
The Oil Searching Problem

Andrew McGregor1, Krzysztof Onak2?, and Rina Panigrahy3

1 University of Massachusetts, Amherst. Email: mcgregor@cs.umass.edu
2 Massachusetts Institute of Technology. Email: konak@mit.edu

3 Microsoft Research Silicon Valley. Email: rina@microsoft.com

Abstract. Given n potential oil locations, where each has oil at a certain depth,
we seek good trade-offs between the number of oil sources found and the total
amount of drilling performed. The cost of exploring a location is proportional to
the depth to which it is drilled. The algorithm has no clue about the depths of
the oil sources at the different locations or even if there are any. Abstraction of
the oil searching problem applies naturally to several life contexts. Consider a
researcher who wants to decide which research problems to invest time into. A
natural dilemma whether to invest all the time into a few problems, or share time
across many problems. When you have spent a lot of time on one problem with
no success, should you continue or move to another problem?
One could study this problem using a competitive analysis that compares the cost
of an algorithm to that of an adversary that knows the depths of the oil sources,
but the competitive ratio of the best algorithm for this problem is Ω(n). Instead
we measure the performance of a strategy by comparing it to a weaker adversary
that knows the set of depths of the oil sources but does not know which location
has what depth. Surprisingly, we find that to find k oil sources there is a strategy
whose cost is close to that of any adversary that has this limited knowledge of
only the set of depths. In particular, we show that if any adversary can find k oil
sources with drilling cost B while knowing the set of depths, our strategy finds
k− Õ(k5/6) sources with drilling costB(1+o(1)). This proves that our strategy
is very close to the best possible strategy in the total absence of information.

1 Introduction

Consider n potential oil locations where each has oil at a certain depth. The cost of
exploring a location is proportional to the depth to which it is drilled. If a location
has been drilled to depth d1 at some point in the past, then drilling it do depth d2 >
d1 costs d2 − d1. The algorithm has no clue about the depths of the oil sources at
the different locations or even if there are any. The natural question then is what is a
good strategy to go about drilling for oil. Our abstraction of the oil searching problem
applies naturally to several life contexts. Consider a researcher who wants to decide
which research problems to invest time into. A natural dilemma is that of whether one
should invest all the time into few problems, or share time across many problems. When

? The research was initiated during a summer internship at Microsoft Research Silicon Valley.
The author is supported in part by a Symantec Research Fellowship, NSF grant 0732334, and
NSF grant 0728645.

you have spent a lot of time at one problem with no success, should you continue or
move to another problem? Is it better to continue since you already invested so much
time or should you cut your losses and move to another problem? These dilemmas cut
across several common decision-making processes including management strategies,
investment decisions, and career changes.

While it is typical to study such an ‘online’ problem under competitive analysis that
compares the cost incurred by an algorithm to that of an adversary that knows the depths
of the oil sources, we note that in this problem the competitive ratio of the best algorithm
is Ω(n); e.g., consider one location with oil at depth 1 and the other n − 1 locations
having no oil. While giving some insight, competitive analysis doesn’t fully capture
what constitutes a good strategy in practice. When should we give up on a research
problem (drilling location) and move on to other? The approach we take here to measure
the performance of a strategy is to compare its performance to a weaker adversary that
knows the set of depths of the oil sources but does not know which location has what
depth. Surprisingly, we find that to find k oil sources there is a strategy whose cost is
close to that of any adversary that has this limited knowledge of only the set of depths.
In particular, we show that if any adversary can find k oil sources in drilling cost B
while knowing the set of depths, our strategy finds k − Õ(k5/6) sources4 of oil in
budget B(1 + o(1)). This essentially proves our strategy is ‘very close’ in performance
to the best possible strategy in the total absence of information. When k is constant,
our strategy incurs at most O(log n) times the cost of any strategy that knows the set of
depths. We show that this is the best possible ratio.

Search Games: Our problem is closely related to the class of problems known as
search games. In general, there are two players: the Hider and the Searcher. The Hider
is hiding in a space (which can be a weighted graph, or some continuous metric space),
and the goal of the Searcher is to locate the Hider by traversing the space and wants to
minimize the traversed distance. An extensive description of search games can be found
in the book of Gal [1] or the book of Alpern and Gal [2]. A well-known example of a
search game is looking for lost key on a road when we do not know in which direction
the key is and at what distance. It is easy to show that a near-optimal strategy is to
alternate search direction doubling the search distance iteratively. Search games find
applications in robotics when a robot searches for an object in unknown terrain.

A special case of the oil searching problem, where we are only looking for one oil
source has been studied as the cow-path problem, where a cow searches for a grass
field starting at a junction of several roads. A sequence of papers resulted in an optimal
solution to this problem [3–5] in terms of the competitive-ratio of distance travelled to
the distance from the field. As we stated before, our analysis style is very different as we
do not compare ourselves to an all knowing adversary. Lastly we note that, in the same
proceedings, Kirkpatrick [6] also studies variations of the cow-path and oil searching
problems. His focus is on finding a single oil source.

Multi-armed bandits: Our problem is also related to work on multi-armed bandits
(see, e.g., [7–9]) and there has been work in the multi-armed bandit setting that attempts
to model some of the issues that arise when drilling for oil (see, e.g., [10–12]). In this
problem we consider several arms of a bandit each of which is has a known “state.” At

4 the Õ hides factors of the form logn

each time step, one of the arms can be played resulting in a random payoff according to
a distribution determined by the current state of the arm. Given a current state and the
payoff, the arm may deterministically move into a new state. Various objective functions
are considered including maximizing the discounted reward over an infinite horizon or
minimizing the regret over a finite number of steps. Our objective functions do not map
to either of these objective function although, in spirit, the goal is similar.

The Problems: We are given n locations and each contains oil at some depth from
{1, 2, 3, . . .}. The set of depths of the oil is {d1, . . . , dn}. The algorithm has no infor-
mation about the set of depths. The adversary on the other hand knows the set of depths
but does not know which location has which depth – the n locations are assigned a
random permutation of these depths which is unknown to the adversary. Let n≤d be the
number of oil wells whose depth is at most d. The cost of obliviousness is the ratio be-
tween the performance (appropriately defined) of an optimal algorithm that knows the
set of depths to an optimal algorithm that has no information of the depths whatsoever.

Our Contributions: We present an algorithm that expects to find k− Õ(k5/6) sources
of oil in budget B(1 + o(1)), where the adversary, who knows the set of depths, would
expect to find at most k sources in expected budget B. We develop the algorithm in
stages, first studying the problem for one oil source (in Section 2) getting a cost of
obliviousness of O(log n); we also show that this is tight. Next in Section 3 we study a
variant of the problem where the set of depths are chosen from a distribution; again the
adversary knows the distribution and the algorithm doesn’t. Section 3.1 investigates the
strategy the adversary who knows the distribution should use; Section 3.2 shows how
the algorithm can emulate this strategy by first trying to learn the distribution during the
initial few drills. In Section 4, we generalize our algorithm to the case when the set of
depths is simply a set and is not necessarily chosen from a distribution (note the subtle
difference between the two cases as picking from a distribution corresponds to selecting
the depth of each location independently with replacement whereas when there is a set
of n depths, these depths are matched to the locations in some permutation.) Again the
algorithm essentially treats the set as a distribution and makes use of the algorithm for
the distribution case. In the Appendix we extend the problem to trees.

2 Warm-up: Finding a single oil source

In this section we consider the expected amount of drilling required to find one oil
source or to find one oil source with constant probability. We show that there exists an
oblivious algorithm that in expectation uses at most a factorO(log n) more drilling than
an algorithm that knows the set of the oil depths. This is best possible.

We start by showing that if we wish to maximize the probability of finding a single
oil source given some budget, we may restrict to algorithms that choose k ≤ n locations
at random and drill to some set of depths at these locations.

Lemma 1. Consider a fixed set of depths. Let A be an algorithm that for any assign-
ment of depths to locations, finds oil with probability p using budget B. There is a set

of k depths b1, . . . , bk satisfying
∑
bi ≤ B such that the probability that one finds oil

by drilling to depths bi in k different random locations is at least p.

Proof. Assume that the locations are randomly permuted before A starts solving the
problem. This does not impact the probability with which A solves the problem. Con-
sider coin tosses ofA. For some setting of coin tosses the probability of finding oil is at
least p. We simulateA for this setting of coin tosses. We tell the algorithm that it hasn’t
found oil, as long as it hasn’t drilled enough to find oil for all permutations of locations.
We stop whenA stops, or we know it must have found oil. This exhibitsA’s exploration
pattern. We set k to the number of locations A drilled in. We also set bi, 1 ≤ i ≤ k, to
the depths A drilled to in consecutive locations. Clearly

∑
bi ≤ B, because A does at

most B drilling. By using the same exploration pattern asA with locations permuted at
random, and therefore, with drilling applied to random locations, one can also find oil
with probability at least p. ut

Lemma 2. Drilling to depths b1 ≥ . . . ≥ bk at k ≤ n random, distinct locations finds
oil with probability 1−

∏k
i=1 (1− n≤bi

/(n− i+ 1))5, which is at most
∑k
i=1 n≤bi

/(n−
i+ 1).

Proof. The proof is by induction on k: For k = 1, drilling at a random location to depth
b1, yields oil with probability n≤b1/n. Given that oil is not found after drilling to depths
b1, . . . , bk−1, the probability that oil is found at depth at most bk when drilling at the
next random location is n≤bk

/(n−k+1) because n−k+1 locations remain andn≤bk

of them still have oil at depth at most bk since we drilled to depths greater than bk in
previous steps and did not find oil. The probability of finding an oil source is exactly
1−

∏k
i=1 (1− n≤bi/(n− i+ 1)).

Furthermore, we have:

k∏
i=1

(
1− n≤bi

n− i+ 1

)
≥ 1−

k∑
i=1

n≤bi

n− i+ 1
,

that is,

1−
k∏
i=1

(
1− n≤bi

n− i+ 1

)
≤

k∑
i=1

n≤bi

n− i+ 1
.

ut

Using the above two lemmas, we get the following fact.

Lemma 3. Finding an oil source with probability p requires (p/4) · mind (dn/n≤d)
drilling.

Proof. Consider any algorithm that uses budget B to find oil with probability p. By
Lemma 1, there is a sequence b1 ≥ b2 ≥ . . . ≥ bk of depths such that

∑k
i=1 bi ≤ B,

and drilling at k different random locations to depths bi, 1 ≤ i ≤ k, exposes an oil
source with probability at least p.

5 Dynamic programming can maximize these probabilities for
P
bi ≤ B in poly(B,n) time.

Algorithm 1: For finding a single source of oil when the depths are not known.
b := 11
while oil not found do2

for i = 0, . . . , dlogne do3
Drill in min{2i, n} random locations to depth b/2i4

b := 2b5

Let k′ = min{k, dn/2e}. We claim that the sequence b1, b2, . . . , bk′ finds oil with
probability at least p/2. If k = k′, the claim is trivially true. Otherwise, consider two
sequences: b1, . . . , bk′ , and bk′+1, . . . , bk. When applied to random locations, they
find an oil source with probability p1 and p2, respectively. It must be the case that
p1 + p2 ≥ p, since otherwise, by the union bound, the sequence b1, . . . , bk would find
oil with probability less than p. Furthermore, p1 ≥ p2, because even the sequence b1,
. . . , bk−k′ , where k − k′ ≤ k′, is such that bi ≥ bk′+i, 1 ≤ i ≤ k − k′, and therefore,
this sequence exposes oil with probability at least the same as bk′+1, . . . bk. If follows
that p1 ≥ p/2.

For the sequence b1, . . . , bk′ , we have by Lemma 2 that

p/2 ≤
k′∑
i=1

n≤bi

n− i+ 1
≤

k′∑
i=1

n≤bi

n/2
,

that is,

p/4 ≤
k′∑
i=1

n≤bi

n
.

In the above inequality, a unit of drilling assigned to a given bi, contributes n≤bi
/(bin)

to the right-hand side, and no unit can contribute more than maxd(n≤d/(dn)). There-
fore,

p/4 ≤ B ·max
d

n≤d
dn

,

and
B ≥ p

4
·min

d

dn

n≤d
.

ut

Theorem 4. Algorithm 1 finds a single oil source with constant probability using at
most a factor O(log n) more drilling than that required by an algorithm that knows the
set of the oil depths.

Proof. Suppose all depths are powers of 2 and note that this assumption at most doubles
the amount of drilling. The cost of the k-th round in Algorithm 1 is O(2k log n), and
therefore, the total cost of the first k rounds is alsoO(2k log n). Let d∗ = argmind (dn/n≤d),
and let OPT be the optimal amount of drilling to find a single oil source with the

given constant probability. By Lemma 3, OPT = Ω(d∗n/n≤d∗). The algorithm finds a
source of oil with constant probability by the time it reaches level log(d∗n/n≤d∗). But
at this point at most O(OPT log n) drilling has been performed. ut

Theorem 5. Any oblivious algorithm that finds a single oil source with constant prob-
ability may need to use a factor Ω(log n) more drilling than that required by an algo-
rithm that knows the set of the oil depths.

Proof. Consider the following sets Ii of depths, for i ∈ [log n]. Ii consists of 2i oil
sources at depth 2i, and the other oil sources are at depth ∞. For each i, there is an
algorithm that finds oil with probability 1/2 by drilling to depth 2i in n/2i locations,
which gives n drilling in total. Assume that each Ii appears with the same probability.
Suppose that the oblivious algorithm finds oil with constant probability by drilling only
d units in total. By Lemma 1, we can assume that the algorithm chooses a few depths
d1 to dk that it drills to in different locations. We know that

∑
di = d. The expected

number of oil sources found by this strategy bounds the probability of finding at least
one oil source. Let Xi be the event that drilling to depth di exhibits oil. We have

Pr[∃Xi = 1] ≤
∑
i

E[Xi] =
∑
i

∑
1≤j≤log di

1
blog nc

· 2
j

n
≤

∑
i 2di

n · blog nc
=

2d
n · blog nc

.

Hence, the oblivious algorithm must drillΩ(n log n) in total, which is a factorΩ(log n)
more than the optimal strategy drills for any of the inputs. ut

Remark: Similarly, one can show that for a given set of depths, Algorithm 1 uses in
expectation at most O(log n) factor more than an algorithm that knows the input and
minimizes the expected amount of drilling to find one oil source. Any oblivious algo-
rithm must use Ω(log n) more drilling in some cases.

3 Multiple sources when depths are chosen from a distribution

If the adversary can find k oil sources in B drilling cost, the objective of the algorithm
is to match this cost as well as possible. In this section, we will consider a special case
where the depths of the oil sources are independently chosen from the same distribution
and there are infinitely many locations to dig; again the adversary knows the distribution
and the algorithm does not. In the next section we will generalize such an algorithm to
the case when there are finitely many locations and the depths are not chosen from a
distribution but simply assigned using a set of n depths that is known to the adversary.

3.1 Adversary’s strategy when distribution is known

In this section we will show a simple procedure for minimizing the expected amount of
drilling to find k oil sources for the adversary who knows the distribution. It turns out
that when there are infinitely many locations, the best algorithm for the adversary is to
simply to dig upto a fixed depth repeatedly; that fixed depth depends on the distribution.
Consider an algorithm for the adversary that in a given location drills until a fixed depth

d, unless it finds oil earlier. Let X be a random variable equal to the depth at which
oil occurs. The expected payoff, i.e., the number of oil sources found by the algorithm,
divided by the expected amount of drilling equals

g(d) =
E[payoff]

E[amount of drilling]
=

Pr[X ≤ d]
d · Pr[X > d] +

∑
1≤j≤d j · Pr[X = j]

.

Define x? to be the smallest d ∈ Z+ ∪ {∞} that maximizes the above value. The next
lemma shows that no algorithm exploring one location can achieve a better ratio of
the expected payoff to the expected amount of drilling than g(x?). The proof starts by
showing that any algorithm that explores one oil source is equivalent to an algorithm
that selects a depth d from some distribution, and drills to d. Then, the ratio of the
expected payoff to the expected amount of drilling cannot be greater than the maximum
such ratio for depths in the distributions, which is bounded by g(x?).

Lemma 6. E[payoff]/E[amount of drilling] ≤ g(x?) for any algorithm A that ex-
plores only one location.

Proof (Proof of Lemma 6). We show that A can be transformed into an algorithm B
that picks d from some distribution over Z+ ∪ {∞}, and then drills to depth d, unless
if finds oil before. If that is the case, and the probability that d = i is pi, then

E[B’s payoff]
E[B’s amount of drilling]

=
∑
pi · E[B’s amount of drilling|d = i] · g(i)∑
pi · E[B’s amount of drilling|d = i]

≤ g(x?)

Consider the behavior of A. Let qi be the probability that A stops drilling, after it
discovers that there is no oil at depth i. Define pi = qi ·

∏
1≤j<i(1 − qj), for finite i,

and we set p∞ to
∏∞
j=1(1 − qj). The sum of all pi is 1. Let ti be the probability that

there is oil at depth i, given there is no oil at depth at most i− 1. The algorithm has no
impact on this probability, since it is independent of its knowledge.

We now show that A behaves in the same way as B for the probabilities that we
have defined. The probability that A stops, not having found oil up to depth i is (1 −
ti)qi ·

∏
1≤j<i(1− qj)(1− tj). The same probability for B is

pi ·
∏

1≤j≤i

(1− tj) = qi
∏

1≤j<i

(1− qj)
∏

1≤j≤i

(1− tj) = (1− ti)qi ·
∏

1≤j<i

(1− qj)(1− tj),

that is, it is identical. The probability that A finds oil at depth i is ti ·
∏

1≤j<i(1 −
tj)(1− qj). For B, the probability is

∑
j≥i

pjti
∏

1≤k<i

(1−tk) =

 ∏
1≤k<i

(1− qk)

 ti
∏

1≤k<i

(1−tk) = ti·
∏

1≤k<i

(1−tk)(1−qk).

Hence, A and B behave in the very same way. ut

The proof of the next lemma shows that even if drilling in multiple locations, the
ratio of the expected payoff to the expected amount of drilling is still at most g(x?).
This gives a lower bound on the expected amount of drilling to find k oil sources.

Algorithm 2: For finding k oil sources when the distribution of depths are known.
while less than k oil sources found do1

pick a new location, and drill until depth x? or until oil found2

Lemma 7. LetA be an algorithm that finds exactly k oil sources.A’s expected amount
of drilling is at least k/g(x?).

Proof. Let the random variable Yi, i ∈ Z+, be an indicator of whether A found oil at
location i. Let Di be the amount of drilling A did at location i. We have

k

E[amount of drilling]
=
E[
∑
Yi]

E[
∑
Di]

=
∑
E[Yi]∑
E[Di]

.

For each i, let pi be the probability that A drills at location i. By Lemma 6, we have
E[Yi|A drills at i]/E[Di|A drills at i] ≤ g(x?). Hence,∑

E[Yi]∑
E[Di]

=
∑
pi · E[Yi|A drills at i]∑
pi · E[Di|A drills at i]

≤
∑
pi · g(x?) · E[Di|A drills at i]∑

pi · E[Di|A drills at i]
= g(x?).

Thus, the expected amount of drilling must be at least k/g(x?). ut

Theorem 8. Algorithm 2 minimizes the expected amount of drilling to find k oil sources,
when the distribution is known.

Proof. By Lemma 7 we know that the expected amount of drilling to find k oil sources
is at least k/g(x?). It suffices to show that the expected time to find one oil source is
exactly 1/g(x?). Let p = Pr[X ≤ x?], and let D be the expected amount of drilling
in a new location. By definition, p/D = g(x?). Since the depth at each location is
independent, by Wald’s theorem, the expected amount of drilling until one oil source is
found is exactly D ·

∑∞
i=0(1− p)i = p/g(x?) · 1/p = 1/g(x?). ut

3.2 Extending to an algorithm when distribution is unknown

We will now show how the adversary’s strategy can be extended to an algorithm that
does not know the distribution. The essential idea is to estimate the distribution in the
initial few drillings, and then emulate the adversary’s strategy. Our oblivious algorithm
finds k oil sources with probability 1− δ, and performs in expectation at most a factor
(1 + Õ(5

√
k−1 log δ−1)) more drilling than the expected amount of drilling for the

adversary’s algorithm. Let B1 be the min. expected amount of drilling to find one oil
source.

Lemma 9. There is an algorithm that approximates B1 up to a factor of O(logB1)
with probability 1− δ. The expected amount of drilling is O(B1 · logB1 · log(1/δ)).

Algorithm 3: For finding a single source of oil when the distribution is unknown.
Let b := 11
while no oil found do2

For each i ∈ {1, . . . , log b}, drill 2i locations up to depth b/2i3

b :=
√

2 · b4

Return b5

Proof. Note that the minimum expected budget to get one oil source and the minimum
budget to get a single oil source with probability 1/2 are within a constant factor. Thus,
it suffices to approximate the latter. To do this we run Algorithm 3 a total ofO(log δ−1)
times. There is a constantC1 such that the probability that we find oil using a budget b ≤
C1 · B1/ logB1 is less than 1/4. Otherwise, we could get a better minimum expected
budget to find a single oil source. On the other hand, there is a constant C2 such that
the probability that b ≥ C2 ·B1 is less than 1/4. Hence, by the Chernoff bounds, if we
have O(log(1/δ)) samples and take the median of them, we get a value that is between
C1 ·B1/ logB1 and b ≥ C2 ·B1 with probability 1− δ. Once b gets greater than some
constant times B1, it finds oil in each iteration with probability greater than 1/2. Since
the total budget spent grows by a factor smaller than and bounded away from 2, the
expected amount of drilling in each run of the auxiliary algorithm is O(B1 logB1). ut

Fact 10 Let X be a Bernoulli variable and let δ, ε ∈ (0, 1). O(δ−1ε−2) samples of X
suffice to distinguish Pr[X = 0] ≤ δ from Pr[X = 0] ≥ δ(1 + ε) with probability 2/3.

Lemma 11. Let t satisfy Pr[X > t] ≤ ε and x? > t. Then, g(t) ≥ g(x?) · (1− ε).

Proof. Let T and D be the expected amount of drilling if we stop at depth t and x?

respectively. Then g(t) = (1− Pr[X > t])/T ≥ (1− ε)/D ≥ (1− ε)g(x?). ut

Lemma 12. There is an algorithm that finds t such that g(t) ≥ g(x?)(1 − ε) with
probability 1− δ. The expected amount of drilling used is Õ(B1ε

−4 · log(1/δ)).

Proof. We first run the algorithm of Lemma 9 to approximate the minimum expected
budget B1 required to discover a single oil source. We get a budget upper-bound b =
O(B1 logB1). We now argue that our desired t isO(B1 logB1 log(1/ε)). By Lemma 11,
we need not care about big depths. Since we can find oil with probability at least 1/2
up to depth O(B1 logB1) using a budget of at most b, it makes no sense to drill deeper
than d = O(B1 logB1 log(1/ε)) to find oil with probability higher than 1 − ε in any
location, since there is a more effective method that explores only small depths. Next
we round up each drilling depth to a power of (1 + ε). This decreases g(x) by at most
a factor of 1 + ε for any x, We now have s = log1+ε d possible values for t. We have

g((1 + ε)i)
1 + ε

≤ Pr[X ≤ (1 + ε)i]
1 +

∑
0≤j≤i−1 ε(1 + ε)j · Pr[X ≥ (1 + ε)j]

≤ g((1 + ε)i) .

Now usingO(dε−4 log(s/δ)) drilling, we learn for each of the possible choices (1+ε)i

for t the probability Pr[X ≥ (1 + ε)i] up to an additive term of ε2. If the probability

is smaller than ε for some (1 + ε)i, we can assume by Lemma 11 that t is bounded by
(1 + ε)i. Otherwise, our approximation gives a good multiplicative approximation for
the denominator of g((1 + ε)i).

It remains to estimate the numerator. We are only interested in i such that the prob-
ability of finding oil up to depth (1 + ε)i using a total budget of b is Ω(1). This means
that we are interested in (1 + ε)i such that Pr[X ≤ (1 + ε)i] = Ω((1 + ε)i/b). To
approximate each Pr[X ≥ (1 + ε)i] up to a factor of 1 + ε, given it is larger than
Ω((1 + ε)i/b), it suffices to use O

(
s(log s)bε−2 log(sδ−1)

)
drilling by Fact 10. Hence

with Õ(B1ε
−4 log(1/δ)) drilling we find t with g(t) ≥ g(x?)/(1 + ε)O(1) with proba-

bility 1− δ. Rescaling ε we get the required approximation. ut

Corollary 13. There is an algorithm that with probability 1−δ usesB
(
1 + Õ

(
5
√

log(1/δ)k−1
))

drilling in expectation to find k oil sources, while the minimum expected amount of
drilling to find k oil sources is B = kB1.

Proof. We use the algorithm described in the proof of Lemma 12 to find a t such
that g(t) approximates g(x?). By running an algorithm that drills up to depth t, with
probability 1 − δ, the expected amount of drilling we use to find k oil sources is
kB1(1 + ε) + Õ

(
B1ε

−4 · log(1/δ)
)
. Setting ε = 5

√
log(1/δ)/k gives the result. ut

4 Generalizing to an arbitrary set of depths

We will now genaralize the algorithms to the case when the depths of the locations are
a (random) permutation of a set of n depths that is known only to the adversary.

4.1 Adversary’s strategy when set of depths is known

In this section we will study algorithms for the case when the set of depths are known
but not the depth of each oil source separately. We will provide an efficient (polynomial
time) algorithm for the adversary whose perfomance is close to that of the best possible
(perhaps exponential time) algorithm. If any algorithm finds k′ oil sources in expecta-
tion using B amount of drilling in expectation then the proposed algorithm can find k
sources in expectation using B(1 + ε) expected drilling where k′ ≤ k + Õ(

√
k/ε).

Assume that all the depths in the input instance are rounded up to powers of (1+ ε);
this only increases the budget by a factor of (1 + ε). Denote different depths by Hi =
(1 + ε)i for i ≤ r = O(ε−1logB). Define hi = Hi −Hi−1, where H−1 = 0.

We will say that (B, k) is an achievable solution if there exists an algorithm whose
expected drilling is B and the expected number of oil sources found is k. We say that
the pair (B, k) is feasible in the following program if the program has a solution. We
write nd and n≥d to denote the number of oil sources at depth exactly d and at least d,
respectively. Here mi = nHi/n≥Hi . xi corresponds to the number of locations that we
drill from depthHi−1 toHi, which results in expectation in ximi oil source discoveries.

k ≤
∑

min(mixi, xi − xi+1); B ≥
∑

hixi; xr ≤ . . . ≤ x0 ≤ n (1)

Algorithm 4: For finding k oil with a known set of depths in budget B
Compute a (B, k) solution to Program 2.1
Start drilling x0 random locations to depth h0.2
Let Ai be the number of locations drilled to depth Hi where no oil was found. Among3
these, choose min(xi+1, Ai) at random and drill these to depth Hi+1.

The first inequality corresponds to stating that at least k oil sources are found in ex-
pectation. Note that mixi is the expected number of oil sources found while drilling
from depth Hi−1 to Hi; however it cannot exceed xi − xi+1. The second inequality
ensures that the total budget is at most B. The third simply ensures that the solution is
meaningful as the number of wells drilled to increasing depths must be decreasing. We
show (proof deferred to the Appendix) that Program 1 is equivalent to:

k ≤
∑

mixi; B ≥
∑

hixi; ∀ i ∈ [r − 1] : xi+1 ≤ (1−mi)xi; x0 ≤ n (2)

Lemma 14. If (B, k) is feasible in Program 2 then Algorithm 4 finds k oil sources in
expectation while spending budget B.

Proof. Consider Algorithm 4 and let Yi be the number of locations that we drill from
depth Hi−1 to Hi. Since Yi ≤ xi the total amount of drilling is at most B. We will
argue that the expected number of oil sources it finds is at least k. To prove this, we
alter the algorithm so that even if less than xi locations are available to drill to depth
Hi as we have found oil in some of them, we will pretend to also continue drilling
xi − Yi locations where we found oil earlier. This can only increase the cost but will
not change the number of oil sources found. The number of locations drilled to depth
Hi is exactly xi. The number of oil sources Gi found at depth Hi is xi − Ai. Now,
E[Gi] = xi − E[Ai]. But E[Ai] = (1 −mi)E[Yi] ≤ (1 −mi)xi. So E[Gi] ≥ mixi,
and hence,

∑
iE[Gi] ≥

∑
imixi ≥ k. ut

Next we will lower bound the performance of the best possible algorithm. We will
show that if (B, k) is achievable, then it must be feasible in the following program.

k ≤
∑
i

min((mi+εi)xi+ε′i, xi−xi+1); B =
∑
i

hixi; xi+1 ≤ . . . ≤ x0 ≤ n (3)

where εi = Õ(
√
mi/n≥Hi

+ 1/n≥Hi
) and ε′i = mi/(n≥Hi

)Ω(1) as guaranteed by the
following lemma (proof deferred to the Appendix) for n≥Hi

boxes with min≥Hi
of

them containing gold.

Lemma 15 (Boxes of Gold). Consider n boxes of which pn contain a gold ingot.
For any randomized algorithm that opens B boxes and finds G ingots, E[G] ≤ (p +
ε)E[B] + ε′ where ε = Õ(

√
p/n+ 1/n), ε′ = p/nΩ(1).

Lemma 16. If (B, k′) is an achievable solution for an instance of the oil searching
problem with known depths then it is a feasible solution for Program 3

Proof. Assume that there is an algorithm A∗ that spends budget B in expectation and
finds k′ oil in expectation. Let xi = E[number of wells drilled to depth at least Hi]. Let
gi = E[number of wells found at depth Hi]. Then, by Lemma 15, gi ≤ (mi+εi)xi+ε′i
as we can think of each location with the depth at least Hi as a box and the ones
with oil at depth Hi as boxes containing gold. Also clearly gi ≤ xi − xi+1 as we can
continue drilling to depthHi+1 only if we have not found gold already. So k′ =

∑
gi ≤∑

i min((mi + εi)xi + ε′i, xi − xi+1) and B =
∑
i hixi. ut

Lemma 17. If (B, k′) is feasible for Program 3 then (B, k) is feasible for Program 1
where k′ ≤ k + Õ(

√
k/ε).

Proof. Consider the feasible solution in Program 3 that satisfies k′ ≤
∑
i min((mi +

εi)xi+ε′i, xi−xi+1). Substituting this solution in Program 1 is feasible if k =
∑
i min(mixi, xi−

xi+1). Let Q denote the set {i : (mi + εi)xi + ε′i ≤ xi − xi+1}. Now k′ − k ≤∑
i∈Q xiεi + ε′i ≤ Õ(

∑
i∈Q
√
mixi)) + o(1). Since

∑
i∈Qmixi ≤ k′, this is at most

Õ(
√
k
′
r) = Õ(

√
k/ε) . ut

The above lemmas, with the depth rounding, gives the main theorem of this section:

Theorem 18. If (B, k′) is an achievable solution for an instance of the oil searching
problem with known depths then Algorithm 4 finds in expectation k oil sources in ex-
pected cost B(1 + ε) where k′ ≤ k + Õ(

√
k/ε).

4.2 Extending to an algorithm that does not know the set of depths

We now study algorithms that are oblivious to the set of depths. We compare our solu-
tion to that which can be achieved by the adversary with knowledge of the set of depths
but not the depth of each source separately. We show that if an adversary that knows
the set of depths, expects to find k′ oil sources, and expected to perform B drilling in
expectation, then our algorithm expects to find k oil sources where k′ ≤ k + Õ(k5/6)
sources and peforms B(1 + o(1)) drilling in expectation.

Let us view the set of depths S as a distributionD(S) obtained by picking a random
location from the set S. Any algorithm that drills one location at random from the set
S is an algorithm that drills one location with depth from the distribution D(S). Now
we know from the results in Section 3.1 that the optimal k/B is obtained by drilling
up to depth d = x∗, which maximizes g(d). Let us say that a solution to Program 2
is tight if the first two inequalities involving B and k are equalities. Any tight solution
to Program 2 can be converted to an algorithm for drilling locations from distribution
D(S) achieving and vice-versa. For instance, an algorithm that drills all locations up to
depth d = Hs can be realized by setting x0 = n and xi+1 = (1−mi)xi, for all i+1 ≤ s,
and xi+1 = 0, for all i + 1 ≥ s + 1, in Program 2. Let (Bs, ks) denote the values of
B and k in this tight solution. Similarly we can view a tight solution to Program 2
as a strategy to drill one location drawn from the distribution D(S) by scaling all xi
by x0 resulting in (B/x0, k/x0) expected budget and payoff. The strategy continues
drilling fromHi toHi+1 with probability xi+1/((1−mi)xi). Clearly ks/Bs = g(Hs).
The algorithm of Lemma 12 can be used to compute a near optimal depth Ht so that
g(Ht) ≥ g(x∗)(1− ε). This is done by sampling locations from S with replacement.

Lemma 19. (B, k) is a tight solution for Program 2 if and only if it can be expressed
as a linear combination

∑
i αi(Bi, ki) such that

∑
i αi ≤ 1.

Proof. Without loss of generality we may assume that x0 = n as any solution to Pro-
gram 2 can be scaled to satisfy this. We know that any such solution (B, k) to Pro-
gram 2 can be viewed as an algorithm to drill one location chosen from distribution
D(S) achieving expected budget and payoff: (B/n, k/n). We know from the proof of
Lemma 6 that any such algorithm can be viewed as a distribution or linear combination
of the strategies that always drill a location up to Hi. The latter result corresponds to
(Bs/n, ks/n) expected budget and payoff. The only if part is trivial. ut

Theorem 20. If (B, k) is a tight solution for Program 2, then there is a (B, k(1 − ε))
solution for Program 2 such that xi+1 = (1 − mi)xi, for all i ≤ t − 1 and either
x0 = n, or xt > 0. This essentially corresponds to a solution that first explores all
locations to depth up to Ht, and only then drills to greater depths.

Proof. Express (B, k) as
∑
i αi(Bi, ki). The essential observation is that shifting bud-

get to αt from other αi can only increase k. It suffices to show that we can convert
the (B, k) solution to a (B, k(1 − ε)) solution, where either αi = 0, for all i < t,
and

∑
i αi = 1, or only αt is non-zero and others 0. Assume first for simplicity that

g(Ht) = g(x∗). Hence transferring budget from any other (Bi, ki) to (Bt, kt) only in-
creases k. However we need to respect the constraint

∑
i αi ≤ 1. Also note that trans-

ferring budget from components i < t only decreases
∑
i αi as Bi is non-decreasing in

i. So we can always move to an improved (or same quality) solution where αi = 0 for
all i < t. Further, as long as

∑
i αi < 1 we can transfer budget from higher components

i > t till
∑
i αi hits 1. We stop only if either αi = 0 for all i 6= t or

∑
i αi = 1 and

αi = 0 for all i < t. Now if g(Ht) = g(x∗)(1 − ε) then each transfer of budget will
have a rate of return that is smaller by a factor of ε. So total payoff loss is at most εk. ut

Remark: Observe that the above theorem also implies that there is an optimal solution
to 2 that first spends all its budget drilling to x∗ and then recursively solves the remain-
ing instance. The solution is thus to drill according to a sequence of depths x∗’s for the
different instances until either all locations are drilled or budget is exhausted. Also (as-
suming g(Ht) = g(x∗)) the g(x∗)’s found in the different recursions is non-increasing
as otherwise there is a better value of x∗ at the recursion after which it increased. Fur-
ther if we use Ht at each recursive step instead of x∗ the total loss in payoff is at most
εk as the budget moved in the different recursions is disjoint (the budget moved in a
recursion is never moved again in another recursion). If B̃ is the expected budget and k̃
is the expected payoff used in a recursion then B̃/k̃ = g(Ht).

See Algorithm 5. The depth of the recursion is at most r = logG/ε as there are
only r distinct depths. This gives:

Lemma 21. If (B, k) is a feasible solution for Program 2 then Algorithm 5 finds k(1−
ε) oil sources in expectation with budget B (ignoring the cost of computing g(Ht)).

We also need to take into account the cost O(ε−4 log(1/δ)/g(x∗)) of computing
g(Ht) at the beginning each recursive step. Besides this the only non-determinism in
the budget used and payoff is in the last step of the recursion; at previous steps both are
fixed as we are dealing with a set of depths.

Algorithm 5: Finding multiple sources with budget B and unknown set of depths
Treating the set of depths as a distribution, compute t such that g(Ht) ≥ g(x∗)(1− ε).1
This is done with the algorithm (of Lemma 12) for estimating g(x∗) on the distribution
D(S) by sampling locations with replacement.
Drill all locations to depth Ht (except those that hit oil earlier) unless budget is exhausted.2
If budget is left over we have found all oil sources at depth at most Ht. The remaining
locations are all drilled to depth Ht.
In such a case recursively explore the remaining locations with the remaining budget.3

Theorem 22. If (B, k′) is an achievable solution for the oil searching problem with
known depths then with probability 1− rδ, algorithm 5 finds in expectation k(1− ε)−
Õ(log(1/δ)/ε5) sources in expectation, where k′ ≤ k+ (̃

√
k/ε), and spends B(1 + ε)

budget. For ε = o(k−1/6), this amounts to k− Õ(k5/6) sources in budget B(1+ o(1)).

Proof. If (B, k′) is a feasible solution for the oil searching problem with known depths
then there is a (B, k) solution to Program 2 where k′ ≤ k + O(min{k,

√
kr}). To

bound the cost of computing g(Ht), we increaseB by a factor of ε and in each recursion
only allocate at most ε fraction of the remaining budget to computing g(Ht). If cost of
computing g(Ht) is more than ε fraction of remaining budget in a certain recursion, then
we can stop the algorithm as this meansO(log(1/δ)/(ε5g(x∗)) ≥ εB, which means we
can find at most g(x?)B ≤ O(log(1/δ)/ε5) more sources in expectation. Thus, if we
stop, we are only giving up O(log(1/δ)/ε5) sources. ut

References
1. Gal, S.: Search Games. Academic Press (1980)
2. Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous. Kluwer Academic

Publishers (2003)
3. Baeza-Yates, R.A., Culberson, J.C., Rawlins, G.J.E.: Searching in the plane. Inf. Comput.

106(2) (1993) 234–252
4. Kao, M.Y., Reif, J.H., Tate, S.R.: Searching in an unknown environment: An optimal ran-

domized algorithm for the cow-path problem. Inf. Comput. 131(1) (1996) 63–79
5. Kao, M.Y., Ma, Y., Sipser, M., Yin, Y.L.: Optimal constructions of hybrid algorithms. J.

Algorithms 29(1) (1998) 142–164
6. Kirkpatrick, D.: Hyperbolic dovetailing. In: ESA. (2009)
7. Robbins, H.: Some aspects of the sequential design of experiments. Bull. Amer. Math. Soc

58 (1952) 527–535
8. Gittins, J.C., Jones, D.M.: A dynamic allocation index for the sequential design of experi-

ments. In: Progress in Statistics: European Meeting of Statisticians. Volume eds 1. (1974)
241–266

9. Whittle, P.: Arm-acquiring bandits. The Annals of Probability 9 (1981) 284–292
10. Benkherouf, L., Pitts, S.: On a multidimensional oil exploration problem. Journal of Applied

Mathematics and Stochastic Analysis 2005(2) (2005) 97–118
11. Benkherouf, L., Glazebrook, K., Owen, R.: Gittins indices and oil exploration. J. Roy.

Statist. Soc. Ser. B 54 (1992) 229–241
12. Grayson, C.: Decisions Under Uncertainty: Drilling Decisions by Oil and Gas Operators.

Harvard, Division of Research, Graduate School of Business Administration (1960)

Algorithm 6: For finding an oil source in a tree T with budget B
Let d be the degree of the root of T .1
Assign d tokens to one random branch outgoing from the root. Assign d/2 tokens to two2
other remaining branches outgoing from the root. Assign d/4 to four other branches
outgoing from the root. Continue in this way until you assign some number of tokens to
each branch.
Divide B between branches proportionally to the number of tokens assigned to each3
branch.
For each branch follow the corresponding edge until you run out of budget or you reach a4
internal vertex v. In the latter case, recursively run TreeExhaustive(B′, T ′), where B′ is
the remaining budget, and T ′ is the subtree rooted at v.

A Extension to Finding Oil in Symmetric Trees

In this section, we consider searching for oil in trees. We focus on weighted rooted
trees that are “fully symmetric”. Formally, a tree is symmetric if for each internal node
v, all the subtrees rooted at children of v are identical. We assume that all weights are
positive integers. The exploration starts at the root, and on each path from the root to a
leaf oil appears at exactly one place that is at integral distance from the root. We want to
minimize the expected drilling time until one oil source is found. We compare against
an algorithm that knows all the oil depths and how they are organized in the tree, but
is initially unaware of which subtree is which at any internal node. In this section, we
prove the following theorem.

Theorem 23. For symmetric trees, there is an oblivious algorithm that finds a single oil
source using in expectation at most O(

∏k
i=1 2(1 + log di)) times the optimal expected

amount of drilling.

The reason why we focus on symmetric trees is that in the asymmetric case, an algo-
rithm may almost directly go to the closest oil source by observing asymmetries of the
tree. Therefore, it may be impossible to give a good bound on the cost of obliviousness.

Exhaustive Strategies. We shall bound the difference between the budget used by an
arbitrary algorithm and the budget required by an exhaustive strategy. We define the
exhaustive strategy as Algorithm 6.

Lemma 24. Let T be a symmetric tree with k levels of internal nodes. Let the number
of children of every node on level i be di. Let A be an algorithm with budget B that
finds oil in this setting with probability at least 1/2. Let B′ = B ·

∏k
i=1 2(1 + log di).

The exhaustive strategy with budget B′ also finds oil with probability at least 1/2.

Proof. Simulate A on the tree and tell A that no oil has been found as long as that is
possible. Look at the exploration pattern produced by the algorithm. If the algorithm is
not deterministic and it may produce multiple patterns, based on its coin tosses, there
must be a pattern that maximizes the probability of finding oil. In such a case, consider
that pattern. We will bound the pattern by an exhaustive strategy. The proof proceeds

Algorithm 7: For finding a single oil source in a tree
Let b := 1 be the initial budget.1
while no oil found do2

Run Algorithm 6 with T and b3

b :=
√

2 · b4

by induction in a bottom-up manner, and we show that at level i, we increase the budget
by at most a factor of 2(1 + log di). Consider an internal node with d children, and
suppose that all subtrees of the nodes are already explored via exhaustive strategies.
Suppose that the whole strategy uses a budget ofB. We sort the budgetsB1 ≥ . . . ≥ Bd
assigned to subtrees, and find the smallest budget B? such that if we sort subbudgets
B?1 ≥ . . . ≥ B?d used by the exhaustive strategy with budget B?, they will dominate
the current subbudgets, i.e., B?i ≥ Bi for all i. It is clear that by replacing the current
strategy with the exhaustive strategy of budgetB?, we do not decrease the probability of
finding oil. We also claim that B? is at most 2(1 + log di) times greater than the budget
before the modification. Since B? is minimal, there is an i such that B?i = Bi. Let j be
the block index corresponding to B?i in the exhaustive strategy budget assignment. We
claim that the entire budget B?tjwj/(

∑
k tkwk) of the block is at most 2 times B. This

is easy to see by noticing that either j = 1, in which case the claim is trivial, or j > 1,
and B is greater than B?i · 2j−2, which in turn is at least a half of the budget of the j-th
block. Since we have at most 1+ log d blocks, the modification grows the initial budget
B at most 2(1 + log d) times. ut

Proof (Proof of Theorem 23). LetA be an optimal algorithm. If the expected amount of
drilling of A is B, then A′ that simulates A and stops whenever it has used 2B drilling
finds oil with probability at least 1/2, by Markov’s bound. Hence, by Lemma 24, there
is a budget B′ = B · O(

∏k
i=1 2(1 + log di)) such that any exhaustive strategy with

budget ≥ B′ finds oil with probability at least 1/2.
Consider Algorithm 7. What is the expected amount of drilling that this algorithm

needs to find oil? We can assume that the algorithm does not find oil as long as b < B′.
The amount of drilling the algorithm uses by then is O(B′). As soon as b ≥ B′, the
algorithm finds oil with probability at least 1/2 in each iteration. Thus, the expected
amount of drilling is at most O(B′) +B′

√
2 + 2−1B′

(√
2
)2

+ 2−2B′
(√

2
)3

+ · · · =
O(B′). ut

B Omitted Proofs

B.1 Equivalence of Program 1 and Program 2

Lemma 25. (B, k) is feasible in Program 1 iff it is feasible in Program 2.

Proof. Clearly a feasible solution to Program 2 is also a solution to Program 1 because
xi − xi+1 ≥ xi − (1 −mi)xi = mixi. For the other direction we will show how to

convert a feasible solution in Program 1 to a solution where each xi+1 ≤ (1−mi)xi. We
prove this by induction on j, the largest i for which this is not the case. Consider k∗ =∑
i≥j min(mjxj , xj − xj+1) = xj − xj+1 +

∑
i>j min(mixi, xi − xi+1) and B∗ =∑

i≥j hixi = hj(xj−xj+1)+hjxj+1+
∑
i>j hixi. Observe that

∑
i>j min(mixi, xi−

xi+1) can be written as αxj+1, where α ≤ 1, and hjxj+1+
∑
i>j hixi can be written as

βhjxj+1 where β ≥ 1. So k∗ = xj−xj+1+αxj+1 andB∗ = hj(xj−xj+1+βxj+1).
So by scaling down all xi’s for i > j so that xj+1 = xj −mjxj we can only increase
k∗ and decrease B∗. ut

B.2 Lemma 15

Proof. Without loss of generality we consider an algorithm that opens the boxes in
some (random) predetermined order. With respect to this ordering define the following
random variables, let Gl be the number of ingots found among the first n/2 boxes if
the total number of boxes opened is at most n/2 and 0 otherwise. Let Gr be the total
number of ingots found if the total number of boxes opened is greater that n/2. Let Bl
be the number of boxes opened if this is at most n/2 and 0 otherwise. LetBr be the total
number of boxes opened if this is greater than n/2. SoG = Gl+Gr andB = Bl+Br.

We wish to show,
E[G] ≤ (p+ ε)E[B] + 1/nΩ(1) .

Let Xt be the number of boxes of gold among the first t boxes. Then, by the sam-
pling without replacement version of the Hoeffding bounds,

Pr[Xt/t > p+ Õ(
√
p/n+ 1/n)] ≤ 1/nΩ(1).

Hence with probability at least for 1 − 1/nΩ(1), Xt/t ≤ p + ε where for all t > n/2
where ε = O(

√
p/n + 1/n). Call this event A1 Let Yt be the number of boxes of

gold among the last t boxes. By an identical argument to that above, we know that with
probability at least for 1 − 1/nΩ(1), Yt/t ≤ p + ε for all t > n/2. Call this event A2

and let A = A1 ∩A2.
Let pt be the probability that the algorithm opens t boxes conditioned on the event

A. Then,
E[Gr|A]
E[Br|A]

≤
∑
t>n/2 ptt(p+ ε)

n
∑
t>n/2 pt

≤ (p+ ε) .

Now consider E[Gl|A]/E[Bl|A]. Conditioned on the event A, we know that each
new box that is opened has gold with probability at most (p+ ε). Hence, we may argue
that that random process that reveals gold in each box independently with probabil-
ity (p + ε) stochastically dominates the process where pn ingots are randomly dis-
tributed between the n boxes. But once we assume independence, it is easy to show that
E[Gl|A]/E[Bl|A] ≤ (p+ ε) .

Consequently,

E[G|A]
E[B|A]

=
E[Gl +Gr|A]
E[Bl +Br|A]

≤ max
(
E[Gl|A]
E[Bl|A]

,
E[Gr|A]
E[Br|A]

)
≤ (p+ ε) .

Finally,

E[G] = Pr[¬A]E[G|¬A] + Pr[A]E[G|A]
≤ Pr[¬A]pn+ Pr[A]E[B|A](p+ ε)
≤ Pr[¬A]pn+ E[B](p+ ε)
≤ p/nΩ(1) + E[B](p+ ε)

ut

