
The Shifting Sands Algorithm

Andrew McGregor∗ Paul Valiant†

Abstract

We resolve the problem of small-space approximate selection

in random-order streams. Specifically, we present an

algorithm that reads the n elements of a set in random order

and returns an element whose rank differs from the true

median by at most n1/3+o(1) while storing a constant number

of elements and counters at any one time. This is optimal: it

was previously shown that achieving better accuracy required

poly(n) memory. However, it was conjectured that the lower

bound was not tight and that a previous algorithm achieving

an n1/2+o(1) approximation was optimal. We therefore

consider the new result a surprising resolution to a natural

and basic question.

1 Introduction

The Problem. This paper considers a simple computa-
tional problem about a random process. The elements of
a set S of n integers are presented in random order, i.e.,
at time step t you are shown a value at ∈ S that is chosen
uniformly at random from the set of remaining elements,
S \{a1, a2, . . . , at−1}. You wish to determine the median
of S. Unfortunately you only have limited memory to
remember the values you have observed. For example,
you can only afford to maintain a constant number of
elements and a few additional counters. Given this se-
vere constraint, how well can you estimate the median
of S? Can you return a nγ-approximate median with
high probability, i.e., an element whose rank is in the
range n/2± nγ , for some small value of γ?

Prior Work. In the late seventies, Munro and Paterson
[10] asked the related question of how much memory is
required to return the exact median of S. They presented
a simple algorithm that maintains a contiguous set of
elements and they showed, via a random-walk analysis,
that maintaining two counters and O(

√
n) elements from

the stream was sufficient. It can be shown that their
algorithm is essentially optimal [9, 10].

The approximate version of the problem has a long
history in the data streams community. However, the
vast majority of this work assumes that the elements of

∗University of Massachusetts, Amherst. Supported by NSF

CAREER Award CCF-0953754.
†University of California, Berkeley.

S are presented in an order that is chosen adversarially.
The state of the art results in this setting are due to
Greenwald and Khanna [6] and Shrivastava et al. [12].
Ignoring logarithmic factors, the basic trade-off is that
Θ(n1−γ) space is necessary and sufficient for finding an
nγ-approximate median. Naturally, if the elements are
read in random order, we should hope to need less space
to achieve the same accuracy with high probability.

The question in the random order setting was first
considered by Guha and McGregor [9]. They showed
that less space was indeed sufficient. Specifically, they
showed that:

• For γ = 1
2 + o(1), it suffices to use O(log n) space1.

• For γ < 1
3 , it is necessary to use Ω(n1/2−3γ/2) space.

Clearly there is a gap: if the lower bound is tight,
there should exist an algorithm that finds an O(n1/3)-
approximate median using only polylogarithmic space.
Resolving whether or not this is the case is the main
question addressed in this paper. Does such an algorithm
exist or can the lower bound be improved?

Other related work includes finding the exact median
given multiple-passes [1, 2]. It has been shown that for
polylog(n)-space algorithms, Θ(log n/ log log n) passes is
necessary and sufficient when the stream is adversarially
ordered, whereas only Θ(log logn) passes are required
with high probability given a random ordering. Other
problems considered in the random-order stream model
include frequency moments [1, 7], distinct elements [13],
minimum enclosing balls [11], frequent items [4], robust
statistics [3], and histogram construction [8]. The
motivation for studying random order streams is two-
fold. First, when the stream isn’t adversarially ordered
it makes sense to design algorithms that take advantage
of this, e.g., when processing a sequence of i.i.d. samples
from an unknown distribution or when the stream order
can explicitly be randomized (see, for example, the
“backing sample” architecture proposed by Gibbons et
al. [5]). Second, space lower bounds in the random-order
setting (rather than the adversarial setting) are a more
powerful indication that a problem is hard in practice.

1We will assume throughout the paper that the integers in the
stream have magnitude poly(n).

What’s the Answer? There are numerous pieces of
anecdotal evidence to suggest that it is the lower bound
that needs to be improved and that the upper bound
of n1/2+o(1)-approximation is optimal. For example,
suppose that rather than trying to estimate the median
of a set, we are trying to estimate the median of a
distribution µ on R of bounded variance, e.g., we want
to return a value x ∈ R such that

1/2− ε ≤
∫ x

−∞
µ(x)dx ≤ 1/2 + ε.

It is straightforward to show that in general ε = Θ(1√
n

)

is the best one can do. The models of random sampling
from a distribution versus receiving elements from a
randomly ordered stream seem similar enough, that it
seems intuitively unlikely to do much better on one than
on the other using only constant memory.

More concretely, suppose we have observed the
first half of the stream and have computed a n1/2−ε-
approximation of the median, m1, of the data seen thus
far. It is straightforward to show that m1 is only an
O(n1/2)-approximation to the median, m, of the entire
stream. Hence, it may not seem possible to leverage the
fact we have a good approximation to m1 since m1 is
itself only a weak approximation to m. Consequently it
may seem that we can’t improve upon O(n1/2) accuracy.

However, it turns out that this intuition is totally
wrong. In this paper we show that it is possible to
n1/3+o(1)-approximate the median in logarithmic space.
Specifically, we present an algorithm that maintains only
a constant number of elements from the stream at any
one time, in addition to a constant number of counters.
We consider this a surprising result. Furthermore, while
the algorithm is rather subtle, the analysis requires
nothing beyond standard tail inequalities.

2 Preliminaries and Notation

Throughout the paper we use the following notation.
For numbers a, b, c we write a = b ± c to denote
b− c ≤ a ≤ b+ c.

Definition 2.1. Given a set X ⊂ Z and a number p,
the rank of p with respect to X, denoted RX(p), equals
the number of elements of X that are less than or equal to
p. We will also find it convenient to denote the difference
between the ranks of two elements a and b by

RX(a, b) := RX(a)−RX(b) .

We then say an element p is a t-approximate median
of the set S if RS(p) = n/2± t.

Distinct Values. We next observe that we may assume
without loss of generality that the stream contains

distinct values. This can easily be achieved with
probability at least 1− δ by attaching a secondary value
yi ∈R [n2δ−1] to each item xi in the stream. We say
(xi, yi) < (xj , yj) iff xi < xj or (xi = xj and yi < yj).
Note that breaking the ties arbitrarily results in a stream
whose order is not random.

Conditioning the Ordering. Rather than analyze
some rather intricate dependencies that could arise in the
analysis of our algorithm, we will instead condition the
uniformly random ordering of the stream on a specific
event A which we now define.

A: The “Always a Good Estimate” Event. For every
two segments X and Y of the stream S and any
two elements a, b ∈ S,

RX(b, a) = (RY (b, a)±(c1 log n)
√

1 +RY (b, a))· |X|
|Y |

where c1 is some suitably large constant.

The fact that A is a high probability event, i.e.,
Pr [A] ≥ 1 − 1/n2, follows from an application of the
Hoeffding-Chernoff bound and n6 applications of the
union bound corresponding to the n2 possible choices
for a, b and the n2 choices for each of X and Y . Every
statement in the rest of the paper will be conditioned on
the event A.

3 Approximate Median Finding

In the introduction we questioned the value of finding
a good approximation to the median of the first half
of the stream, m1, based on the observation that m1 is
itself only an O(n1/2) approximation to the final median.
Explicitly, given a randomly ordered sequence S with
n elements, and letting m1 be the median of the first
half of the sequence, then E[|RS(m1)− n/2|] = Θ(n1/2).
Further, it can be argued that an approximation to
m1 is essentially the only useful information that can
be gleaned from the first half of the sequence—any
other statistics are arguably either irrelevant, or may be
adequately approximated instead from the second half
of the sequence. This seems to lead to an impasse: the
(approximate) median of the first half of the sequence
is the only useful statistic to ask of the first half of the
sequence, but the median of the first half of the sequence
seems to yield errors on the order of n1/2 when leveraged
on the rest of the sequence.

However, this observation is only half (in an almost
literal sense) of the story. Specifically, let m2 be the
median of the second half of the stream. Considering
m1 and m2 separately yields no fruits: the rank of m1

will typically differ from n/2 by some constant multiple

of n1/2, and by symmetry, the corresponding statement
holds for m2: E[|RS(m2)− n/2|] = Θ(n1/2). However,
adding the two ranks together yields a surprising
observation that serves to motivate the rest of this paper:

The sum of the two ranks, RS(m1) +RS(m2),
has expectation n+1 and its expected difference
from this expectation is not Θ(n1/2) as we
might naively suspect, but instead the much
smaller Θ(n1/4).

One way of looking at this observation is that if the
first half of the sequence is “bigger than expected,” then
the second half of the sequence has to be correspondingly
“smaller than expected,” and, further, that in some
sense the median of the whole sequence lies almost
exactly halfway in between the medians of the first and
second half respectively. The crucial importance of this
observation is that it relates the median of the first half
of the sequence to some global rank properties of the
sequence, to within error Θ(n1/4) instead of the more
typical Θ(n1/2). We prove this observation now and
then detail how to leverage it.

Lemma 3.1. Let S1, S2 denote the first and second half
of the stream S and let m1,m2 be the medians of S1, S2.
Then RS(m1) +RS(m2) = n±O(n1/4 · polylog n)

Proof. Let m be the median of S1 ∪ S2. Given event A,
RS1(m) = n/4 +O(n1/2 · polylog n) and therefore

RS(m1,m) = 2RS1(m1,m)±O(n1/4 · polylog n)

and correspondingly for S2,m2. Adding these equations
and rearranging yields the desired result:

RS(m1) +RS(m2)

= 2RS(m) + 2RS1(m1,m) + 2RS2(m2,m)

±O(n1/4 · polylog n)

= 2RS1(m1) + 2RS2(m2)±O(n1/4 · polylog n)

= n±O(n1/4 · polylog n) .

where the second equality follows because RS1(m) +
RS2

(m) = RS(m) and the last equality follows because
RS1

(m1) = (n/2 + 1)/2 and RS2
(m2) = (n/2 + 1)/2. �

It follows from the above lemma that we should aim
to return the median of the set of elements in S1 ∪ S2

whose values lie between m1 and m2. Unfortunately,
once we are halfway through the stream, we don’t
know m2 and only elements in S2 remain. However,
by appealing to the conditioning on A we can argue that
it is sufficient to approximate this median based only on
S2. Specifically, event A implies that

(RS2
(m1) +RS2

(m2)) /2 = RS2
(m)±O(4

√
n · log n) .

Since RS2
(m2) = (n/2 + 1)/2 by definition of m2, this

leads to the tantalizing fact that the median of the
whole sequence is (to within O(4

√
n)) the element of

the second half of the sequence whose rank within the
second half of the sequence is RS2(m1)/2 + n/8. If we
could find an element of the second half of the sequence
that approximates this well, we may thus approximate
the median. The heart of this paper is a proof of the
following lemma. (The lemma should be considered as
applying to the second half of the sequence, as discussed
so far, and hence n/2 in the above discussion becomes n
in the lemma below.)

Lemma 3.2. (Shifting Sands Algorithm) Given a
randomly ordered sequence S of length n, and a value p
with

RS(p) = n/2±O(
√
n · log n) ,

there is a streaming algorithm that, without advance
knowledge of RS(p), uses constant memory and returns
an element q ∈ S such that

RS(q) = n/4 +RS(p)/2±O(3
√
n · polylog n) .

We defer the proof until the next section. The basic
idea is as follows: while we process the elements in the
second half of the sequence, the algorithm in Lemma
3.2 simultaneously evaluates the rank of m1 relative
to the elements in the second half as they arrive—this
yields an increasingly accurate estimate of RS2(m1)—
and determines a sequence of candidates whose rank
relative to the second half of the sequence we expect to
approach n/4 plus our current estimate of the rank of
m1.

We call this the Shifting Sands Algorithm because
the target of our algorithm does not lie passive, but
rather is constantly changing with each new sequence
element we examine: the ground is shifting under us.
And it is a race between the shifting of the target, and our
ability to track it with increasingly better candidates. We
cannot simply wait until most of the “sand has shifted”
to start finding candidates because then we might have
too much distance to cover, and not enough samples
remaining in the sequence to let us accurately propose
and evaluate candidates to make up the distance. There
is a delicate balance between the rate at which our target
shifts, and the rate at which we must constantly pursue
it. This balance yields the compromise error of 3

√
n.

The following corollary shows that by applying the
algorithm in Lemma 3.2 recursively we can find an
approximate median to the desired accuracy.

Corollary 3.1. Given a randomly ordered sequence
S of length n there is a streaming algorithm that uses
constant memory and returns an element of S of rank
n/2±O(3

√
n · polylog n).

Proof. The algorithm is recursive: first use it to find
the approximate median of the first half of the sequence,
then apply the algorithm of Lemma 3.2 and return its
answer. Thus the total memory used is just that needed
by the algorithm of Lemma 3.2 since the recursive portion
happens first and thus does not incur any memory
overhead.

Denote the first half of the sequence by S1 and the
second half by S2, and assume the recursive invocation of
the algorithm returns a number m1 of rank RS1

(m1) =
n/4 ± e for some bound e = o(

√
n). We note that

RS1(m1) +RS2(m1) = RS(m1). Let m2 be the median
of S2. Conditioned on event A, RS2

(m1) = n/4 ±
O(
√
n · log n). Therefore, using p = m1, the algorithm

of Lemma 3.2 picks an element q in S2 such that

RS2
(q) = RS2

(m1)/2+RS2
(m2)/2±O(3

√
n ·polylog n) .

Conditioned on event A, q will also satisfy

RS(q) = RS(m1)/2 +RS(m2)/2±O(3
√
n · polylog n) .

This follows because |RS(m1,m2)| = O(
√
n · log n).

Further, Lemma 3.1 and event A implies that

RS(m2) +RS(m1) = n± 2e±O(4
√
n · log n) ,

and therefore the average of the ranks of m1,m2 is
n/2± e±O(3

√
n · polylog n).

Thus if the invocation of the algorithm on sequences
of length n/2 guarantees error e, then for sequences of
length n we have error e + O(3

√
n · polylog n). Solving

the recursion yields that in general, this algorithm has
error O(3

√
n · polylog n). �

3.1 Proof of Lemma 3.2. In this section we present
and analyze the Shifting Sands Algorithm. The analysis
of this algorithm establishes Lemma 3.2. We first outline
the main steps of algorithm in Section 3.1.1. In Section
3.1.2, we describe the main sub-routine of the algorithm
and in Section 3.1.3, we complete all the details and
prove the necessary properties of the algorithm.

3.1.1 Outline. We divide the stream into t segments

S = 〈St | St−1 | . . . | S1〉 ,

where t = log2 n
1/6 and |Si| = 0.75 · 4i · n2/3 with St

expanded slightly such that the segments over the entire
stream. Before we process each Sj we will have defined
the following three quantities:

gj : a current “proposal”

sj : an estimate of RS(gj)

rj : an estimate of RS(p)

where we initially set gt = p and st = rt = n/2. The
proposal gt0 for some t0 = Θ(log log n) will be the value
q returned by the algorithm.

As we process Sj we construct gj−1, sj−1, and rj−1.
The new estimate of RS(p) is simply

rj−1 :=
|S|

|St|+ |St−1|+ . . .+ |Sj |
·RSt∪St−1∪...∪Sj (p) .

In the next section we will describe how we generate the
new proposal gj−1 and an estimate δj−1 for the difference
between the ranks of gj−1 and gj , i.e., RS(gj−1, gj). Our
estimate for RS(gj−1) is then defined as

sj−1 := rj−1 + δt−1 + δt−2 + . . .+ δj−1 ,

whereas the true rank is RS(p) + RS(gt−1, gt) + . . . +
RS(gj−1, gj).

The goal of the proposal generation mechanism is
to ensure that,

sj−1 =
n

4
+
rj−1

2
± 3 · τj−1

where τj−1 := O(2j−1 · log n · 3
√
n). In other words,

our estimate for the rank of the new proposal should
be approximate halfway between n/2 and our current
estimate of RS(p). Furthermore, the extent of this
approximation should halve with each segment. Then,
for j = t0 this would guarantee that

st0 =
n

4
+
rt0
2
±O(3

√
n · polylog n) .

If we can additionally guarantee that

rt0 = RS(p)±O(3
√
n · polylog n)

and
st0 = RS(gt0)±O(3

√
n · polylog n)

then we have the desired result with q = gt0 .

3.1.2 Finding New Proposals. Ideally we would
want the next proposal to have rank n/4 + RS(p)/2
but since we do not know RS(p) we aim for n/4 + rj/2.
Equivalently, we want to find an element whose rank
differs from sj by

∆j−1 := n/4 + rj/2− sj

To do this, we further partition Sj into sub-segments:

Sj = 〈G1,j | E1,j | G2,j | E2,j | . . . | Gr,j | Er,j | suffix〉

where r = O(polylog n) and

|Gi,j | = O(2−j · n1/3 · polylog n) and

|Ei,j | = O(3j · n2/3 · polylog n) .

This is well-defined since

r∑
i=1

(|Ei,j |+ |Gi,j |) = O(3j · n2/3 · polylog n)

is less than 0.75 · 4j · n2/3 = |Sj | for j > t0 if t0 is a
suitably large multiple of log log n.

We determine gj−1 by generating a sequence of
possible candidates until we find one whose rank appears
to be suitable. The ith candidate is generated from Gi,j
and we use the elements in Ei,j to estimate the rank.
Specifically, we repeat the following two-step process:

1. Generate Candidate: Let G′∆j−1
be the first n

2|∆j−1|
elements of Gi,j . Then define the candidate:

α =

{
min(x > gj : x ∈ G′∆j−1

) if ∆j−1 > 0

max(x < gj : x ∈ G′∆j−1
) if ∆j−1 < 0

if n/(2|∆j−1|) ≥ |Gi,j | we set α = gj .

2. Estimate Relative Rank: Estimate RS(α, gj) by

β = REi,j
(α, gj) ·

n

|Ei,j |
.

If |β −∆j−1| ≤ τj−1

2 , set gj−1 ← α and δj−1 ← β.

To avoid dealing with the dependencies that arise
between different phrases, we define a single event B
such that if we condition on A and B, we ensure this
process generates a suitable gj−1 and δj−1.

B: The “Always a Good Candidate” Event. For every
(G1,j , . . . , Gr,j), and every g ∈ S, |∆| ≥ n/(2|Gi,j |),
there exists α such that RS(α, g) = ∆ ±∆/8 and
for some i ∈ [r]

α =

{
min(x > g : x ∈ G′∆) if ∆ > 0

max(x < g : x ∈ G′∆) if ∆ < 0

where G′∆ is the first n/(2|∆|) elements of Gi,j .

To argue that B is a high probability event note that
there are at most O(log n) choices for j ∈ [t] and n2

choices for g and ∆. It therefore suffices to prove
for any specific g,∆, and j that the event holds with
high probability since the bound will then follow by
using O(n2 log n) applications of the union bound. The
analysis for both cases is similar so assume ∆ > 0.
Consider a specific Gi,j and let G′∆ be the first n/(2∆)
elements in Gi,j . Let A be the event that no element
y ∈ G′∆ satisfies 0 < RS(y, g) ≤ ∆. This happens
with probability at least 1/2 by Markov’s inequality.
Let B be the event that an element y ∈ G′∆ satisfies

∆ < RS(y, g) ≤ ∆+∆/8. This happens with probability
at least 1 − (1 − ∆/(8n))n/2∆ ≥ 1 − e−1/16. Since A
and B are positively correlated, the event A ∩ B has
probability at least 0.5 · (1− e−1/16) and therefore α is
suitable with constant probability. Hence, repeating over
the O(polylog n) choices of i ∈ [r] gives that B occurs
with probability at least 1− 1/n.

3.1.3 Analysis. The first claim establishes that the
error in our estimate of RS(p) halves with each stage.

Claim 1. For all stages j, |rj −RS(p)| ≤ τj.

For j 6= t this follows directly from the conditioning
on event A since there are O(4j · n2/3) ≤ τ2

j unseen
elements at the start of stage j; the case j = t
follows directly from the assumptions in the setup of the
algorithm.

We next establish that for each j ∈ {t, t − 1, t −
2, . . . , t0},

(3.1) sj = n/4 + rj/2± 3τj

or equivalently |∆j−1| ≤ 3τj . We prove this by induction
on decreasing j. For j = t, we have st = rt = n/2 =
n/4 + n/4 and hence the base case is satisfied. For the
induction hypothesis, assume Eq. (3.1) holds for j.

Claim 2. At the end of the jth phase, the algorithm has
identified an element gj−1 such that

sj−1 = sj + ∆j−1 ± τj−1 .

together with an estimate δj−1 of RS(gj−1, gj) such that

|RS(gj−1, gj)− δj−1| ≤ O(3
√
n) .

Proof. First note that |β −∆j−1| ≤ τj−1/2 implies that

REi,j (α, gj) ≤
|Ei,j |
n
·
(τj−1

2
+ ∆j−1

)
≤ 4τj−1 · |Ei,j |

n

where the last inequality follows from the induction
hypothesis. Therefore, given the conditioning on event
A, we deduce that the error in our estimate of RS(α, gj)
is less than τj−1/2 since:

O

(√
τj−1 · |Ei,j |

n
· n

|Ei,j |

)
= O

(√
τj−1 · n
|Ei,j |

)
≤ O(3

√
n)

where the last step follows by substituting the values for
|Ei,j | and τj−1. Therefore, if we ever accept an α we
know that

RS(α, gj) = ∆j−1 ± (τj−1/2 + τj−1/2) = ∆j−1 ± τj−1

and that |RS(gj−1, gj) − δj−1| ≤ τj−1/2. Conditioned
on event B, there exists i such that the candidate α
returned from Gi,j satisfies

RS(α, gj) = ∆j−1 ±∆j−1/8 = ∆j−1 ± 3τj/8

by the induction hypothesis. Conditioned on the event
A, for this α, β satisfies |β −∆j−1| ≤ τj−1/2 and hence
at least one α gets accepted. �

Therefore, at the end of stage j we have found a
gj−1 such that,

sj−1 = sj + ∆j−1 ± τj−1

= n/4 + rj/2± τj−1

= n/4 + rj−1/2± 3 · τj−1

where the last equality follows from applying the triangle
inequality to Claim 1. We can therefore conclude from
the induction that,

(3.2) st0 = n/4 + rt0/2±O(3
√
n · polylog n) .

Appealing to Claim 1 with t0 = O(log log n), we deduce

st0 = n/4 +RS(p)/2±O(3
√
n · polylog n) .

Combining this with the following claim completes the
proof of Lemma 3.2.

Claim 3. st0 = RS(gt0)±O(3
√
n · polylog n).

Proof. The claim follows from Claims 1 and 2 because

|st0 −RS(gt0)| ≤ |rt0 −RS(p)|+
t−1∑
j=t0

|RS(gj , gj+1)− δj |.

References

[1] A. Chakrabarti, G. Cormode, and A. McGregor. Robust
lower bounds for communication and stream computa-
tion. In STOC, pages 641–650, 2008.

[2] A. Chakrabarti, T. S. Jayram, and M. Patrascu. Tight
lower bounds for selection in randomly ordered streams.
In SODA, pages 720–729, 2008.

[3] S. Chien, K. Ligett, and A. McGregor. Space-efficient
estimation of robust statistics and distribution testing.
In ICS, pages 251–265, 2010.

[4] E. D. Demaine, A. López-Ortiz, and J. I. Munro.
Frequency estimation of internet packet streams with
limited space. In European Symposium on Algorithms,
pages 348–360, 2002.

[5] P. B. Gibbons, Y. Matias, and V. Poosala. Fast
incremental maintenance of approximate histograms.
ACM Trans. Database Syst., 27(3):261–298, 2002.

[6] M. Greenwald and S. Khanna. Efficient online compu-
tation of quantile summaries. In ACM International
Conference on Management of Data, pages 58–66, 2001.

[7] S. Guha and Z. Huang. Revisiting the direct sum
theorem and space lower bounds in random order
streams. In ICALP (1), pages 513–524, 2009.

[8] S. Guha and A. McGregor. Space-efficient sampling. In
AISTATS, pages 169–176, 2007.

[9] S. Guha and A. McGregor. Stream order and order
statistics: Quantile estimation in random-order streams.
SIAM Journal on Computing, 38(5):2044–2059, 2009.

[10] J. I. Munro and M. Paterson. Selection and sorting
with limited storage. Theor. Comput. Sci., 12:315–323,
1980.

[11] P. Rai, H. Daumé III, and S. Venkatasubramanian.
Streamed learning: One-pass SVMs. In IJCAI, pages
1211–1216, 2009.

[12] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri.
Medians and beyond: new aggregation techniques for
sensor networks. In SenSys, pages 239–249, 2004.

[13] D. P. Woodruff. The average-case complexity of
counting distinct elements. In ICDT, pages 284–295,
2009.

