
Polynomial Fitting of Data Streams with
Applications to Codeword Testing∗†

Andrew McGregora, Atri Rudrab, and Steve Uurtamoc

a Department of Computer Science,
University of Massachusetts, Amherst, MA.
mcgregor@cs.umass.edu

b,c Department of Computer Science and Engineering,
University at Buffalo, SUNY, Buffalo, NY.
{atri,uurtamo}@buffalo.edu

Abstract
Given a stream of (x, y) points, we consider the problem of finding univariate polynomials that
best fit the data. Over finite fields, this problem encompasses the well-studied problem of de-
coding Reed-Solomon codes while over the reals it corresponds to the well-studied polynomial
regression problem.

We present one-pass algorithms for two natural problems: i) find the polynomial of a given
degree k that minimizes the error and ii) find the polynomial of smallest degree that interpolates
through the points with at most a given error bound. We consider a range of error models
including the average error per point, the maximum error, and the number of points that are not
fitted exactly. Many of our results apply to both the reals and finite fields. As a consequence we
also solve an open question regarding the tolerant testing of codes in the data stream model.

Keywords and phrases Streaming, Polynomial Interpolation, Polynomial Regression

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

In this paper we consider the following problem: given a stream of n input points (xi, yi) ∈ F2

(where all the xi’s are distinct1) for some field F, fit them with a univariate polynomial
with low error. This general problem has been intensively studied under at least two broad
specifications. The first case is when F is the set of reals and we want to minimize the least
squares or least absolute deviation errors – in this setting the problem is called (polynomial)
regression. The second case is when F is a finite field and we are trying to minimize the
number of disagreements– this corresponds to the problem of decoding Reed-Solomon codes.
Both of these problems have great practical value: regression is used to build a succinct model
of the input points and is perhaps the most widely used statistical tool. Reed-Solomon codes
are widely used to guard against corruption of data in everyday use such in communication
protocols and in storage media. We present data stream algorithms for both problems.

The case for data stream algorithms as a tool to handle massive data sets has been
well made over the last couple of decades (see, e.g., the survey by Muthukrishnan [14]).

∗ A. McGregor’s research was supported by NSF CAREER Award CCF-0953754, while A. Rudra and S.
Uurtamo were supported by NSF CAREER Award CCF-0844796.

† The first and the second authors thank the NSF for inviting them to a meeting where the authors first
started discussing the problems considered in this paper.

1 Some of our results hold even without this condition but for simplicity, we make this assumption. We
also note that checking whether this assumption holds or not requires Ω(n) space.

© A. McGregor, A. Rudra, and S. Uurtamo;
licensed under Creative Commons License NC-ND

Conference title on which this volume is based on.
Editors: Billy Editor, Bill Editors; pp. 1–12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Polynomial Fitting of Data Streams with Applications to Codeword Testing

As polynomial fitting is an extremely basic problem, it is natural to consider its data
stream complexity. In addition, these problems also have practical motivations. Polynomial
regression dates back to work of Legendre and Gauss and can be used to make sense of large
data sets or to use a large experimental data set to accurate estimate model parameters, see,
e.g., work in epidemiology [7] and marine geography [1]. Polynomial regression is actually
a special case of multivariate linear regression since some variables may be polynomial
functions of other variables. Multivariate linear regression has been recently considered in
the data stream model but existing work is either only applicable to least squares polynomial
regression [3] (and we’ll observe that a simpler approach works in this case) or is not as
time-efficient [6]. By focusing on a special case of the regression problem we are able to a)
consider a wider range of error measures such as maximum absolute error and cardinality
of errors, b) develop faster and more space-efficient algorithms, c) consider variants of the
problem such as fitting the simplest model subject to an error budget, and d) consider fields
other than the reals.

Approximation of decoding codes under the umbrella of property testing has been
intensively studied since the the advent of interactive proofs more than two decades ago.
While Reed-Solomon codes are less interesting from a sampling perspective, the second
and third authors recently introduced the problem of designing data stream algorithms for
codeword testing [15]. They detailed applications of data stream algorithms for codeword
testing in storage systems and network systems. We discuss this further in Section 1.1.

The problems of polynomial regression and decoding of Reed-Solomon codes have in-
herently different motivations. In particular, let k be the degree of the polynomial that we
are trying to fit through the data. In polynomial regression we want to make k as small as
possible as that means that our data has a small representation. On the other hand, for
Reed-Solomon codes we want k to be as large as possible as that means we introduce as little
redundancy as possible. Further, different kinds of error make sense in the two problems.
For the Reed-Solomon case, which are defined over finite fields, the measure of error is the
Hamming distance, or the `0 norm. On the other hand, for polynomial regression, `p and
`∞ measures also make sense. These differences crop up in the kind of algorithms generally
used to tackle these two problem. Many of our solutions, however, are “oblivious" as to
whether we are working over finite fields or the reals. Some proofs were omitted for space
considerations, however, all omitted proofs are available in the full version of the paper.

1.1 Decoding of Reed-Solomon Codes and Related Problems

We now focus on the polynomial fitting problem when F is a finite field. In this case, we
will primarily consider the error distance of Hamming distance (i.e. the number of positions
where the fitted polynomial disagrees with in the input point). However, some of our results
also extend to the `p case for p > 0.

First consider the problem of error detection, i.e., we want to figure out if a polynomial
of degree at most k fits exactly through all the n input points. Even though much weaker
than the error correction problem, error detection is widely used in practice, e.g., in Internet
traffic where one uses a checksum to detect errors. In fact, the error detection algorithm
(compute the checksum of the data and compare it with the stored checksum) is a very
efficient one-pass data stream algorithm. This feature of checksums is hugely attractive
in practice even though checksums have terrible error-correction properties. One of the
motivations of [15] was to see if the Reed-Solomon code, which has excellent error-correction
capabilities, could also have data stream algorithms for error detection. It was shown in [15]
that this problem does indeed have a poly-log space, single-pass data stream algorithm if we

Andrew McGregor, Atri Rudra, and Steve Uurtamo 3

allow the algorithm advance knowledge of the xi’s.
Given the somewhat surprising fact that error detection for Reed-Solomon codes does

indeed have efficient data stream algorithms, [15] also looked at the following tolerant testing
problem: Is it the case that there exists a polynomial of degree at most k that disagrees with
at most t points in the input or do all polynomials of degree at most k have to disagree in
at least 2t points? They showed that the trivial algorithm of trying out all possible error
locations can be implemented in Õ(t) space with one pass. They also used group testing
ideas to improve the running time with similar parameters under the additional constraint
of tk ≤ O(n). It was an open question whether this could be improved (and, in fact, the
second author has widely conjectured that one would need Ω̃(t) space). In this paper, we
show that one can in fact solve this problem in Õ(k) space independent of t.

The main building block for the algorithm above is an algorithm to estimate the F0

value of a vector where each coordinate is updated by an addition over the field F. This
problem of course, is very well studied for the case of the reals and has been implicitly
studied for finite fields [10]. Our algorithm is similar to existing algorithms for estimating
F0 (see, e.g., [12]) and works for any field F. The technical ingredient is a subroutine to
determine efficiently if a given subset of vector positions has a nonzero value in it (the catch
is that for fields in general nonzero elements can add up to zero). Given this subroutine,
the algorithm mentioned in the paragraph above is simple: sketch the input y values and
then cycle through all the qk possibilities for the codewords. (The latter can be done in
low space if the algorithm has full knowledge of the xi’s.) In general, trying to improve the
running time of this algorithm is hopeless as it would solve the maximum likelihood problem
for Reed-Solomon codes, i.e., computing the degree k polynomial that disagrees with the
minimum number of input points), which is known to be NP-hard [8]. In fact, there are no
known approximate maximum likelihood algorithms for any nontrivial codes, and this is a
notoriously hard problem [5]. However, under additional constraints on t, we show that one
can in a single pass, compute the closest polynomial and estimate t in space Õ(k).

We also consider the following natural problem related to polynomials: given the coef-
ficients of a degree k polynomial, compute the number of roots of the polynomial. Note
that in this case the trivial algorithm of storing the entire input takes Õ(k) space. In fact,
computing the number of non-roots is the same as computing the F0 value of the stream of
the evaluation of the polynomial over all elements of the field, which by our earlier algorithm
is easy. However, we show that the complementary problem of computing the number of
roots takes Ω(k) space. In fact, this is true even if we want to solve the simple problem of
checking if the polynomial has any roots at all. The reduction is from set-disjointness and
makes use of some properties of non-squares in fields.

1.2 Polynomial Regression

We now discuss our results for polynomial regression over the reals (though some of our
results work over any field). Given p ≥ 0, and n points (x1, y1), . . . , (xn, yn), the aim is to
find a univariate polynomial f(X) of degree at most k that minimizes the `p error, i.e. the
sum

∑
i∈[n] |yi − f(xi)|p. A fairly easy argument shows that one requires Ω(k) space to solve

this problem. We show that under many scenarios, this lower bound is indeed tight. Contrast
this with the general regression problem where the corresponding space bound is Θ̃(k2) [3].

We first consider the case when we are given a bound e on the error we are willing to
tolerate and we are interested in computing f(X) of the smallest possible degree k that
results in an error of at most e. Note that in this case k is unknown but we still want to use
space that is Õ(k). We present two one pass Õ(k + e)-space algorithms for the case when

4 Polynomial Fitting of Data Streams with Applications to Codeword Testing

e = 0 and e > 0 but p = 0. In both cases, our algorithms work under extra conditions on n, k

and e. The main idea in both of these algorithms is to build an estimate k̂ on k progressively.
It is not too hard to figure out when the estimate k̂ is smaller than the actual value of k.
Our main insight is that under suitable conditions on n, k and e, when we discover that
our estimate k̂ is insufficient, we can discard all we have seen so far and start from scratch.
The conditions guarantee that we never throw away too much information. Also crucial to
our algorithms are the known observations that (i) Newton’s interpolation formula can be
implemented in an “online" fashion and uses Õ(k) space and (ii) existing decoding algorithms
for Reed-Solomon codes can be implemented in linear space.

Next we consider the case when k is specified up-front. For p = 0, our algorithm samples
O(k) points and then uses the decoding algorithm for Reed-Solomon codes mentioned in
the previous paragraph to compute the optimal polynomial. For p ∈ [1, 2), we use Indyk’s
p-stable sketching technique to sketch the y and x values. A naive approach would then be
to cycle through all possible values for the coefficients (we also provide a simple one pass
algorithm to bound the range of values each coefficient can take). While this results in an
Õ(k) space algorithm, the running time is not satisfactory. Using the convexity of the error
function, we present an algorithm that effectively does a binary search in a k-dimensional
space to compute the best values of the coefficients. This leads to a O(logk n)-pass Õ(k)
space algorithm, which we then refine to a one-pass, Õ(k) space and O(logk n) time algorithm.
Finally, we consider the case of p =∞. We observe that a result due to Chan and Chen [2]
can be used to solve the problem exactly in constant passes and sub-linear space. We also
present a one-pass Õ(k) space algorithm to approximate the `∞ error that is in turn based
on the fact that one can compute the optimal polynomial for any even p ≥ 2 with one pass
and Õ(p2k) space.

2 Finding Smallest Degree Polynomials

We first consider the following problem: Given n input points (xi, yi) (1 ≤ i ≤ n) and
an integer 0 ≤ e ≤ n, compute the polynomial f(X) of the smallest degree k such that
|{i|f(xi) 6= yi}| ≤ e.

2.1 Perfect interpolation

We begin with a one-pass Õ(k) space algorithm to compute the polynomial of minimum
degree k that interpolates through all the points, i.e., we solve the problem above with e = 0.
This will serve as a warmup for the general case (in addition to giving a slightly better result
for this special case.) Note that here we do not know k in advance and this is what makes
the problem nontrivial. Furthermore, we do not make any assumptions about the range or
order of the points nor do we know {xi : i ∈ [n]} in advance.

I Theorem 1. Let (x1, y1), . . . , (xn, yn) be n input points such that there is an unknown
polynomial f(X) such that for every 1 ≤ i ≤ n, f(xi) = yi. Then there exists a one-
pass Õ

(
1
ε · deg(f)

)
space algorithm to compute f(X), provided deg(f) ≤ (1/2 − ε)n. The

amortized update time of the algorithm is O(deg(f)).

We will use the following well-known result crucially in our algorithm:

I Proposition 2. Let the points (x1, y1), · · · , (xm, ym) be explained by a polynomial P (X)
of degree at most m. Then the points (x1, y1), . . . , (xm, ym), (xm+1, ym+1) are explained by

Andrew McGregor, Atri Rudra, and Steve Uurtamo 5

the unique polynomial

Q(X) = P (X) + (ym+1 − P (xm+1)) ·
m∏

i=1

X − xi

xm+1 − xi
.

Further, deg(Q) ∈ {deg(P),m}.

It is easy to verify that the polynomial Q(X) does indeed work – its uniqueness follows
from the fact that two distinct polynomials of degree at most m can agree in at most m

points. Further, the claim on the degree of Q(X) follows from the fact that Q(X) = P (X) if
ym+1 = P (xm+1). Finally, note the following corollary that we will use later on: Q(X) can
be computed from just the knowledge of P (X), ym+1 and x1, . . . , xm+1.

Proposition 2 implies the following O(log(deg(f)))-pass algorithm: guess the degree of
f(X) in a geometric series and then use Proposition 2 to fit the data with a polynomial with
the guessed degree. Our algorithm achieves the result in a single pass.

Proof of Theorem 1. For notational simplicity define k = deg(f). The algorithm maintains
an estimate k′ of k. The algorithm also maintains a polynomial P (X) of degree at most k′

that explains the last few points (the exact number will be specified later). Now consider the
case when the algorithm sees a new point (xi, yi). Two things can happen: (i) P (xi) = yi.
In this case, we are good as the current polynomial P (X) explains the new point; or (ii)
P (xi) 6= yi. In this case we want to use Proposition 2 to compute the new polynomial Q(X).
Note that in this second case, deg(Q) = m. However, to compute Q(X), we also need to
remember all the xi’s we have seen so far.

To implement the idea for part (ii), we will need to keep track of all the xi’s we have
seen so far. However, we cannot store all the xi values if case (ii) never happens (as in that
case we would have stored ω(deg(f)) values). The main observation is to keep track of O(k′)
xi values and in case those are not sufficient enough to compute the new Q(X), we update
k′ accordingly and restart the whole process. The bound of k ≤ (1/2− ε)n is to make sure
that by the time we attain k′ = k, we still have k + 1 points left to interpolate through.

We now present the details of the algorithm. Let c = O(1/ε) be a constant that we will
fix later on.
1. Initialize k′ ← 1 and let P (X) be the line that passes through (x1, y1) and (x2, y2).
2. Set i, j ← 2 and S ← {x1, x2}. The role of i is to count the total number of points seen

so far while j counts the number of points seen since last restart.
3. Repeat until i ≤ n− k′ − 1:

a. Set i← i + 1 and read (xi, yi).
b. If P (xi) == yi then add xi to S unless |S| == ck′. Set j ← j + 1.
c. Else if j == |S| then set k′ ← j and set P (X) as the Q(X) given by Proposition 2.

(Note that this be computed from the existing P (X) and S.) Finally, add xi to S.
d. Else set k′ ← j and j ← 0. (the “Restart")

Read the points (xi+1, yi+1), . . . , (xi+k′ , yi+k′).
Set S ← {xi, . . . , xi+k′}.
Set P (X) to be the unique degree at most k′ polynomial through (xi, yi), . . . , (xi+k′ , yi+k′).
Set i← i + k′.

4. If P (X) explains the remaining points then output P (X),
5. Else output k > (1/2− ε)n.

Note that if the algorithm halts and outputs P (X) and k′ = k, then it indeed outputs
the correct f(X). This is because P (X) explains at least k + 1 points and there is a unique

6 Polynomial Fitting of Data Streams with Applications to Codeword Testing

polynomial of degree at most k that explains any k + 1 points. Further, note that the
algorithm can be implemented in one pass and uses space O(ck) assuming k′ = k at the end
of the algorithm.

To complete the proof, we will show that assuming k ≤ (1/2− ε)n, the algorithm indeed
outputs f(X). Toward this end, we first note that in the algorithm whenever we update k′,
there exists a polynomial of degree k′ that agrees with the last k′ + 1 points. Now, if at any
update we get k′ > k, then it means that two polynomials – one of degree k′ (the polynomial
P (X)) and another of degree k < k′ (the polynomial f(X)) agree on k′ + 1 points, which is
not possible. Thus, we have that at any stage of the algorithm, k′ ≤ k. To prove that at the
end, k′ = k, we claim that the last restart happens at i ≤ n− k − 1. Assuming this claim is
true, note that the algorithm outputs a polynomial P (X) of degree k′ ≤ k that agrees with
the last k + 1 points. This implies that f(X) = P (X) (and hence k′ = k).

To complete the proof we need to prove that the last restart happens at i ≤ n− k − 1.
To this end, we will show that the number of items discarded during restarts is at most
n− k − 1. Indeed, we consider the set of indices {i1, . . . , im} ⊆ [n], where during the i`th
iteration (` ∈ [m]), the value of k′ changed. For ease of notation, let the k′ value at the i`th
iteration for ` ∈ [m] be denoted by k′(`). Note that for every 1 ≤ ` < m, k′(i`) ≤ k′(i`+1).
Further, call j ∈ [m] bad if k′ changed as a result of a restart. Further, note that the number
of discarded points is exactly

∑
` bad k′(`). Now, note that when ` is bad then since we did

not go through Step 3(c), we have the current value of j in Step 3(d) satisfying j > ck′(`−1).
Thus, this implies that for bad `, k′(`) > ck′(`− 1). Further recall that we had shown earlier
that k′(m) ≤ k. Thus, the sum above is bounded by

∑
i=0 k/ci = c

c−1 · k ≤ (1 + ε)k − 1,

where the last inequality follows by choosing an appropriate c ∈ O(1/ε). Thus, we would
have proved the claim if (1 + ε)k− 1 ≤ n− k− 1, which in turn is implied by the assumption
that k ≤ (1/2− ε)n. J

2.2 Interpolation with outliers

We now present a one-pass Õ(k) space algorithm to compute the polynomial of minimum
degree k that interpolates through all but e points.

I Theorem 3. Let (x1, y1), . . . , (xn, yn) ∈ F2 be n input points such that there is an unknown
polynomial f(X) such that |{i|f(xi) 6= yi}| ≤ e for some 0 ≤ e ≤ n. Then there exists a one-
pass Õ (e + deg(f)) space algorithm to compute f(X), provided (e + deg(f)) · log(deg(f)) ≤
O(n). The amortized update time of the algorithm is Õ(k + e).

To prove the theorem above, we will need the error-version of Proposition 2, i.e. a decoding
algorithm for Reed-Solomon codes. It is known, for example, that the Berlekamp-Massey
algorithm implies the following:

I Theorem 4. Let 1 ≤ K ≤ N be integers. Let (x1, y1), . . . , (xN , yN) ∈ F2 be points.
There exists an Õ(N) space algorithm using Õ(N2) field operations that outputs the unique
polynomial P (X) of degree at most K such that |{i|f(xi) 6= yi)}| < (N −K)/2.

The proof of Theorem 3 follows that of Theorem 1, where we use Theorem 4 instead of
Proposition 2. The proof is a bit simpler because of the stricter bounds on deg(f).

3 Polynomial Fitting

In this section we consider finding the degree k polynomial f(x) =
∑k

i=0 aix
i that best fits a

stream (x1, y1), . . . , (xn, yn) of points. We will consider various measures of fit including the

Andrew McGregor, Atri Rudra, and Steve Uurtamo 7

total number of points that are not interpolated exactly, the average error on each point,
and the maximum error over all points. We introduce the following family of functions
Ep : Rn × Rn × Rk+1 → R

Ep(x, y, a) :=
n∑

i=1

|yi − fa(xi)|p where fa(x) =
k∑

i=0

aix
i

and write E(k)
p (x, y) := minak,...,a0 Ep(x, y, a). We also write E∞(x, y, a) := maxi∈[n] |yi −

fa(xi)| and E(k)
∞ (x, y) := minak,...,a0 E∞(x, y, a).

We start by noting that the case of minimizing E2 is actually easy in O(k log n) bits
of space! This is because the optimal choices of the ai coefficients are determined by the
following k + 1 equations:

a0

∑
i∈[n]

xj
i + a1

∑
i∈[n]

xj+1
i + . . . + ak

∑
i∈[n]

xj+k
i =

∑
i∈[n]

xj
iyi ∀ 0 ≤ j ≤ k .

The equations correspond to the derivatives of E2(x, y, a) with respect to each aj . It is
therefore sufficient to compute the following O(k) values∑

i∈[n]

xj
i for 0 ≤ j ≤ 2k , and

∑
i∈[n]

xj
iyi for 0 ≤ j ≤ k

as the stream is processed. The resulting set of simultaneous equations are then solved in
post processing.

A similar idea works for p ∈ {4, 6, 8, . . .} but requires a bit more space. The main idea is
simple (and has been observed for the more general regression problem): if one thinks of the
coefficients a0, . . . , ak as variables then Ep(x, y, a) is a (k + 1)-variate polynomial of degree p.
Thus, if we can keep track of all the coefficients in this polynomial, then after the pass over
the input, one can estimate E(k)

p (x, y) by cycling through all possibilities for a. This requires
keeping track of roughly pk values, which is not satisfactory. However, it is easy to check
that these roughly pk coefficients only depend on the following O(p2k) sums:∑

i∈[n]

yj
i x

`
i for 0 ≤ j ≤ p, and 0 ≤ ` ≤ (p− j)k.

Thus, we only need to keep track of the above O(p2k) sums and E(k)
p (x, y) can be evaluated

in post-processing.
However, it is not possible to find the best coefficients in general in sublinear space. An

easy way to see this is to consider p = 1 and k = 0. Given a set of points {(xi, yi) : i ∈ [n]}
we seek the value a such that

∑
i∈[n] |xi − a| is minimized. But it is well known that the

optimal value of a is the median of the yi values and computing the median exactly in the
data stream model requires Ω(n) bits of space [9].

Another simple lower bound shows that if, rather than reporting the best k+1 coefficients,
we just want to multiplicatively estimate E(k)

p (x, y) then this requires Ω(k) bits of space. This
follows from a reduction from indexing where Alice has a set A ∈ [2k] of cardinality k and
Bob has an index j ∈ [2k]. Alice computes the degree k polynomial f(x) =

∏
a∈A(x− a) and

defines the first k + 1 elements of a stream {(2k + i, f(2k + i)) : i ∈ [k + 1]}. Bob then adds
the point (j, 0). If j ∈ A then there is a degree k polynomial, namely f , that interpolates
through all the k +2 points exactly. Alternatively if j 6∈ A then any interpolating polynomial
must have degree at least k + 1.

8 Polynomial Fitting of Data Streams with Applications to Codeword Testing

3.1 Maximizing the number of points fitted exactly

We first consider fitting a degree k polynomial to the stream of points with the goal of
interpolating exactly through as many of the points as possible. The following result applies
to both finite fields Fq and the reals. The application to finite fields relies on the observation
that many sketching algorithms for estimating the number of distinct items, F0, can be
carefully modified to estimate |{i : fi mod p 6= 0}| for an arbitrary prime p where fi is the
frequency of the value i in the stream.2

I Theorem 5. Let n ≥ (1+2γ)k be integers for γ > 0. Assume that E0(x, y) ≤ ((1−γ)n−k)/2
for some γ > 0. Then it is possible to find the optimal polynomial and estimate E0(x, y) up
to a factor (1 + ε) with probability 1 − δ (where δ ≤ exp(−Ω(γ2k))) in a single pass using
Õ(ε−2 log(1/δ) + γ−2k) space.

Proof. Let f be a degree k polynomial that interpolates through the maximum number of
points. Note that by the bound on t = E0(x, y), f will be unique. Call a point (xi, yi) good
if f(xi) = yi and bad otherwise. The idea in the algorithm is to essentially sample enough
points and run the unique decoding algorithm from Theorem 4 on the sampled points. We
next present the details.

First assume that t ≤ γk. In this case, we just run the algorithm from Theorem 4 with
K = k and N = (1 + 2γ)k on the first N points. Thus, even if in the worst case all the t

errors occur in the first N positions, the algorithm from Theorem 4 will output f in space
Õ(k). Note that once we have computed f , we can check that t ≤ γk by verifying that f

explains the remaining points. Further, we can compute t exactly.
Next we consider the case when t > γk. In this case we first sample each of the n

input points with probability 4k/(γ2n). By Chernoff, except with probability exp(−Ω(k)),
we would have sampled N = ck points with 4/γ2(1 − γ/2) < c < 5/γ2. Then we run the
algorithm from Theorem 4 on the sampled points. Note that if we sample at most (ck− k)/2
bad points, the algorithm will indeed return f . Next, we show that this is indeed the case.
Note that the expected number of bad points is µ = 4kt/(nγ2). We show by a case analysis
that the probability we get more than ∆ := (c− 1)k/2 bad points is exponentially small.

We first consider the sub-case that γk ≤ t < n/(8e). Note that in this case ∆/µ > 2e,
which implies that the probability that the number of bad points is more than ∆ is at
most 2−t = exp(−Ω(k)) [4]. Finally we consider the sub-case that t ≥ n/(8e). Note that
by the assumption on t, we also have t ≤ (1 − γ)n/2, which implies that in this case
µ ≤ 4k(1 − γ)/(2γ2). This implies that ∆ > (1 + γ/2)4k(1 − γ)/(2γ2) ≥ (1 + γ/2)µ (as
c > (1− γ/2)4/γ2 ≥ 4/γ2(1− γ/2− γ2/2) + 1). Thus, the probability that we will have at
least ∆ bad points by the “usual" Chernoff bound is upper bounded by exp(−Ω(γ2 · µ)) ≤
exp(−Ω(γ2n)). Thus, in a single pass and Õ(k/γ2) space we can compute the optimal
polynomial f(X) =

∑k
i=0 aiX

i with error probability at most exp(−Ω(γ2k)).
In parallel with the algorithm above, we compute sketches to estimate the value of t.

Compute F0 sketches (e.g., [13]) of y = (y1, . . . , yn) and xj = (xj
1, x

j
2, . . . , x

j
n) for 0 ≤ j ≤ k

2 In particular, the algorithm detailed in [12] computes
P

i∈S fi for random subsets S and makes an
estimation based on the fraction of random subsets S such that

P
i∈S fi 6= 0 as this indicates that there

exists i ∈ S such that fi 6= 0. However, in the case of Fp for example, it is possible that
P

i∈S fi = 0
mod p while there exists i ∈ S such that fi 6= 0 mod p. One approach, as taken in Indyk [10] for the
case p = 2, is to take the probability of this event into account and adjust the estimator appropriately.
An alternative approach is to consider log(1/γ) random subsets of each S, {Sj : j ∈ log(1/γ)}: if there
exists i ∈ S such that fi 6= 0 mod p then with probability at least 1 − γ, there exists Sj such thatP

i∈Sj
fi 6= 0 mod p. The results in a factor log(1/γ) increase in the space and time use of the algorithm

but it suffices for γ to be O(ε−2) so this increase is not significant.

Andrew McGregor, Atri Rudra, and Steve Uurtamo 9

and return an estimate based for t using sketch(y −
∑k

j=0 ajx
j) = sketch(y) −

∑k
j=0 aj ·

sketch(xj) .

Repeating the above process O(log 1/δ) times and taking the smallest estimate gives a
(1± ε) approximation on t with error probability at most δ. Note that we use Õ(ε−2 log(1/δ))
space in this part of the algorithm. The assumption on δ in the statement of the theorem
completes the proof. J

3.2 Minimizing the average error

To minimize Ep(x, y, a) for p ∈ (0, 2), we first consider the case where we may assume that
each ai comes from some set of t discrete values. Using the p-stable sketching technique
[11], construct linear sketches of the k + 1 vectors xj = (xj

1, x
j
2, . . . , x

j
n) for 0 ≤ j ≤ k and

y = (y1, . . . , yn). Call these sketches sketch(xj) Then for a given setting of a0, . . . , ak, we
can estimate Ep(x, y, a) up to factor 1 + ε because the sketches are linear:

sketch(y −
k∑

j=0

ajx
j) = sketch(y)−

k∑
j=0

aj · sketch(xj) .

If the sketches are of size Õ(ε−2 log δ−1) then this procedure fails with probability at most δ.
Since there are at most tk settings for a, this procedure works for testing all settings of a

with probability at least 1− tkδ. Rescaling δ gives a Õ(ε−2k log t log δ−1) space algorithm.
A similar idea was used in Feldman et al. [6] for multivariate linear regression. The main
drawback with this approach is the O(tk) time required for post-processing.

To ameliorate the situation slightly, we first argue that if we restrict ourselves to finding
coefficients up to polynomial precision, we may assume that t is polynomial. In particular
we know how to compute a value B in one pass over the input such that all the coefficients
of the polynomial f(X) =

∑k
i=0 aiX

i minimizing Ep(x, y, a) satisfy |ai| ≤ B. Note that in
this case t = O(B/γ), where γ = 1/ poly(n) is the (additive) precision value.

I Lemma 6. Let n > k ≥ 0 be integers, p ∈ (0,∞) be a real and (x, y) be the input points.
Assume that the polynomial f(X) =

∑k
i=0 aiX

i satisfies E(k)
p (x, y) = Ep(x, y, a). Then, for

every 0 ≤ i ≤ k, |ai| ≤ 6n1/pymax/min(1, xk
min), where ymax = maxi |yi| and xmin = mini |xi|.

By applying a random shift to the x values we may ensure that the numerator is Ω(1)
and we may subsequently assume that B = poly(n). For constant k, this ensures that the
post-processing step is polynomial in n. In the remainder of this section we show that this
dependence on n can be made poly-logarithmic when k is constant and p ≥ 1.

3.2.1 Poly-logarithmic post processing for constant k:

We start by defining the family of functions hj : Rj → R for j = 1, . . . , k + 1:

hj(ak, . . . , ak−j+1) = min
a0,...,ak−j

n∑
i=1

∣∣∣∣∣yi −
k∑

m=0

amxm
i

∣∣∣∣∣
p

and h0 = Ep(x, y) .

In other words, hj is the smallest interpolation error that can be achieved when the j highest
coefficients are fixed. We first note that hj is convex.

I Lemma 7. For any p ≥ 1, j ∈ {0, 1, . . . , k} and ak, . . . ak−j+2 ∈ R, the function h(x) =
hj(ak, . . . , ak−j+2, x) is convex.

10 Polynomial Fitting of Data Streams with Applications to Codeword Testing

Evaluate[j, ak, . . . , ak−j+1]
1. If j == k + 1, return a (1 + ε) approximation based on the sketches.
2. Initialize a← −B and b← B where B upper bounds the magnitude of all coefficients.
3. Repeat

a. For x← a + b−a
4 , y ← a + b−a

2 , and z ← a + 3(b−a)
4

ex ← Evaluate[j + 1, ak, . . . , ak−j+2, x]

ey ← Evaluate[j + 1, ak, . . . , ak−j+2, y]

ez ← Evaluate[j + 1, ak, . . . , ak−j+2, z]
b. If ey < ez/(1 + ε) then b← z and repeat
c. If ey < ex/(1 + ε) then a← x and repeat

4. Until ey ≥ min(ex, ez)/(1 + ε) or |b− a| < γ

5. Return ey

Figure 1 The Evaluate Algorithm

To find the minimum value of a convex function h(·) in the range [a, b], a natural approach
would evaluate h at a few intermediate points, e.g., a < x < y < z < b, and recurse on
the appropriate subinterval of [a, b] based on the intermediate valuations. If h(y) ≤ h(z),
we deduce that the minimum lies in the range [a, z] and if h(x) ≥ h(y) we deduce that the
minimum lies in the range [x, b]. Note that one of the above cases must apply since h is
convex. If x, y, z are equally spaced in the interval, after O(log n) iterations we can determine
the value that minimizes h.

As a warm-up to the main algorithm of this section, we next present a O(logk n) pass
algorithm. The algorithm is based on the recursion:

hj(ak, . . . , ak−j+2, ak−j+1) = min
a

(
hj+1(ak, . . . , ak−j+2, ak−j+1, a)

)
.

We can evaluate hk for a given ak, . . . , a1 in O(log n) as described above. By appealing to
the above recurrence, we can then determine hk−1 in O(log2 n) passes: we minimize hk−1 for
a given ak, . . . , a2 by performing the quaternary search to find a such that hk−1(ak, . . . , a2) =
hk(ak, . . . , a2, a). Since each evaluation of hk requires O(log n) passes, it takes O(log2 n)
passes to evaluate hk−1 for a given ak, . . . , a2. Continuing in this manner gives a O(logk n)
pass algorithm for evaluating h0. This leads to the following theorem.

I Theorem 8. Assume each coefficient may take only t different known values. Then there
exists a O(logk t) pass algorithm that computes Ep(x, y) exactly in Õ(k) space and O(1)
per-item processing and O(1) processing at the end of each pass.

We next transform the multiple pass algorithm into a single pass algorithm where
each of the evaluations performed in the quaternary search is computed using a single
sketch of the data. In Figure 1, we present the algorithm Evaluate for approximating hj .
Evaluate[j, ak, . . . , ak−j+1] approximates hj(ak, . . . , ak−j+1) by minimizing a sequence of
convex functions. Note that Evaluate is solely concerned with post-processing: while the
points are being streamed it suffices to construct the appropriate sketches. Before we analyze
the running time and accuracy of Evaluate, we need the following result.

In our algorithm it won’t be possible to evaluate h exactly. However, the following
lemma demonstrates that when the approximate evaluations become so close that it becomes
impossible to evaluate pairwise comparisons, we have identified a sufficiently accurate
approximation of the minimum.

Andrew McGregor, Atri Rudra, and Steve Uurtamo 11

I Lemma 9. Let h : [a, b]→ R be a convex function and let h̃ : [a, b]→ R satisfy (1− γ) ≤
h(x)/h̃(x) ≤ (1 + γ) for all x ∈ R. Suppose for some a, b, (1 + ε)h̃(y) ≥ max(h̃(z), h̃(x))
where x = a + (b− a)/4, y = a + (b− a)/2, and z = a + 3(b− a)/4. Then

(1 + ε)h̃(y) ≥ min
x∈[a,b]

h(x) ≥ h̃(y)/(1 + 8ε) .

Proof. Without loss of generality assume that h(x) ≤ h(z). Note that h(y) ≤ h(z) because
of convexity. We have to analyze the following two cases.
1. h(x) ≤ h(y): In this case the minimum value is at least

h(y)− 2(h(z)− h(y)) = 3h(y)− 2h(z) ≥ h̃(y)[3/(1 + ε)− 2(1 + ε)2] .

2. h(y) ≤ h(x): In this case the minimum value is at least

h(y)− (h(z)− h(y)) = 2h(y)− h(z) ≥ h̃(y)[2/(1 + ε)− (1 + ε)2] .

In either case, the minimum value is at least h̃(y)/(1 + 8ε) assuming ε < 1/15.
J

I Theorem 10. The running time of Evaluate[0] is O(logk+1 n) and returns a value that
satisfies 1/(1 + Ok(ε))k ≤ Evaluate[0]/Ep(x, y) ≤ (1 + Ok(ε))k .

Using an appropriately rescaled ε when sketching the original points leads to a (1 + ε)
approximation using O(ε−2 polylog(n)) space and O(polylog n) update and post-processing
time for constant k. We note that dependence on k is such that this approach is only practical
for small values of k.

Proof of Theorem 10. For the running time, note that in each iteration the innermost loop
is performed O(log n) times since B = O(poly n) and γ = 1/ poly(n). The result follows
because the depth of the recursion is at most k + 1. The claim on the accuracy follows by
induction on the depth and Lemma 9. J

3.3 Minimizing the maximum error

In this section, we consider the problem of finding coefficients a such that the maximum
absolute error, E∞(x, y, a), is minimized. We will present two results. The first follows from a
straight-forward observation and results in a constant pass algorithm that finds the error and
the coefficients exactly. The second algorithm only uses a single pass but returns coefficients
that minimize the maximum error up to a constant factor.

The first observation is that the problem can be expressed as a linear program in O(k)
variables,

min ε subject to − ε ≤
k∑

j=0

ajx
j
i − yi ≤ ε ∀i ∈ [n] .

Such a problem can be solved in constant passes in O(nδ) space for any constant δ using the
sub-linear time (for constant k) algorithm of Chan and Chen [2].

I Theorem 11. It is possible to minimize E∞(x, y, a) in constant passes and O(nδ) space
for any constant δ.

Our single pass algorithm is based on the following relationship between E∞ and Ep.

12 Polynomial Fitting of Data Streams with Applications to Codeword Testing

I Proposition 12. For p ≥ log n
log(1+ε) , E(k)

∞ (x, y) ≤ p

√
E(k)

p (x, y) ≤ (1 + ε)E(k)
∞ (x, y).

Proof. The result follows because for any non-negative vector z ∈ Rn with r = maxi zi,
r ≤ (

∑
i∈[n] z

p
i)1/p ≤ (nrp)1/p ≤ (1 + ε)r. J

In Section 3, we noted that it is possible to evaluate E(k)
p (x, y) (and determine the

corresponding polynomial) in O(p2k) space if p was even. Therefore, by choosing p =
2d(log n)/(2 log(1 + ε))e and appealing to Proposition 12, get the following theorem.

I Theorem 13. E(k)
∞ (x, y) can be (1+ε)-approximated in a single pass with O(ε−2k polylog(n))

space.

References

1 P. A. Barker, F. A. Street-Perrott, M. J. Leng, P. B. Greenwood, D. L. Swain, R. A. Perrott,
R. J. Telford, and K. J. Ficken. A 14,000-Year Oxygen Isotope Record from Diatom Silica
in Two Alpine Lakes on Mt. Kenya. Science, 292(5525):2307–2310, 2001.

2 Timothy M. Chan and Eric Y. Chen. Multi-pass geometric algorithms. Discrete & Com-
putational Geometry, 37(1):79–102, 2007.

3 Kenneth L. Clarkson and David P. Woodruff. Numerical linear algebra in the streaming
model. In STOC, pages 205–214, 2009.

4 Devdatt Dubhashi and Alessandro Panconesi. Concentration of Measure for the Analysis
of Randomized Algorithms. Cambridge University Press, New York, NY, USA, 2009.

5 Ilya Dumer, Daniele Micciancio, and Madhu Sudan. Hardness of approximating the min-
imum distance of a linear code. IEEE Transactions on Information Theory, 49(1):22–37,
2003.

6 D. Feldman, M. Monemizadeh, C. Sohler, and D.P. Woodruff. Coresets and sketches for
high dimensional subspace approximation problems. In ACM-SIAM Symposium on Discrete
Algorithms (SODA), volume 2, 2010.

7 Sander Greenland. Dose-response and trend analysis in epidemiology: Alternatives to
categorical analysis. Epidemiology, 6(4):356–365, 1995.

8 Venkatesan Guruswami and Alexander Vardy. Maximum-likelihood decoding of reed-
solomon codes is np-hard. IEEE Transactions on Information Theory, 51(7):2249–2256,
2005.

9 Monika R. Henzinger, Prabhakar Raghavan, and Sridhar Rajagopalan. Computing on data
streams. External memory algorithms, pages 107–118, 1999.

10 Piotr Indyk. Algorithms for dynamic geometric problems over data streams. In STOC,
pages 373–380, 2004.

11 Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data stream
computation. J. ACM, 53(3):307–323, 2006.

12 Piotr Indyk. 6.895 Sketching, Streaming and Sub-linear Space Algorithms. Lecture Notes,
1, 2007.

13 Daniel M. Kane, Jelani Nelson, and David P. Woodruff. An optimal algorithm for the
distinct elements problem. In PODS, pages 41–52, 2010.

14 S. Muthukrishnan. Data streams: Algorithms and applications. Foundations and Trends
in Theoretical Computer Science, 1(2), 2005.

15 Atri Rudra and Steve Uurtamo. Data stream algorithms for codeword testing. In ICALP,
2010.

	Introduction
	Decoding of Reed-Solomon Codes and Related Problems
	Polynomial Regression

	Finding Smallest Degree Polynomials
	Perfect interpolation
	Interpolation with outliers

	Polynomial Fitting
	Maximizing the number of points fitted exactly
	Minimizing the average error
	Poly-logarithmic post processing for constant k:

	Minimizing the maximum error

