and maximum flow. J. Comb. Theory, Ser. A, 86(1):158–168, 1999.

18. N. Nisan. Pseudorandom generators for space-bounded computation. Combina-
torica, 12(4):449–461, 1992.

19. D. A. Spielman and N. Srivastava. Graph sparsification by effective resistances.
SIAM J. Comput., 40(6):1913–1926, 2011.

20. D. A. Spielman and S.-H. Teng. Nearly-linear time algorithms for graph parti-
tioning, graph sparsification, and solving linear systems. In STOC, pages 81–90,
2004.

