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STREAM ORDER AND ORDER STATISTICS: QUANTILE
ESTIMATION IN RANDOM-ORDER STREAMS*

SUDIPTO GUHAT AND ANDREW MCGREGOR*

Abstract. When trying to process a data stream in small space, how important is the order in
which the data arrive? Are there problems that are unsolvable when the ordering is worst case, but
that can be solved (with high probability) when the order is chosen uniformly at random? If we con-
sider the stream as if ordered by an adversary, what happens if we restrict the power of the adversary?
We study these questions in the context of quantile estimation, one of the most well studied problems
in the data-stream model. Our results include an O(polylog n)-space, O(loglogn)-pass algorithm
for exact selection in a randomly ordered stream of n elements. This resolves an open question
of Munro and Paterson [Theoret. Comput. Sci., 23 (1980), pp. 315-323]. We then demonstrate an
exponential separation between the random-order and adversarial-order models: using O(polylog n)
space, exact selection requires Q(logn/loglogn) passes in the adversarial-order model. This lower
bound, in contrast to previous results, applies to fully general randomized algorithms and is estab-
lished via a new bound on the communication complexity of a natural pointer-chasing style problem.
We also prove the first fully general lower bounds in the random-order model: finding an element
with rank n/2 + n® in the single-pass random-order model with probability at least 9/10 requires

Q(y/n1=33/logn) space.
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1. Introduction. One of the principal theoretical motivations for studying the
data-stream model is to understand the role played by the order in which a problem
is revealed. While an algorithm in the RAM model can process the input data in an
arbitrary order, the key constraint of the data-stream model is that the algorithm
must process (in small space) the input data in the order in which it arrives. Param-
eterizing the number of passes that an algorithm may have over the data establishes
a spectrum between the RAM model and the one-pass data-stream model. How does
the computational power of the model vary along this spectrum? To what extent does
it matter how the stream is ordered?

These issues date back to one of the earliest papers on the data-stream model
in which Munro and Paterson considered the problems of sorting and selection in
limited space [21]. They showed that O(n'/?) space was sufficient to find the exact
median of a sequence of n numbers given p passes over the data. However, if the
data were randomly ordered, O(nl/ (2r)) space sufficed. Based on this result and other
observations, it seemed plausible that any p-pass algorithm in the random-order model
could be simulated by a 2p-pass algorithm in the adversarial-order model. This was
posed as an open problem by Kannan [17], and further support for this conjecture
came via work initiated by Feigenbaum et al. [6] that considered the relationship

*Received by the editors May 30, 2007; accepted for publication (in revised form) August 19, 2008;
published electronically January 30, 2009. Part of this work originally appeared in the proceedings
of both PODS 2006 [11] and ICALP 2007 [12].

http://www.siam.org/journals/sicomp/38-5/69328.html

TDepartment of Computer and Information Science, University of Pennsylvania, Philadelphia, PA
19104 (sudipto@cis.upenn.edu). This author’s research was supported in part by an Alfred P. Sloan
Research Fellowship and by NSF awards CCF-0430376 and CCF-0644119.

fDepartment of Computer Science, University of Massachusetts, Amherst, MA 01003 (mcgregor@
cs.umass.edu). Part of this work was done while the author was at the University of Pennsylvania.

2044



STREAM ORDER AND ORDER STATISTICS 2045

between various property testing models and the data-stream model. It was shown
by Guha, McGregor, and Venkatasubramanian [14] that several models of property
testing can be simulated in the single-pass random-order data-stream model, while it
appeared that a similar simulation in the adversarial-order model required two passes.

In this paper we resolve the conjecture and demonstrate the important role played
by the stream order in the context of exact selection and quantile estimation. Before
detailing our results, we first motivate the study of the random-order model. We
believe that this motivation, coupled with the array of further questions that naturally
arise, may establish a fruitful area of future research.

1.1. Motivation. In the literature to date, it is usually assumed that the stream
to be processed is ordered by an omnipotent adversary that knows the algorithm
and the set of elements in the stream. In contrast to the large body of work on
adversarially ordered streams, the random-order model has received little explicit
attention to date. Aside from the aforementioned work by Munro and Paterson [21]
and Guha, McGregor, and Venkatasubramanian [14], the only other results were given
by Demaine, Lépez-Ortiz, and Munro [5] in a paper about frequency estimation.
However, there are numerous motivations for considering this model.

First, the random-order model gives rise to a natural notion of average-case anal-
ysis which explains why certain data-stream problems may have prohibitive space
lower bounds while being typically solvable in practice. When evaluating a permu-
tation invariant function f on a stream, we observe that there are two orthogonal
components to an instance: the set of data items in the stream, O = {z1,22,..., 2},
and 7, the permutation of {1,2,...,n} that determines the ordering of the stream.
Since f is permutation invariant, O determines the value of f. One approach when
designing algorithms is to make an assumption about O such as that the set of items
is distributed according to a Gaussian distribution. While this approach has its mer-
its, because we are trying to compute something about O it is often difficult to find
a suitable assumption that would allow small-space computation while not directly
implying the value of the function. We take an alternative view and, rather than
making assumptions about O, we consider which problems can be solved, with high
probability, when the data items are ordered randomly. This approach is an average-
case analysis, where 7 is chosen uniformly from all possible permutations while O is
chosen worst case.

Second, if we consider w to be determined by an adversary, a natural complexity
question is the relationship between the power of the adversary and the resources
required to process a stream. If we impose certain computational constraints on the
adversary, a popular idea in cryptography, how does this affect the space and time
required to process the stream?

Lastly, there are situations in which it is reasonable to assume the stream is not
ordered adversarially. These include the following scenarios, where the stream order
is random either by design, by definition, or because of the semantics of data:

1. Random by definition: A natural setting in which a data stream would be
ordered randomly is if each element of the stream is a sample drawn indepen-
dently from some unknown distribution. Regardless of the source distribu-
tion, given the set of n samples, each of the n! permutations of the sequence
of samples was equally likely. Density estimation algorithms that capitalized
on this were presented by Guha and McGregor [13].

2. Random by semantics: In other situations the semantics of the data in the
stream may imply that the stream is randomly ordered. For example, consider
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a database of employee records in which the records are sorted by surname.
We wish to estimate some property of the employee salaries given a stream of
(surname, salary) tuples. If there is no correlation between the lexicographic
ordering of the surnames and the numerical ordering of salaries, then the
salary values are ordered uniformly at random. We note that several query
optimizers make such assumptions.

. Random by design: Lastly, there are some scenarios in which we dictate the

order of the stream. Naturally we can therefore ensure it is nonadversarial!
An example is the “backing sample” architecture proposed by Gibbons and
coworkers [7,8] for maintaining accurate estimates of aggregate properties of
a database. A large sample is stored on the disk and this sample is used to
periodically correct estimates of the relevant properties.

1.2. Our contributions. We start with the following algorithmic results which
are proved in section 3:

1. A single-pass algorithm using O(logn) space that, given any k, returns an

element of rank k= O(k'/? log? nlog 6—') with probability at least 1 — & if the
stream is randomly ordered. The algorithm does not require prior knowledge
of the length of the stream.

. An algorithm using O(polylogn) space that performs exact selection in only

O(loglogn) passes. This was conjectured by Munro and Paterson [21] but
has been unresolved for over 30 years.

In section 4, we introduce two notions of the order of the stream being “semi-
random.” The first is related to the computational power of an adversary ordering the
stream, and the second is related to the random process that determines the order.
We show how the performance of our algorithms degrades as the randomness of the
order decreases according to either notion. These notions of semirandomness will also
be critical for proving lower bounds in the random-order model. In sections 5 and 6,
we prove the following lower bounds:

1. Any algorithm that returns an n’-approximate median, i.e., an element with

rank n/2 + n°, in the single-pass random-order model with probability at
least 9/10 requires Q(y/n' =39 /logn) space. This is the first unqualified lower
bound in this model. Previously, all that was known was that a single-pass
algorithm that maintained a set of elements whose ranks (among the elements
read thus far) are consecutive and as close to the current median as possible,
required Q(y/n) space to find the exact median in the random-order model
[21]. Our result, which is fully general, uses a reduction from communication
complexity but deviates significantly from the usual form of such reductions
because of the novel challenges arising when proving a lower bound in the
random-order model. We believe the techniques used will be useful in proving
average-case lower bounds for a variety of data-stream problems.

. Any algorithm that returns an n’-approximate median in p passes of an ad-

versarially ordered stream requires Q(n1=9)/Pp=6) space. In particular, this
implies that in the adversarial-order model any O(polylog n)-space algorithm
for exact selection must use Q(logn/loglogn) passes. This is established
via a new bound on the communication complexity of a natural pointer-
chasing style problem. The best previous result showed that any determin-
istic, comparison-based algorithm for exact selection required Q(nl/ P) space
for constant p [21]. This resolves the conjecture of Kannan and establishes
that existing multipass algorithms are optimal up to terms polynomial in p.
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1.3. Related work on quantile estimation. Quantile estimation is perhaps
the most extensively studied problem in the data-stream model [3,4,9,10,15,19,20,23].
Manku, Rajagopalan, and Lindsay [19,20] showed that we can find an element of rank
k & en using O(e~! log? en) space, where n is the length of the stream and k is user
specified. This was improved to a deterministic, O(e~! logen)-space algorithm by
Greenwald and Khanna [10]. Gilbert et al. [9] gave an algorithm for the model in which
elements may also be “deleted” from the stream. Shrivastava et al. [23] presented
another deterministic algorithm for insert-only streams that uses O(e~!logU) space,
where U is the size of the domain from which the input is drawn. Gupta and Zane
[15] and Cormode et al. [3] presented algorithms for estimating biased quantiles, i.e.,
algorithms that return an element of rank k + ek for any k € {1,...,n}. We note that
all these algorithms are for the adversarial-order model and therefore are not designed
to take advantage of a weak, or absent, adversary.

1.4. Recent developments. Since the initial submission of this paper, there
has been follow-up work that presents lower bounds on the space required for multi-
pass algorithms for randomly ordered data streams [1,2]. In particular, it was shown
that any O(polylogn)-space algorithm that returns the median of a randomly or-
dered stream of length n with probability at least 9/10 requires Q(loglogn) passes.
Other problems were also considered in the random-order model, including estimating
frequency moments, graph connectivity, and measuring information divergences [1].

2. Notation and preliminaries. Let [n] = {1,...,n}. Let Sym,, be the set of
all n! permutations of [n]. We say a = b+ cif |a —b| < c and write a €g S to indicate
that a is chosen, uniformly at random, from the set S. The next definition clarifies
the rank of an element in a multiset.

DEFINITION 2.1 (rank and approximate selection). The rank of an item x in a
set S is defined as

RaNKg(z) = [{2' € S|a’ <z} +1 .

Assuming there are no duplicate elements in S, we say x is an Y -approzimate k-rank
element if RANKg(x) = k £ Y. If there are duplicate elements in S, we say x is an
T -approzimate k-rank element if there exists some way of breaking ties such that x is
an Y -approximate k-rank element.

At various points we will appeal to less common variants of Chernoff-Hoeffding
bounds that pertain to sampling without replacement.

THEOREM 2.2 (Hoeffding [16]). Consider a population C' consisting of N values
{c1,...,en}. Let the mean value of the population be p = N1 Zf\il c; and let cimax =
max;en ¢; —mingen ¢;. Let Xq,..., X, be a sequence of independent samples without
replacement from C and X =n~'>""  X;. Then,

Pr[X Z(u—a,p+ b)] <exp (—2na2/cmax2) + exp (—2nb2/cmax2)
The following corollary will also be useful. If ¢; =1 for i € [k] and 0 otherwise, then

Pr[X & (u—a,p+0b)] < exp(—2a°n/k) + exp (—2bn?/k)

3. Algorithms for random-order streams. In this section we show how to
perform approximate selection of the kth smallest element in a single pass over a



2048 SUDIPTO GUHA AND ANDREW MCGREGOR

Selection Algorithm:
1. Let a = —o0,b = 400, and
T = 201n%(n) In(6~)Vk
p = 4(logy/3(n/T) + (In(3/6) logy5(n/1))"/?)
I =n Y In(3np/s)
lp=2(n—1)Y"'/(k+ T)In(6np/d)

2. Partition stream as S = (S1, E1, ..., Sp, Ep) where |S;| =11 and |E;| = lo

3. Phase i € [p]:
(a) Sample: If S; N (a,b) = 0, return a, else let u be first element in S; N (a, b)
(b) Estimate: Compute r = RANKg, (u) and let 7 = (n —1)(r —1)/la +1
(c¢) Update: U7 <k—"/2,a—u, 7>k+Y/2, b u, else return u

Fic. 3.1. The selection algorithm.

randomly ordered stream of length n. As we are interested in massive data streams,
we consider the space complexity and accuracy guarantees of the algorithm as n
becomes large.

DEFINITION 3.1 (random order). Consider a set of elements 1, . .., x, € [poly(n)].
Then this set and m € Sym,, define a stream S = (Tr(1),.-.,Tr(n)). If T is chosen
uniformly from Sym,,, then we say the stream is in random order.

We will present the algorithm, assuming the exact value of the length of the
stream, n, is known in advance. In a subsequent section, we will show that this
assumption is not necessary. In what follows, we will assume that the stream contains
distinct values. This can easily be achieved with probability at least 1 —d by attaching
a secondary value y; €gr [n25*1] to each item z; in the stream. We say (z;,y;) <
(xj,y;) iff z; < x; or (z; = x; and y; < y;). Note that breaking the ties arbitrarily
results in a stream whose order is not random. We also may assume that k < n/2 by
symmetry.

3.0.1. Algorithm overview. Our algorithm proceeds in phases and each phase
is composed of the following three distinct subphases: the sample subphase, the esti-
mate subphase, and the update subphase. At all points, we maintain an open interval
(a,b) such that we believe that the value of the element with rank & is between a and
b. In each phase we aim to narrow the interval (a,b). The sample subphase finds a
value u € (a,b). The estimate subphase estimates the rank of u. The update subphase
replaces a or b by u depending on whether the rank of w is believed to be less than or
greater than k. See Figure 3.1 for the algorithm.

3.0.2. Analysis. For the analysis we define the following quantity:
I(a,b) = SN (a,b)={veS:a<v<b} .

LEMMA 3.2.  With probability 1 — 6/3, for all phases, if T'(a,b) > T, then there
exists an element u in each sample subphase, i.e.,

Pr[V i € [p] and a,b € S such that T'(a,b) > Y;S; N (a,b) #0] >1—-65/3 .
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Proof. Fix i € [p] and a,b € S such that I'(a,b) > Y. Then,

I'(a,b)\" —I 5
Pr[sm<a,b>7émzl—(1—T) Zl—eXp( n1>:1_3n2p.

The result follows by applying the union bound over all choices of i, a, and b. d
LEMMA 3.3. With probability 1 —6/3, for all phases, we determine the rank of u
with sufficient accuracy, i.e.,

7 = RANKg(u) £ T/2 if RANKg(u) <k+ 7T +1

PrivViel, wes oo piv) if RANKs(u) > k+ T +1

|21
where 7 = (n — 1)(RANK g, (u) — 1) /12 + 1.

Proof. Fixi € [p] and u € S. First, we consider u such that RANKg(u) < k+T+1.
Let X = RANKg, (u) — 1 and note that E[X] = la(RANKg(u) —1)/(n — 1). Appealing
to the second part of Theorem 2.2,

Pr[ # RANKs(u) + /2] = Pf[|X ~EXl= 2(711271)]

—2(17/(2(n — 1)))?
= QGXp( R2ANK5(u)—1 >
_ b
— 3np

where the last inequality follows because (I2Y/(2(n — 1)))? = (k + Y)In(6np/d) (by
definition of l3) and RANKg(u) — 1 < k+ T (by assumption). Now assume that
RANKg(u) > k+ T + 1 and note that Pr[r > k + Y /2] is minimized for RANKg(u) =
k+ 7T + 1. Hence,

. I,T

— — i > -

Pr[f >k+7/2]=1 Pr{E[X] X2(n—1)}

(lY)?
> 1- -
= eXp< 4(k+ 1) (n— 1)
—1-
6np
The result follows by applying the union bound over all choices of i and w. d

We now give the main theorem of this section.

THEOREM 3.4. For k € [n], there exists a single-pass, O(logn)-space algorithm in
the random-order model that returns u such that RANKg(u) = k=+201n*(n) In(6—1)Vk
with probability at least 1 — 4.

Proof. Consider I'(a,b) = |[{v € S : a < v < b}| in each phase of the algorithm.
By Lemmas 3.2 and 3.3, with probability at least 1 — 2§/3, in every phase, if we do
not terminate, then I'(a, b) decreases and RANKg(a) < k < RANKg(b). In particular,
in each phase, with probability 1/4, either we terminate or I'(a,b) decreases by at
least a factor of 3/4. Let Y be the number of phases in which I'(a,b) decreases by a
factor of 3/4. If the algorithm does not terminate, then Y < log, ;3(n/T) since I'(a, b)
is initially n and the algorithm will terminate if I'(a,b) < T. But,

Pr|Y < 10g4/3(n/'f)] = Pr{Y < E[Y]- \/ln(3/5) 10g4/3(n/T)J <d/3 .
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Hence with probability at least 1 — § the algorithm returns a value with rank £+ Y.

The space bound follows immediately from the fact that the algorithm only stores
a constant number of polynomially sized values and maintains a counter that stores
values in the range [n]. Finally, for sufficiently large n,

p(l +12) < 20102 (n) In(6~Hn YWk = n,

and hence the stream is sufficiently long for all the phases to complete. O

3.1. Generalizing to unknown stream lengths. The algorithm in the previ-
ous section assumed prior knowledge of n, the length of the stream. We now discuss
a simple way to remove this assumption. First we argue that, for our purposes, it is
sufficient to look at only half the stream.

LEMMA 3.5. Given a randomly ordered stream S of length n, let S’ be a contiguous
substream of length i > n/2. Then, with probability at least 1 — 0, if u is the kth
smallest element of S, then RANKg(u) = kn/f + 2(8kInd—1)05,

Proof. Let a = k/n. Let the elements in the stream be z; < --- < x,. Let
X =Hz1,. .-, Tanp NS |and Y = [{z1,. .., Tan—p—1}NS’|, where b = 2(8kIn§—1)0-5.
The probability that the element of rank k = afi in S’ has rank in S outside the range
[an — b,an + b] is less than

Pr[X <aitorY >an] < Pr[X < E[X]—b/20rY > E[Y]+b/2]

2exp (%) <5

IN

The lemma follows. d

To remove the assumption that we know n, we make multiple instantiations of the
algorithm. Each instantiation corresponds to a guess of n. Let 8 = 1.5. Instantiation
i guesses a length of [43"] — | 3’| +1 and is run on the stream starting with the |3|th
data item and ending with the {4511 th data item. We remember the result of the
algorithm until the 2([4@] — {ﬂlj + 1)th element arrives. We say the instantiation
has been canceled at this point.

LEMMA 3.6. At any time, there is only a constant number of instantiations.
Furthermore, when the stream terminates, at least one instantiation has run on a
substream of at least n/2.

Proof. Consider the tth element of the data stream. By this point there have
been O(logg t) instantiations made. However, Q(logg t/6) instantiations have been
canceled. Hence O(loggt —loggt/6) = O(1) instantiations are running. We now
show that there always exists an instantiation that has been running on at least half
the stream. The ith instantiation gives a useful result if the length of the stream
neU; = {468 +1,....2(]46"| — [8| + 1)}. But U;»o Ui = N\ {0,1,2,3,4} since
foralli>1, [46" +1| <2([4p7'] — |7t +1). O

We can therefore generalize Theorem 3.4 as follows.

THEOREM 3.7. For k € [n], there exists a single-pass, O(logn)-space algorithm in
the random-order model that returns u such that RANKg(u) = k4111n*(n) In(6—)Vk
with probability at least 1 — §. The algorithm need not know n in advance.

3.2. Multipass exact selection. In this section we consider the problem of
exact selection of an element of rank k£ = Q(n). We will later show that this requires
Q(y/n) space if an algorithm is permitted only one pass over a stream in random
order. However, if O(loglogn) passes are permitted, we now show that O(polylogn)
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space is sufficient. We will again assume that the elements in the stream are distinct
but we note that it is not difficult to avoid this assumption.

We use a slight variant of the single-pass algorithm in section 3 as a building
block. Rather than returning a single candidate, we output the pair a and b. Using
the analysis in section 3, it can be shown that, with probability 1 — J, RANKg(a) <
k < RANKg(b) and that

|RANKg(a) — RANKs(D)| < O(v/nlog®nlogd ™) .

In one additional pass, RANKg(a) and RANKg(b) can be computed exactly. Hence,
after two passes, by ignoring all elements outside the range (a,b), we have reduced
the problem to that of finding an element of rank k& — RANKg(a) in a stream of
length O(y/nlog®n) if we assume that 6~! = poly(n). If we repeat this process
O(loglogn) times and then select the desired element by explicitly storing the remain-
ing O(polylogn)-length stream, it would appear that we can perform exact selection
in O(polylogn) space and O(loglogn) passes. However, there is one crucial detail
that needs to be addressed.

In the first pass, by assumption we are processing a data stream whose order is
chosen uniformly from Sym,,. However, because the stream order is not rerandomized
between each pass, it is possible that the previous analysis does not apply because
of dependencies that may arise between different passes. Fortunately, the following
straightforward, but necessary, observation demonstrates that this is not the case.

Fact 3.8. Let a and b, respectively, be the lower and upper bound returned after

a pass of the algorithm on the stream (x1,...,xy,). Let @ € Sym,, satisfy i = (i)
for all i € [n] such that x; & (a,b). Then the algorithm also would return the same
bounds after processing the stream (Tr(1y, ... ,xﬂ(n)>,

Therefore, conditioned on the algorithm returning a and b, the substream of
elements in the range (a,b) are still ordered uniformly. This leads to the following
theorem.

THEOREM 3.9. For k € [n], there exists an O(polylogn)-space, O(loglogn)-pass
algorithm in the random-order model that returns the kth smallest value of a stream
with probability 1 — 1/ poly(n).

3.3. Applications to equidepth histograms. In this section we briefly over-
view an application to constructing B-bucket equidepth histograms. Here, the his-
togram is defined by B buckets whose boundaries are defined by the items of rank
in/(B+1) for i € [B]. Gibbons, Matias, and Poosala [8] consider the problem of con-
structing an approximate B-bucket equidepth histogram of data stored in a backing
sample. The measure of “goodness of fit” they consider is

‘LL = n_l B_1 Z 612 B
€[ B]

where ¢; is the error in the rank of the boundary of the ith bucket. They show that
1 can be made smaller than any € > 0 where the space used depends on e. However,
in their model it is possible to ensure that the data are stored in random order. As a
consequence of the algorithm in section 3, we get the following theorem.

COROLLARY 3.10. In a single pass over a backing sample of size n stored in ran-
dom order, we can compute the B quantiles of the samples using O(Blogn) memory
with error O~(n*1/2), Since the error goes to zero as the sample size increases, we
have the first consistent estimator for this problem.
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4. Semirandom order. In this section we consider two natural notions of
“semirandom” ordering and explain how our algorithm can be adjusted to process
streams whose order is semirandom under either definition. The first notion is stochas-
tic in nature: we consider the distribution over orders which are “close” to the uniform
order in terms of the variational distance. This will play a critical role when proving
lower bounds.

DEFINITION 4.1 (e-generated-random order). Given set {x1,...,x,}, ™ € Sym,,
defines a stream (Tr(1y,...,Tx(n)). We say the order is e-generated random (e-GR)
if ™ is chosen according to a distribution v such that ||u — v|1 < €, where u is the
uniform distribution on Sym,,.

The importance of this definition is captured in the following simple lemma.

LEMMA 4.2. Let A be a randomized algorithm that succeeds (i.e., returns an
estimate of some property with some accuracy guarantee) with probability at least
1 — 94 in the random-order model. Then A succeeds with probability at least 1 —§ — €
when the stream order is e-GR.

Proof. Let Pry coin [] denote the probability of an event over the internal coin
tosses of A and the ordering of the stream when the stream order is chosen according
to the uniform distribution p. Similarly, define Pr,, coin [-], where v is any distribution
satisfying || — |1 < e

Pr [A succeeds] = Z Pr[n] Pr [A succeeds|n] < Pr [A succeeds| + ¢ .
m

f,coin coin v,coin
mTESym,,

The lemma follows since Pr, coin [A succeeds] > 1 — ¢ by assumption. a

The next theorem follows immediately from Theorem 3.4 and Lemma 4.2.

THEOREM 4.3. For k € [n], there exists a single-pass, O(logn)-space algorithm in
the e-GR-order model that returns u such that RANKg(u) = k = 111n*(n) In(6—")VE
with probability at least 1 — § — €.

The second definition is computational in nature. We consider an adversary
upstream of our algorithm that can reorder the elements subject to having limited
memory to do this reordering.

DEFINITION 4.4 (t-bounded-adversary-random order). A t-bounded adversary is
an adversary that can only delay at most t elements at a time; i.e., when presented
with a stream (x1,...,x,), it can ensure that the received stream is (x,,(l), . 7ac,,(n)>
if m € Sym,, satisfies

(4.1) Vien,{li<ji<n:mn()<n(@} <t .

The order of a stream is t-bounded-adversary-random (t-BAR) if it is generated by a
t-bounded adversary acting on a stream whose order is random.

For example, a 2-bounded adversary acting on the stream (1,2,3,4,5,6,7,8,9)
can transform it into (3,2,1,6,5,4,9,8,7) or (3,4,5,6,7,8,9, 1, 2) but can not generate
(9,8,7,6,5,4,3,2,1). In particular, in the adversarial-order model the stream order
is (n — 1)-BAR, while in the random-order model the order is 0-BAR.

LEMMA 4.5. Consider streams (x1,...,Ty) and (Tr(1), ..., Tx(n)), where T sat-
isfies (4.1). Then for any j,w € [n], {zj,. ., Tjrw_1} D {TxGys - Tr(ipw_1)} =
w — 2t.

We assume that t < v/k. Given the above lemma, it is straightforward to trans-
form the algorithm of the previous section into one that is correct (with prescribed
probability) when processing a stream in t-BAR order. In particular, it is sufficient
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to set I1 = O(nYT 1 In(3n%p/d§) +t5~1) and to choose a random u among S; N (a,b) in
each sample phase. Note that [; < I5 for t < Vk. In each estimate phase a t-bounded
adversary can introduce an extra 2nt/ly < tY/ Vk < Y error. Hence, the total error
is at most 27.

THEOREM 4.6. For k € [n], there exists a single-pass, O(logn)-space algorithm in
the t-BAR-order model that returns u such that RANKg(u) = k +201n*(n) In(6—")VE
with probability at least 1 — 9.

5. Random-order lower bound. In this section we will prove a lower bound
on the space required to n® approximate the median in the single-pass, random-
order model. Our lower bound will be based on a reduction from the communication
complexity of indexing [18]. However, the reduction is significantly more involved
than typical reductions because different segments of a stream cannot be determined
independently by different players if the stream is in random order.

Consider two players Alice and Bob, where Alice has a binary string o of length
s and Bob has an index r € [s], where s will be determined later. It is known that for
Bob to determine INDEX(o, 1) = o, after a single message from Alice with probability
at least 4/5, this message must consist of Q(s) bits.

THEOREM 5.1 (see, e.g., [18]). Ri/_g”ay(INDEX) > c*s for some constant c* > 0.

We start by assuming that there exists an algorithm A that computes an n’-
approximate median in the single-pass, random-order model with probability at least
9/10. We then use this to construct a one-way communication protocol that will
allow Alice and Bob to solve their INDEX problem. They do this by simulating A
on a stream of length n, where Alice determines a long prefix of the stream and Bob
determines the remaining elements. For convenience we assume n is even and consider
the median to be the element of rank n/2. The stream they construct consists of the
union of the following sets of elements:

X: A size x set consisting of n/2 + n® — (2n® + 1)r copies of 0.

Y: A size y set consisting of n/2 —n% — (2n 4+ 1)(s — r) copies of 25 + 2.

Z: A size z = (2n? + 1)s set consisting of 2n° + 1 copies of {2i + o, : i € [s]}.
Note that any n’-approximate median of U = SU X UY is 2r + o,. The difficulty
we face is that we may only assume A returns an n’-approximate median of U if U is
ordered randomly. Ensuring this seems to require a significant amount of communi-
cation between Alice and Bob. How else can Alice determine the balance of elements
from X and Y in the prefix of the stream or can Bob know the elements of Z that
should appear in the suffix of the stream?

In what follows we will argue that by carefully choosing the length of the prefix,
suffix, and s, it is possible for Alice and Bob to ensure that the ordering of the
stream is 1/20-GR, while only communicating a sufficiently small number of bits with
probability at least 19/20. Then, by appealing to Lemma 4.2, we may assume that
the protocol is correct with probability at least 4/5.

5.1. Generating a stream in semirandom order. Let A be the set of ele-
ments in the prefix of the stream which is determined by Alice. Let B = U \ A be
the set of elements in the remaining part of the stream which is determined by Bob.
Roughly speaking, A will consist of n — (:)(nl_‘;) of the stream elements, including
most of the elements from Z. The number of elements from X and Y will be de-
termined on the assumption that © = y. B will consist of the remaining (:)(nl“s)
elements from X UY U Z. The intuition is that if B is too large, then B will contain
too many elements from Z whereas, if B is too small, the assumption that x = y in
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the determination of A will be problematic when it comes to arguing that the order
of the stream is nearly random.

Let p = ¢*/(8n°logn) and consider the following protocol:

1. Alice determines A N Z and B N Z by placing an element from Z into B
with probability p, and placing it in A otherwise. Alice picks ty according to
To ~ Bin(n/2—z,1—p) and t; according to Ty ~ Bin(n/2—z,1—p). She places
to copies of 0 and t; copies of 2s + 2 into A. She sends a message encoding
BNZ, ty, t1, and the memory state of A run on a random permutation of A.

2. Bob instantiates A with memory state sent by Alice and continues running
it on a random permutation of B = (BN Z) U {x — to copies of 0} U {y —
t; copies of 2s + 2}. Finally, Bob returns 1 if the output of the algorithm is
odd, and 0 otherwise.

Let v be the distribution over stream orders generated by the above protocol.
The next lemma establishes that v is almost uniform. This will be required to prove
the correctness of the algorithm.

LEMMA 5.2. If z = 107%/pn, then ||p — v|y < 1/20 where p is the uniform
distribution on Sym,, .

Proof. Define the random variables T} ~ Bin(z, 1 — p) and 7] ~ Bin(y, 1 — p) and
let ap =2 —n/2+4z and a; =y —n/2+ z. Note that ag,a; > 0 and ag+ a1 = z. We
upper bound || — v||; as follows:

= vily = [Pr[Ty = to, Ty = t1] — Pr[Tg = to, T{ = ta]|
to,t1
PI’[TQ = to, T1 = tl]

-1
PI‘[Té = to, Tll = tl]

< max
to€(l—p)z+b*
t1€(1—p)y+xdb™

+ Prmax{|To — E [To] |, |71 — E[T1]|} > b" — pz]
+ Pr{max{|T; — E[Tg] |, [T — E[T] [} = 7],

where b* = 104/pn/2 + pz. By the Chernoff bound,
Primax{|Ty — E [To] |, |Th — E[T1]|} = b* — pz]
+ Pr[max{|Ty — E[Tg] |, |T{ — E[T]] [} > b*] < 8exp (=2(b" — pz)*/(3pn)) ,

and hence the (sum of the) last two terms are upper bounded by 1/40 for sufficiently
large n.
Let tg = (1—p)z+bg and t; = (1 —p)x+ by and assume that |b|, |b1| < b*. Then,

Pr[Ty = to, Th = t1] (n/foiz) (n/tz;z)

Pr[Tj = to, T = t1] (o) (£1)p7
_ pr—i-i—l—bo Hyp—i-i—l—bl
<l (x—i+1)p _ (y—i+1p |’
i€lao] €la1]

and therefore
—zb* —zb* Pr[Ty = to,T1 = t1] <2z2 +zb* 2224 zb*)
exp + ) < <ex
<p(x —z) ply—2) Pr[T} = to, T = t1] p(z—z) p(y — 2)

Substituting z establishes that | Pr[Ty = to, 11 = t1] / Pr[T{ = to, T = t1] — 1] < 1/40
for sufficiently large n. The lemma follows. |
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The next lemma will be necessary to bound the communication of the protocol.

LEMMA 5.3. Pr[|Z N B| > ¢*s/(2logn)] < 1/20 for s = w(logn).

Proof. Note that E[|Z N B|] = pz < 3c¢*s/(8logn). Then, by an application of
the Chernoff bound,

Pr[|ZNB| > ¢*s/(2logn)] = Pr[|ZNB| > (4/3)E[|ZNB|]] < exp(—c*s/(72logn)) . O

THEOREM 5.4. Computing an n®-approzimate median in the random-order model
with probability at least 9/10 requires Q(1/n1=3%/logn) space.

Proof. Let Alice and Bob follow the above protocol to solve their instance of
INDEX using A. Assume A uses M bits of space. By Lemmas 4.2 and 5.2, the
protocol is correct with probability at least 9/10 — 1/20 = 17/20. Furthermore, by
Lemma 5.3, with probability at least 19/20 the protocol requires at most 3c¢*s/4 + M
bits of communication (for sufficiently large n): ¢*s/2 bits to transmit Z N B, 2logn
bits to transmit to and ¢1, and M bits for the memory state of A. Therefore, there
exists a protocol transmitting 3c¢*s/4 + M bits that is correct with probability at least

17/20 — 1/20 = 4/5. Hence, by Theorem 5.1, M = Q(s) = Q(y/n'=3%/logn). O

6. Adversarial-order lower bound. In this section we prove that any p-pass
algorithm that returns an n’-approximate median in the adversarial-order model re-
quires Q(n1=9/Pp=6) space. This, coupled with the upper bound of Munro and
Paterson [21], will resolve the space complexity of multipass algorithms for median
finding up to polylogarithmic factors. The proof will use a reduction from the com-
munication complexity of a generalized form of pointer chasing that we now describe.

DEFINITION 6.1 (generalized pointer chasing). For i € [p], let f; : [m] — [m] be
an arbitrary function. Then g, is defined by

gp(f1 S fp) = Fp(fpa (- (F1(1)) 1)) -

Let the ith player, P;, have function f;, and consider a protocol in which the players
must speak in the reverse order, i.e., Py, Py_1,...,P1,P,,.... We say the protocol
has r rounds if P, communicates r times. Let R5(gp) be the total number of bits that
must be communicated in an r round (randomized) protocol for Py to learn g, with
probability at least 1 — 6.

Note that Rf(g,) = O(plogm). We will be looking at (p — 1)-round protocols.
The proof of the next result will be deferred to the next section.

THEOREM 6.2. Rfﬁ%(gp) = Q(m/p* — p*logm).

The next theorem is shown by reducing generalized pointer chasing to approxi-
mate selection.

THEOREM 6.3. Finding an n®-approzimate median in p passes with probability
at least 9/10 in the adversarial-order model requires Q(n=9/Pp=6) space.

Proof. We will show how a p-pass algorithm A that computes a t-approximate
median of a length n stream gives rise to a p-round protocol for computing g,11 when
m = ((n/(2t +1))"/P +1)/2. If A uses M bits of space, then the protocol uses at
most (p? + p — 1)M bits. Hence by Theorem 6.2, this implies that M = Q(m/p%) =
Q(n/t)/7p5).

The reduction proceeds as follows. Consider a (p + 1)-level, m-ary tree T', where
we say v has level j if the distance between v and the closest leaf is j — 1. We start
by defining some notation:

1. For j € [p+1],ip,...,1; € [m], let v[ip,...,4;] denote the i;th child of
V[ip, ..., %j41], where v[] is the root of the tree.
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Sy | Sy | Sy
(Ov 07 0) X 5(3 — fl(l))

(17070)X (3 - f2(1))

(1747 0) X (f2(1) — 1)
(27 07 0) X (3 - f2(2))

(2747 0) X (f2(2) — 1)
(37 Ov O) X (3 - f2(3))

(4747 0) X (f2(3) — 1)

(17 1, f3(1))7 (17 2, f3(2))7 (17 3, f3(3))

(27 1, f3(1))7 (27 2, f3(2))7 (27 3, f3(3))

(37 17 f3(1))7 (37 27 f3(2))7 (37 37 f3(3))

(45 07 0) X5(f1(1) - 1)

Fic. 6.1. Reduction from pointer chasing to exact median finding. A triple of the form
(22,1, x0) corresponds to the numerical value xo-5%+x1-5'4+x¢-5°. Note that median(S;US2US3) =

f1(1) 5% + fa(f1(1)) - 5" + fa(f2(f1(1))) - 5°.

2. Let the (p+1) tuple (hy,...,ho) denote >-1_ h;i(m + 2)".

3. For each internal node of level j, e.g., v = v[iy, ..., %;], we associated a multi-
set of elements S(v) of size a;. Let a; = 2t + 1 and a; = (m — 1)b;_1,
where

bjfl =aj—1 + ma;_z + mzaj73 4+ .. 4 mj*2a1 )
Note that | Uyev () S(v)] = bps1 = (2m — 1)P(2t +1). S(v) contains

bj_l(m — fp+2_j(ij)) copies of (ip, P ,ij, 0, 0, v 0)
and b;_1(fpr2—;(i;) — 1) copies of (ip,...,7;,m+1,0,...,0),

where we define i1 = 1.
4. For a leaf node, e.g., v = v[ip, ..., 1], we generate 2t + 1 copies of

(py -y, fpyr(in)) -

It can be shown by induction that any t-approximate median of U,cy (7)S(v) equals
(91,92,---,9p+1). See Figure 6.1 for the case when p =2,m = 3, and ¢t = 0.

Let S; be the union of S(v) over all v in the jth layer. Note that S; can be
determined by the (p+ 2 — j)th player, P,1o_;, who knows the function f,12—;. The
players emulate A on the stream (S1,Sa,...,Sp+1) in the standard way: P,41 runs
A on S;, transmits the memory state to F,, who instantiates the algorithm with
the transmitted memory state and continues running A on Ss, etc., until p passes
of the algorithm have been emulated. Note that this is a p-round protocol in which
M(p(p+ 1) — 1) bits are communicated. The result follows. a

6.1. Proof of Theorem 6.2. The proof is a generalization of a proof by Nisan
and Widgerson [22]. We present the entire argument for completeness. In the proof
we lower bound the (p — 1)-round distributional complexity, Df/_;o(gp); ie., we will
consider a deterministic protocol and an input chosen from some distribution. The
theorem will then follow by Yao’s lemma [24] since

1 1
D;f/zo(gp) < 2R11)/10(9p) .
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Let T be the protocol tree of a deterministic p-round protocol. We consider
the input distribution, where each f; is chosen uniformly from F', the set of all m™
functions from [m] to [m]. Note that this distribution over inputs gives rise to a
distribution over paths from the root of T' to the leaves. We will assume that in
round j, P;’s message includes g;—1 if ¢ > j and g; if ¢ < j; e.g., for p = 4 the
appended information is shown in the following table, where gg = 1.
Round 1 Round 2 Round 3

Player | 4 | 3 | 2 | 1 | 4 | 3] 2] 1| 4] 3721
Appended | go | g0 | 90 | 91 | 91 | 91 | 92 | 92 | 92 | 93 | 93 | -

This is possible with only O(p?logm) extra communication. Consequently we
may assume that at each node, at least 1gm bits are transmitted. We will assume
that protocol T requires at most em/2 bits of communication, where e = 10~4(p+1)~4,
and derive a contradiction.

Consider a node z in the protocol tree of T' corresponding to the jth round of the
protocol when it is P;’s turn to speak. Let g;_1 be the appended information in the
last transmission. Note that gg, g1,...,g:—1 are specified by the messages so far.

Denote the set of functions f; x --- x f, that are consistent with the messages
already sent be Ff x --- x F7. Note that the probability of arriving at node z is
|F| 7P [T1<j<p [F7 |- Also note that, conditioned on arriving at node z, fi x -+ x fj is
uniformly distributed over Ff x --- x F7.

DEFINITION 6.4. Let c, be the total communication until z is reached. We say a
node z in the protocol tree is nice if, for 6 = max{4./€, 400¢}, it satisfies the following
two conditions:

[Ff| =272 |F| forj € [p] and H(f(gi-1)) Z1lgm -0,

where H(-) is the binary entropy.
CLAIM 1. Given the protocol reaches node z and z is nice,

Pr[next node visited is nice] > 1 —4ye —1/m .

Proof. Let w be a child of z and let ¢,, = ¢, + ay,. For [ # i note that |F}*| = |F}?|
since P; did not communicate at node z. Hence the probability that we reach node w
given that we have reached z is [[, ;< [F}°|/|F}| = |F*|/|F7|. Furthermore, since
2 is nice, o

|F*
K3

w —2¢, F; 2au Coa, 1 I |
Pr[|FP| <272 |F|]§Pr{|Ff|<22 ]Szw:22 35;2 <—,

where the second-to-last inequality follows from a,, > lgm and the last inequality
follows by Kraft’s inequality. Hence, with probability at least 1 — 1/m, the next node
in the protocol tree satisfies the first condition of being nice.

Proving the second condition is satisfied with high probability is more compli-
cated. Consider two different cases, i # t and i = t, corresponding to whether or not
player ¢ appended g;. In the first case, since P; did not communicate, F? = F{¥ and
hence H(f#(gi—1)) = H(f#(g1—1)) > lgm — 6.

We now consider the second case. In this case we need to show that H(f{(g:)) >
lgm — 0. Note that we can express f;}, as the following vector of random variables,
(f5,Q1), ..., f41(m)), where each f,(v) is a random variables in universe [m]. Note
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there is no reason to believe that components of this vector are independent. By the
subadditivity of entropy,

ST OH(f5, () = H(f,) > 1g(2720 | F)) = 1g(|F) - 2¢, > mlgm — em,
vE[m]

using the fact that f{4, is uniformly distribution over F,, |F%,| > 272« |F|, and
cw < em/2. Hence if v were chosen uniformly at random from [m], then

Pr[H(f,(v) < lgm — 6] < ¢/o

by Markov’s inequality. However, we are not interested in a v chosen uniformly at
random but rather v = g = f#(g:—1). But, since the entropy of f#(g:—1) is large, it
is “almost” distributed uniformly. Specifically, since H(f?(g:—1)) > lgm — 9,

Pr[H(f41(9:)) <lgm — 4] < g <1+ ,/%) <4y/e .

Hence, with probability at least 1 — 4,/€ the next node satisfies the second condition
of being nice. The claim follows by the union bound. |

Note that the height of the protocol tree is p(p — 1) and that the root of the
protocol tree is nice. Hence the probability of ending at a leaf that is not nice is at
most p(p —1)(1/m +4+/€) < 1/25. If the final leaf node is nice, then H(g;) is at least
lgm —§, and hence the probability that g; is guessed correctly is at most (64+1)/lgm
using Fano’s inequality. This is less than 1/100 for sufficiently large m, and hence the
total probability of P; guessing g, correctly is at most 1 — 1/20.

7. Conclusions. In this paper we motivated the study of random-order data
streams and presented the first extensive study of the theoretical issues that arise
in this model. We studied these issues in the context of quantile estimation, one of
the most well studied problems in the data-stream model. Our results demonstrated
some of the trade-offs that arise between space, passes, and accuracy in both the
random-order and adversarial-order models. We resolved a long-standing open ques-
tion of Munro and Paterson [21] by devising an O(polylog n)-space, O(loglogn)-pass
algorithm for exact selection in a randomly ordered stream of n elements. We also
resolved an open question of Kannan [17] by demonstrating an exponential separation
between the random-order and adversarial-order models: using O(polylogn) space,
exact selection requires Q(logn/loglogn) passes in the adversarial-order model.
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