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Abstract

We initiate the study of graph sketching, i.e., algorithms that use a limited number of linear
measurements of a graph to determine the properties of the graph. While a graph on n nodes is
essentially O(n?)-dimensional, we show the existence of a distribution over random projections
into d-dimensional “sketch” space (d < n?) such that several relevant properties of the original
graph can be inferred from the sketch with high probability. Specifically, we show that:

1. d = O(n - polylog n) suffices to evaluate properties including connectivity, k-connectivity,
bipartiteness, and to return any constant approximation of the weight of the minimum
spanning tree.

2. d = O(n'*t7) suffices to compute graph sparsifiers, the exact MST, and approximate the
maximum weighted matchings if we permit O(1/v)-round adaptive sketches, i.e., a sequence
of projections where each projection may be chosen dependent on the outcome of earlier
sketches.

Our results have two main applications, both of which have the potential to give rise to fruitful
lines of further research. First, our results can be thought of as giving the first compressed-sensing
style algorithms for graph data. Secondly, our work initiates the study of dynamic graph streams.
There is already extensive literature on processing massive graphs in the data-stream model.
However, the existing work focuses on graphs defined by a sequence of inserted edges and does
not consider edge deletions. We think this is a curious omission given the existing work on
both dynamic graphs in the non-streaming setting and dynamic geometric streaming. Our
results include the first dynamic graph semi-streaming algorithms for connectivity, spanning
trees, sparsification, and matching problems.
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1 Introduction

In this paper we initiate the study of graph sketching, i.e., algorithms that use a limited number
of linear measurements of a representation of a graph to determine the properties of the graph.
While a graph on n nodes is essentially O(n?)-dimensional, we show the existence of a distribution
over random projections into d-dimensional “sketch” space (d < n?) such that the sketch contains
sufficient information to determine whether G satisfies a given property, e.g., whether the graph
is connected, with high probability. The study of random linear projections arises in many
contexts including dimensionality reduction results such as the Johnson-Lindenstrauss lemma [27],
reconstructing sparse signals in compressed sensing [13], and estimating aggregate statistics in data
streams [35]. Given the important role of graphs in modeling data interactions and relationships, it
is perhaps surprising that there is not such a well-developed study of random linear projections for
graph data.

We show that linear sketches exist for a variety of interesting graph properties including
connectivity, bipartiteness, and the weight of the minimum spanning tree. Our algorithms run in
near-linear time and the sketch matrices can be generated from small random seeds. In addition to
algorithms that operate with precomputed projections, we also consider adaptive sketching where
the linear measurements are performed in a limited number of rounds and the linear measurements
performed in a round may depend on the outcomes of measurements in previous rounds. In the
data stream setting this corresponds to multi-pass algorithms. While non-adaptivity is important
for applications such as network monitoring, in other applications a limited degree of adaptation is
accepted, e.g., in adaptive compressed sensing [23,26] and 2-stage group testing [6,22].

Dynamic Graph Steams. An important contribution of this paper is to initiate the study of
processing dynamic graph streams. Motivated by the need to process massive graphs such as the
web-graph and social networks, a rich body of work has developed that addresses the challenges
of processing graphs in the data-stream model. In this model, an algorithm is presented with
a stream of m edges on n nodes and the goal is to compute properties of the resulting graph
given only sequential access to the stream and limited memory. The majority of work considers
the semi-streaming model in which the algorithm is permitted O(n polylogn) memory [17, 35].
Recent results include algorithms for constructing graph sparsifiers [1,30], spanners [14, 18], and
matchings [2, 3,16, 32,39]. This includes both single-pass algorithms and algorithms that take
multiple pass over the data. See McGregor [33] for an overview.

A curious omission in the existing work are algorithms that can support graphs where edges
are both inserted and deleted.! This is an important consideration since many interesting graphs
evolve with time, e.g., hyperlinks can be removed and tiresome friends can be de-friended. We note
that dynamic geometric stream problems are well-studied [19,25] and, in the non-streaming setting,
there is considerable work on data structures for dynamic graph that can be quickly updated and
queried, see e.g., results for connectivity [7,24,37,38].2

'We note one exception by Cormode and Muthukrishnan [10]. However, while their paper uses multi-graphs as a
motivation, the specific problems considered therein are restricted to the properties of the vector representing the
degrees of the vertices rather than more general graph structure.

2The reader might also recall work on the “sparsification” technique for dynamic graphs algorithm introduced
by Eppstein et al. [15] that may appear relevant to small-space dynamic streaming (as it did in insert-only graph
streaming [18]). However, sparsification in this context relates to the construction of auxiliary sparse certificates that
can be quickly updated. In general, the dynamic algorithms must still store all the data so that sparse certificates can



Our sketch algorithms are immediately applicable to dynamic graph streams and give the first
results of this kind. Our single pass algorithms also apply in the distributed stream model [12]
where the stream is partitioned over multiple locations and communication between the sites should
be minimized. This follows because the linearity of the sketches ensures that by adding together the
sketches of the partial streams, we get the sketch of the entire stream.

Compressed Sensing. Compressed sensing studies the problem of reconstructing a sparse signal
x from a small number of linear measurements [13]. However, an extension called functional
compressed sensing has been proposed, see [36]. Here the goal is to compute some function of
f(x) with only a few linear measurements. If f is the set of heavy-hitters then this reduces to
the original (approximate) reconstruction problem. Our results can also be considered in terms
of functional compressed sensing where x represents graph data and f is, e.g., the weight of the
minimum spanning tree or a boolean function that evaluates to 1 if the graph is connected.

1.1 Owur Results and Roadmap.

We start in Section 2 by discussing our approach and attempt to convey some of the inherent
challenges. We also remind the reader of recent results in £, sampling that will be used as a primitive
in our algorithms. In the following five sections we present our results. We group these results
according to the degree of adaptivity that is required, or equivalently, the number of passes used by
the resulting stream algorithms.

1. Non-adaptive: We show that O(n - polylogn) non-adaptive linear measurements are sufficient
to determine whether a graph is connected and identify a spanning forest. This yields a
single-pass semi-streaming algorithm for dynamic connectivity. By performing local per-edge
transformations, we use our connectivity result as the basis for single-pass semi-streaming
algorithms for testing bipartiteness and estimating the weight of the minimum spanning tree.
We also show that O(k - n - polylogn) non-adaptive measurements (implying a single-pass
streaming algorithm using O(k - n - polylogn) space) are sufficient to determine whether the
graph is k-edge connected. These results are presented in Section 3.

2. Adaptive: In our final set of algorithmic results we show that O(n'*7) linear measurements
suffices to compute graph sparsifiers, the exact MST, and any constant approximation to
the maximum weighted matchings if we permit O(1/v)-round adaptive sketches. This yields
O(logn/loglogn)-pass semi-streaming algorithms or a constant-pass algorithm if we are
permitted slightly more space. These results are presented in Sections 4, 5, and 6 respectively.

Subsequent Developments. In subsequent work, we have improved our sparsification result
and can show that sparsification is possible in the single-pass, semi-streaming model [4].

2 Computation in Sketch Space

In this section, we briefly discuss some of the ideas underlying our algorithmic results. In doing
so, we also hope to convey some of the inherent challenges that we need to overcome. We will also
summarize some existing results that we will require.

be reconstructed in the event of a deletion.



The basic philosophy that pervades many of our results is that, rather than processing the large
input in its original form, we would rather first sketch the input and then perform the computation
in the smaller sketch space. Simpler forms of the idea appear in earlier work such as Gilbert et
al. [21] where the authors considered the problem of histogram construction. But in the context of
graph computation, a richer set of algorithmic ideas can be explored. However, there are subtle
issues regarding the operations that can be legitimately performed in sketch space. These arise
because of the randomness of the sketches and relate to the “adaptivity” of the operations we wish
to perform. We illustrate a couple of the issues using the example of using linear sketches for ¢,
sampling. This is also an example that will play an important role in our algorithms.

Combing Sketches for /, Sampling. /),-sampling is a problem that has recently enjoyed
considerable attention [11,19,20,28,34]. Consider a turnstile stream S = (sy,...,s;) where each
si € (ui, A;) € [n] x R and the aggregate vector x € R™ defined by this stream, i.e., x; = )

Jiug=1 —t*

Definition 1 (¢, Sampling). An (€,0) £p-sampler for x # 0 returns L with probability at most o
and otherwise returns some i € [n] with probability in the range:

[(1 — Oz’ (L+ )|zl
b(x) 7Gx

where £p(x) = (Zie[n] ‘xi|p> v is the p-norm of x.

The next lemma, due to Jowhari et al. [28], summarizes the state-of-the-art result for p € {0,1}.
Lemma 2.1. There exists linear sketch-based algorithms that perform £, sampling using:

1. O(log®nlogd=') space for p=0. Note we may set € = 0 in this case.

2. O(e 'loge log?nlogd~1) space for p = 1.

A simple application to graph sketching is to apply sketches for £yp-sampling to the characteristic
vector a¥ € {0,1}" of the neighborhood of a node v, i.e., a’[u] = 1 iff u is a neighbor of v. Call
this sketch S(a”). By querying S(a”), we can identify a random neighbor of v. Since § is linear,
if any elements of a’ change, we can easily update S(a¥). It might seem that we can then query
the sketch again to return a new random neighbor of v. This is true in a sense but there are the
following important caveats:

1. Loss of Independence: The first issue is the simple observation that if we repeatedly update
and query S(a’), the random neighbors returned will not be independent.

2. Sketch Updates must be Non-Adaptive: The second issue is more insidious. Suppose we query
S(a¥) and are returned node u. Can we somehow get the sketch S(a”) to yield an additional
neighbor of v? One idea would be to update a’ by removing u from the neighborhood of
v and then query the updated sketch of a¥. However, this clearly does not work because
otherwise we could repeat the process multiple times and return all neighbors of v from the
O(log® nlog 1) size sketch! The issue is that we may not adaptively update the data being
sketched based on the sketch itself. This caveat is especially important when processing graphs
since many graph algorithms are adaptive in non-trivial ways.



Algorithm SPANNING-FOREST

1. Sketch aj,...,a, using the sketch matrices Si,...,S; where t = O(logn).
2. Initialize the set of supernodes as V=V.
3. For r € [t],

(a) For each s € V, try to sample an inter-supernode edge using the sketch 3, __S,.(a;)

V€S
(b) Update 1% by collapsing connected supernodes.

4. Assert that G has \V! connected components and that any maximal acyclic sub-graph of
the set of sampled edges is a spanning forest.

Figure 1: The SPANNING-FOREST Algorithm

However, there are various useful things that you can do in sketch space. For example, suppose
we have used the same random bits to construct sketches S(a"), S(a”) of the neighborhoods of nodes
u and v. If our graph algorithm calls for merging v and v to create a new node w, we automatically
have the ability to sample a random neighbor of w in the resulting multigraph. This follows since
S(a¥) = S(a") + S(av) by linearity. We will see how such as idea can be very useful in the next
couple of sections.

3 Connectivity and Applications

3.1 Connectivity

We present a single-pass, semi-streaming algorithm that computes the number of connected compo-
nents of a dynamic graph. Our algorithm is based on constructing sketches for £y-sampling the rows
of a matrix that we now define.

Definition 2. Given an unweighted graph G = (V, E), define the n x (721) matriz Ag with entry
(i,(j, k) € [n] x (1) defined by

1 ifi=j and (vj,v;) € E

ai ey = 4§ —1 ifit =k and (vj,vk) ek
0 otherwise
Let ay,...,a, be the rows of Az where a; corresponds to node v;. The following preliminary

lemma follows immediately from the above definition.

Lemma 3.1. Let Eg = E(S,V '\ S) be the set of edges across the cut (S,V'\ S). Then, |Es| = fo(x)
where x =3, s a;. Furthermore, x € {—1,0, 1}(3) with x| = 1 iff (vj,v) € Es.

Our algorithm is based on the following simple O(logn) stage process. In the first stage, we find
any incident edge on each node. We then collapse each of the resulting connected components into a
“supernode”. In each subsequent stage we find an edge from each supernode to another supernode
if one exists. If the graph has cc(G) connected components, the difference between the number
of supernodes and cc(G) halves with each stage and therefore after O(logn) stages the graph has



collapsed into cc(G) supernodes and will not collapse further. This is a trivial algorithm! The
challenge is to emulate the algorithm space-efficiently in a single pass over a dynamic graph stream.

Sketch-Based Algorithm. To emulate the basic algorithm efficiently, we will construct a number
of sketches of each a; that will facilitate the £y-sampling. Let the sketch matrices be &1, ...,S; where
t = O(logn). Constructing a sketch of each node, using each sketch matrix requires O(ntlog®n)
for constant §. For our algorithm it will suffice to set the ¢p-sampling parameters as ¢ = 0 and
d = 1/100.

To sample an edge incident on v;, we can use the sketch Si(a;). Appealing to Lemma 3.1, this
succeeds with probability 1 —4. At the next step, to sample an edge from the super-node s = {v;, v;}
we can use the sketch Sa(a;) + S2(a;) to find such an edge with probability at least 1 — . This
follows by the linearity of the sketches and by appealing again to Lemma 3.1. We emphasize that
using S1(a;) + Si1(a;) rather than Sy(a;) + Sa(a;) will not work for two reasons: a) it would mean
that we has used &7 in the first stage to determine our use of &1 in the second stage and such
adaptivity is not permissible in general and b) the probabilities from Lemma 3.1 would not be
independent. In short, we need to use a new sketching matrix &; in each round. See Fig. 1 for the
full algorithm.

To correctness of the algorithm follows because in each stage we expect to decrease \V\ —cc(G)
by at least a third by appealing to the linearity of expectation. Hence, it suffices to set t = O(logn).

Theorem 3.1. There exists a single-pass, O(n - log® n)-space algorithm for dynamic connectivity.
The algorithm returns a spanning forest of the graph.

3.2 k-Edge-Connectivity

We next present a single-pass algorithm for k-edge-connectivity. This algorithm builds upon ideas
in the previous section and exploits the “updatability” of the sketches used in {y-sampling. The
starting point for the algorithm is the following simple k phase algorithm:

1. For i =1to k: Let F; be a spanning forest of (V, £\ U;Z; F)
2. Then (V, F1 U FyU...U F}) is k-edge-connected iff G = (V, E) is at least k-edge-connected.
The correctness of this algorithm is simple to show.

Lemma 3.2. Given a graph G = (V, E), fori € [k], let F; to be a spanning forest of (V, E\U;;ll F;).
(V,F1 U FyU...UFy) is k-edge-connected iff G = (V, E) is at least k-edge-connected.

Proof. Let E' = Fy U...U F). Consider a cut (S,V \ S) and let Es C E be the set of edges that
cross this cut. Similarly, let E' be the set of edges among E’ that cross this cut. Clearly |Eg| > |Eg|
since E' C E. Hence, it suffices to prove that |Ey| > k if G is k-edge-connected. Suppose there
exists ¢ such that F; N Eg = () (otherwise we are done by the edge-disjointness of the k spanning
forests.) Then Eg N (F1UF>U...UF;_1) = Eg and hence |Eg| = |Eg| > k. O

It is relatively straight-forward to design a O(k)-pass algorithm using the spanning forest
algorithm from the previous section. However, by exploiting the linearity of sketches, we show that
it is possible to test k-edge connectivity in only one pass. The algorithm is as follows:
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Figure 2: The map D doubles the number of connected components iff the graph is bipartite.

1. Construct the sketches for k independent instantiations Zj,...,Z; of the spanning forest
algorithm.

2. For i € [k]:

(a) Use the sketches for Z; to find a spanning forest F; of (V,E\ F1U...UF;_1)
(b) Update the sketches for Z;11,...,Zy by deleting all edges in F;

Because of instantiations 7y, .. .,Z; are independent, we may update then as claimed.

Theorem 3.2. There exists a one-pass, O(k-n-log> n)-space algorithm that tests k-edge connectivity
where the space depends linearly on k.

3.3 Bipartiteness

Next, we reduce the bipartiteness problem to the problem of counting the number of connected
components. The reduction is based on the following local mapping.

Definition 3. For a graph G = (V, E), let D(G) = (V', E’) be the graph constructed as follows. For
each v € V' construct vy,vy € V' and for each edge (u,v) € E, create two edges (u1,v2) and (ugz,vy).

See Figure 2 for an illustration of the action of D.

Lemma 3.3. Let K be the number of connected components in G. Then, D(G) has 2K connected
components if and only if G is bipartite.

Proof. Let G1,Ga,- -+ ,Gx be the connected components in G. By the construction, D(G) consists
of D(G1), D(G2), ---, D(Gk). If we sum the number of connected components in each D(G;), we
have the total number of connected components in D(G).

Suppose that there exists an odd cycle in GG; which contains u. The odd cycle corresponds to
a path from uy to ug or vice versa in D(G;). And each path from u to v in G; corresponds to a
path from u; to v; or vy and a path from us to the other copy of v. Since G; is connected, there
exists a path from u to any v € V. So there is a path from u; to any vertex in v € V’ and D(G;) is
connected. On the other hand, if G; is bipartite, D(G;) is not connected because any path from wu;
to ug in G’ corresponds to an odd cycle in G.

If G is bipartite, every G; is bipartite. Therefore, there are 2K connected components in D(G).
On the other hand, if G is not bipartite, there must be G; that is not bipartite. So there is less
than 2K connected components. O

Hence, by applying the SPANNING-FOREST algorithm on G and D(G) we prove the following.

Theorem 3.3. There exists a single-pass semi-streaming algorithm for dynamic bipartiteness.



3.4 Approximate Minimum Spanning Trees

Next, we reduce the problem of estimating the weight of the minimum spanning tree to the problem
of counting the number of connected components in graphs. The reduction uses an idea due to
Chazelle et al. [8]. Consider a graph G with edge weights are in the range [1, W] where W = poly(n).
We will assume that G is connected but our algorithm can be used to estimate the weight of the
minimum weight spanning forest if G is unconnected. Let G; be the subgraph of GG consisting of
all edges whose weight is at most w; = (1 + ¢)’ and let cc(H) denote the number of connected
components of a graph H.

Lemma 3.4. Let T be a minimum spanning tree of G and set r = ﬂogl+E W} Then

w(T) <n—(1+e" + i Aice(Gi) < (1+ e)w(T)
i=0

where \; = (1 + €)™ — (14 ¢)".

Proof. Consider the G’ formed by rounding each edge weight up to the nearest power of (1 + ¢).
Then it is clear that w(T) < w(T") < (14 €)w(T) where T” is a minimum spanning tree of G’. It
remains to compute w(7”) and we do this by considering the operation of Kruskal’s algorithm on
G'. Kruskal’s algorithm will first add n — cc(G1) edges of weight 1, then cc(G1) — cc(G2) edges of
weight (1 4 €) etc. The total weight of edges added will be

r—1

w(T') = (n— ce(G1)) + Y (1 + €)' (cc(Gi) — ce(Gita))

i=1
which simplifies to give the claimed quantity. O
Hence, we can estimate the weight of the minimum spanning tree using the connectivity algorithm.

Theorem 3.4. There exists a single-pass, O(e* -n-log® n) space algorithm that (14 €) approzimates
the weight of the minimum spanning tree of a dynamic graph.

4 Exact Minimum Spanning Trees

Basic Algorithm. Our starting point is Boruvka’s algorithm for finding the MST. This algorithm
proceeds in O(logn) phases. In each phase, the minimum weight edge on each node is added
and the resulting connected components are collapsed to form new nodes. This algorithm can be
implemented in the dynamic stream setting in O(log? n) passes by emulating each phase in O(logn)
passes of the dynamic graph stream. We emulate a phase as follows: In the first pass, we £y-sample
an incident edge on each node without considering the weights. Suppose we sample an edge with
weight w, on node v. In the next pass, we again £y sample incident edges but this time we ignore all
edges of weight at least w, on node v when we construct the sketch. Repeating this process O(logn)
ensures that we succeed in finding the minimum weight edge incident on each node. Thus the
algorithm takes O(log2 n) passes as claimed. In the rest of this section, we transform the algorithm
into a new algorithm that uses only O(logn) passes.



Reducing the Number of Passes. Our first step is to show that O(logn loglogn) passes suffice.
The algorithm is based on the observation that the number of nodes under consideration in the ith
phase is at most /2. Hence, during the ith phase we can afford to sample ¢; = 2¢ incident edges
without violating the semi-streaming space restriction. Therefore, the ith phase can be emulated in
O(log;, n) passes which implies that the total number of passes is Zio:gln logyi n = O(lognloglogn).

The next step is to reduce the number of phases. The basic idea is to not just find the lightest
incident edge for each node, but to find the k lightest edges. It follows from the next lemma that

this allows us to reduce the number of nodes by a factor k.

Lemma 4.1. In a simple weighted graph G = (V,E), if E' C E contains the k lightest incident
edges on each node, then we can identify the lightest edge in the cut (S,V '\ S) for any subset S C V
of size at most k.

Proof. 1f |S| < k then we know the lightest edge incident on each v € S in E(S,V \ S) because v
has at most k — 1 neighbors in S. 0

Unfortunately, after the first phase the graph under consideration is a multi-graph and the above
lemma does not apply directly. For example, the lightest k£ incident edges on v may all connect
v to the same neighbor. However, we can rectify this situation by constructing O(logn) random
partitions Py, ..., Po(iogn) Of the nodes where each partition is of size 2k. For each node v and each
partition P = {Vi,..., Vo, } we find the lightest edge from v to each V;. Let E’ be the set of edges
collected.

Lemma 4.2. With high probability, E' contains the k lightest edges to distinct neighbors.

Proof. Let N, be the k closest neighbors of v and consider u € N,. With high probability there
exists a partition P = {V1,..., Vo, } where u is the only element in V; N N, for some i. Hence, we
identify the lightest edge between u and v. O

The next theorem is proved by carefully combining the above idea with the O(logn loglogn)
pass algorithm.

Theorem 4.1. There exists a O(p)-pass, O(n*Y/P)-space algorithm that finds the MST of a dynamic
graph stream. In particular there is a semi-streaming algorithm that uses O(logn/loglogn) passes.

Proof. Suppose at some point we have n'*1/? /t remaining nodes. Then we can find the v/t closest
neighbors of a node in O(log, ;1) passes as follows: construct O(logn) random partitions each of size
2v/t and then use O(log Vi n) successive batches of v/t sketches for £g-sampling to find the lightest
edges between each node and a node in each set of each partition. Let n; be the number of nodes at
the start of the ith phase and define t; = n1+1/p/ni. Then t; = nl/p,tg = ng/@p),tg = nd/(p)
and hence ), log,, (n) = O(p). O

5 Sparsification

In this section, we present a multi-pass, semi-streaming algorithm for graph sparsification in the
dynamic setting. The concept of (cut) sparsification was introduced by Benczir and Karger [5] and
is defined as follows:



Algorithm SPARSIFIER
1. Let @ =G, H = (V,0).
2. While (E(G") #0) do

(a) Let |E(G")| = kn. Sample 6e 2tnInn edges from E(G’) using ¢1 sampling.
ek

(b) Assign each sampled edge e weight 1. fo where f. is the number of times it is
sampled.

(c) Let H' be the resulting graph and let {V'} be its set of (1 + €)£-strong connected
components.

(d) Set E(G") + E(G")\{(u,v) € E(G') : u,v € V'} and H <~ H U {(u,v) € H' :
u,v € V'}.

Figure 3: The SPARSIFIER Algorithm

Definition 4. A weighted graph H = (V, E',w') is a sparsifier for a graph G = (V, E,w) if for
every cut, the cut value in H is within a (1 + €) factor of the cut value in G.

We will use the results of [5,29] and start by recapping a key definition and two important
lemmas.

Definition 5. A node induced subgraph of G is a k-strong connected component if its minimum
cut value is k. An edge e is k-strong connected if k is the mazimum value such that there exists a
k-strong connected component that contains e.

Lemma 5.1 (Benczir, Karger [5]). If G has kn edges, there exists k-strong connected component.

The next property is a restatement of Theorem 2.1 in [29]; the proof in [29] used uniform random
sampling. In our setting, we use ¢; sampling to allow deletions.

Lemma 5.2 (Karger [29]). Let C be the minimum cut value of a graph G. If we sample edges from
G using €1-sampling and give weights % Inn for sampled edges, we preserve every cut value up to
1+ € factor with high probability.

Consider the algorithm SPARSIFIER in Figure 3. Using the above lemmas we can show that:

Lemma 5.3. If the strong connectivity of an edge e is at least (1 + 3€)k/t, it is eliminated with
high probability.

Proof. Let e be an edge with strong connectivity c. > (1+2¢)k/t and H, be the c.-strong connected
component that contains e. By Lemma 5.2, every cut in H, is preserved with high probability. So
H. is (1 — €)ce-connected in H' and e is eliminated with high probability. O

Lemma 5.4. Let ¢, be the strong connectivity of an edge e. If we sample each edge with probability
€ 26tInn/k, the strong connectivity of an edge e is estimated as c.+¢k/t or less with high probability.
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Proof. Given a graph G = (V, E), we can construct a cut Cy(e) for every edge e such that if we
approximate the cut Cy(e) then we cannot overestimate c. by more than an additive ek/t term.

Consider G and its min-cut. If e crosses the mincut, C¢(e) is the mincut. Otherwise consider
the part to which e belongs and proceed recursively. Note that we are constructing a tree of cuts
with a polynomial number of cuts.

The values of the cuts we find till we find C(e) (including C(e)) are at most c. since otherwise
we find a node-induced subgraph whose minimum cut is larger than ¢, and contains e. By definition
of the strong connectivity, there is no such subgraph. From Chernoff bound [9], every cut value
is preserved up to ek/t additive error with high probability. Therefore, we estimate the strong
connectivity of e by at most ¢ + €k/t with high probability. O

From Lemma 5.4, we only remove components with strong connectivity at least k/¢t. From
Lemma 5.2, we preserve every cut in the removed components. When the algorithm finishes, each
cut in the graph can be represented as a sum of cuts in these removed components. Therefore, we
preserve the value of every cut within 1 £ € factor with high probability. By Lemma 5.3, every
(1 + €)k/t-connected component is removed from G’. By Lemma 5.1, we have at most (1 + €)kn/t
remaining edges. Thus, the algorithm terminates in O(log, n) passes. Since we sample O (e~ 2tnlogn)
edges for each pass, we obtain a sparsification of size O(e~2tnlog®n/logt). Setting ¢t appropriately,
we obtain the following theorem:

Theorem 5.1. There exists an algorithm using 0(6_2n1+1/p) space that returns a graph sparsifica-
tion of size O(e2nlog® n/loglogn) in O(p) passes. This algorithm also also yields a semi-streaming
algorithm that returns graph sparsification in O(logn/loglogn) passes.

6 A Discussion about Matchings

In this short section we discuss algorithms for finding maximal and approximately-maximum
matchings in dynamic graph streams. Since both results rely heavier on techniques developed in
other models and in other papers [2,3,31], we limit ourselves to summarizing the results and the
main issues involved.

Maximal Matchings. To find a maximal matching we appeal to a result by Lattanzi et al. [31] for
approximating matchings (with no deletions) in the MapReduce model. Their algorithm repeatedly
samples a subset of n = O(n!T1/P) edges in each round and finds a maximal matching among the
sampled edges, for p rounds; the vertices in the matching are excluded in the subsequent rounds.
The same algorithm can be implemented in the dynamic semi-streaming model using sketches for
fo-sampling. In each pass, we can sample n edges uniformly at random and hence, each round of
the algorithm corresponds to a single pass.

Maximum Matchings. It is shown in [3], that it is possible to (1 —¢) approximate the mazimum
bipartite matching (in multiple passes) given the ability to find mazimal matchings. To do this we
can use the maximal matching algorithm described above. This leads to the following result.

Theorem 6.1. There exists a O(n'TV/P . polye~1) space, O(p - €2 -loge')-pass algorithm that
returns a matching that is (1 — €)-approximation for the bipartite mazimum weighted matching in
the dynamic graph stream model. The number of passes can be improved to O(p- €2 -logloge™!) in
the unweighted case.
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The situation is more complicated for non-bipartite graphs. It is possible to (1 —e€)-approximatate
the size of the maximum matching and construct such a matching in non-bipartite graphs in the
insertion- only model [2]. However, those techniques used rely on a specific approach to constructing
a maximal matching and do not apply immediately in the dynamic setting. However, one can
instead use the sparsifier algorithm presented in Section 5 to get the following:

Theorem 6.2. There exists a O(n1+1/p-poly e 1) space, O(p?-poly e 1)-pass algorithm that returns
a (1 — €)-approzimation to the weight of the (non-bipartite) maximum weighted matching in the
dynamic graph stream model. The number of passes can be improved to O(p*- e~ 1) in the unweighted
case. To construct such a matching, there exists a O(n'*Y/P.poly e 1) space, O(p-log n-poly e~ 1)-pass
algorithm.

We also note that our algorithm can be implemented in the MapReduce model as well. It would
improve upon the 8-approximation algorithm (for the weighted case and the obvious factor 2 in the
unweighted case) in [31] for the MapReduce model.

Acknowledgments. The authors would like to thank Piotr Indyk for some useful conversations
conducted in the back of a taxi somewhere between Orchha and Lucknow. The third author would
also like to thank any other passengers for their patience and understanding.
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