
Estimating Statistical Aggregates on
Probabilistic Data Streams

T. S. JAYRAM

IBM Almaden Research

and

ANDREW MCGREGOR

University of California, San Diego

and

S. MUTHUKRISHNAN

Google, Inc.

and

ERIK VEE

Yahoo! Research

The probabilistic stream model was introduced by Jayram, Kale, and Vee [2007]. It is a gener-

alization of the data stream model that is suited to handling “probabilistic” data, where each
item of the stream represents a probability distribution over a set of possible events. Therefore, a

probabilistic stream determines a distribution over a potentially exponential number of classical

“deterministic” streams where each item is deterministically one of the domain values.
We present algorithms for computing commonly used aggregates on a probabilistic stream. We

present the first one pass streaming algorithms for estimating the expected mean of a probabilistic

stream. Next, we consider the problem of estimating frequency moments for probabilistic data.
We propose a general approach to obtain unbiased estimators working over probabilistic data by

utilizing unbiased estimators designed for standard streams. Applying this approach, we extend

a classical data stream algorithm to obtain a one-pass algorithm for estimating F2, the second
frequency moment. We present the first known streaming algorithms for estimating F0, the number

of distinct items on probabilistic streams. Our work also gives an efficient one-pass algorithm for
estimating the median and a two-pass algorithm for estimating the range.

Categories and Subject Descriptors: F.2.0 [Analysis of Algorithms and Problem Complex-

ity]: General

General Terms: Algorithms, Theory

Additional Key Words and Phrases: probabilistic streams, OLAP, mean, median, frequency

moments

Authors’ addresses: T. S. Jayram, IBM Almaden Research, Almaden, CA; A. McGregor, Informa-
tion Theory and Applications Center, University of California, La Jolla, CA 92093; S. Muthukrish-

nan, Google Research, New York, NY; Erik Vee, Yahoo! Research, Sunnyvale, CA.
Part of this work was done when the fourth author was at IBM Almaden Research Center
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to

post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0362-5915/20YY/0300-0001 $5.00

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY, Pages 1–29.

2 · Jayram et al.

1. INTRODUCTION

In many applications it is becoming increasingly necessary to consider uncertain data,
e.g., information that is incomplete, unreliable, or noisy. In this paper, we focus
on efficiently calculating aggregation measures over uncertain data, with particular
motivation from the OLAP model. OLAP is a multidimensional model of data in
which the dimensions are structured hierarchically, and facts map to points in the
corresponding multidimensional space. For example, we may have a database on the
location and costs for different car repairs. The location field is a hierarchy: Santa
Clara is a region (city) within California, which is itself a region (state) within the
United States. Likewise, the car field is a hierarchy: Civic LX is a Civic, which is a
Honda. A fact then specifies a particular point, such as a repair on a Honda Civic
LX done in Santa Clara for $350. Dealing with uncertain information in OLAP is
widely recognized to be an important problem and has received increasing attention
recently. A particular kind of uncertainty, called imprecision, arises when facts do
not map to points but to regions consistent with the domain hierarchies associated
with dimension attributes. For example, a fact might now denote a repair done on
a Honda in California for $500. Answering the simple query, “What is the average
cost of a car repair in Santa Clara?” then becomes much less clear-cut. Should we
include the general fact in our calculations, and to what degree?

Motivated by several criteria, [Burdick et al. 2005a] proposed the following
solution. Using a mathematically principled approach, each imprecise “region” fact
r in the database is replaced with a set of precise “point” facts representing the
possible completions of r, together with their probabilities. For example, a fact about
California might be replaced by 3 facts: one about Los Angeles, one about San Diego,
and one about San Francisco, with associated probabilities 0.3, 0.2, 0.5, respectively.
This defines a sample space of possible worlds; the probability associated with
each world can be computed easily. The answer to an aggregation query Q is
then defined to be the expected value of Q over the possible worlds. A similar
data model was considered earlier by [Fuhr and Roelleke 1997] in the context of
non-aggregation queries, such as conjunctive queries, wherein an algebra of atomic
events is used to define the semantics of queries. However, the data (expression)
complexity of evaluating conjunctive queries in this framework has been shown to
be #P-complete [Dalvi and Suciu 2004].

To answer queries efficiently, we cannot explicitly enumerate all the possible
worlds, since in the worst case, this could be exponentially large in the size of the
database. A more significant challenge while dealing with OLAP queries arises when
aggregation queries are qualified by specifying the dimension values at some level
of granularity, e.g., average of all repair costs in San Francisco. Here, even the set
of facts that match the query specification is a varying quantity over the possible
worlds. Furthermore, because of the massive amounts of data being analyzed,
it is impractical to process the data using many random accesses, necessitating
algorithms that work over probabilistic streams.

1.1 Probabilistic Streams

In order to deal with massive data sets that arrive online and have to be monitored,
managed and mined in real time, the data stream model has become popular. In
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Estimating Statistical Aggregates on Probabilistic Data Streams · 3

stream A, new item at that arrives at time t is from some universe [n] = {1, . . . , n}.
Applications need to monitor various aggregate queries such as quantiles, number of
distinct items, and heavy-hitters, in small space, typically O(polylog n). Data stream
management systems are becoming mature at managing such streams and monitoring
these aggregates on high speed streams such as in IP traffic analysis [Cranor et al.
2003], financial and scientific data streams [Balazinska et al. 2004], and others.
See [Babcock et al. 2002; Muthukrishnan 2006] for surveys of systems and algorithms
for data stream management.

A generalization of the model, the probabilistic stream model, was recently intro-
duced [Jayram et al. 2007]. Here, each item at is not an element of the universe, but
represents a distribution over elements of the universe together with a probability
that the element is not actually present in the stream. The probabilistic stream
model is applicable in a variety of settings in addition to the OLAP model. For
example, a probabilistic stream may be derived from a stream of queries to a
search-engine. Here a query “Stunning Jaguar” would be associated with different
topics of interest, such as “Car”, “Animal”, or “Operating System”, with different
probabilities. There are also instances when the input stream is probabilistic by its
nature: for example, when we measure physical quantities such as light luminosity,
temperature and others, these measurements are taken over many tiny time instants
in the analog world and are inherently noisy. And in some applications, these
measurements are even noisier due to frequent sensor failures and calibration errors.

Previous work on probabilistic streams has included data stream algorithms for
certain aggregate queries [Burdick et al. 2005a; 2006; Jayram et al. 2007]. In this
paper, we improve those results and study additional aggregate functions which are
fundamental in any stream monitoring scenario. We note that some related results
for estimating the expectation and variance of the number of distinct values and
join/self-join sizes of a probabilistic stream have recently been proven independently
of our work [Cormode and Garofalakis 2007]. In what follows, we will first describe
the model precisely and then state our results.

1.2 The Model and Definitions

In this section, we formally define the probabilistic stream model and the aggregate
statistics that we will study.

Definition 1 Probabilistic Stream. A probabilistic stream is a data stream
A = 〈ϑ1, ϑ2, . . . , ϑm〉 in which each data item ϑi encodes a random variable that
takes a value in [n]∪{⊥}. In particular, each ϑi consists of a set of at most l tuples
of the form (j, pi(j)) for some j ∈ [n] and pi(j) ∈ [0, 1]. These tuples define the
random variable Xi where Xi = j with probability pi(j) and Xi = ⊥ otherwise. We
define pi(⊥) = Pr [Xi = ⊥] and pi(j) = 0 if not otherwise determined.

Here, we use ⊥ to denote the null event. For example, when making a query
about repair costs for cars in Santa Clara, a given fact in our database may indicate
that with probability 0.60, a repair cost $500, and with probability 0.40, no repair
happened (denoted by ⊥); often, this absence of a repair entry occurs because the
repair happened in a location not specified in the query, say in Los Angeles.

A probabilistic stream naturally gives rise to a distribution over “deterministic”
streams. Specifically we consider the ith element of the stream to be determined

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

4 · Jayram et al.

according to the random variable Xi and each element of the stream to be determined
independently. Hence,

Pr [〈x1, x2, . . . , xm〉] =
∏

i∈[m]

Pr [Xi = xi] =
∏

i∈[m]

pi(xi) .

Throughout this paper we assume each probability specified in the probability
stream is either 0 or Ω(1/ poly(n)).

We will be interested in the expected value of various quantities of the deterministic
stream induced by a probabilistic stream. Computing the expected value is intuitively
justified, since it is a natural way to summarize the answers of computing Q over
an exponential number of possible streams. A formal justification using desiderata
for handling imprecision in OLAP is given in [Burdick et al. 2005a].

Definition 2 Aggregation Queries. We consider the following aggregates:

(1) SUM = E
[∑

i∈[m]:Xi 6=⊥Xi

]
(2) COUNT = E [|{i ∈ [m] : Xi 6= ⊥}|]

(3) MEAN = E
[∑

i∈[m]:Xi 6=⊥Xi/|{i ∈ [m] : Xi 6= ⊥}|
∣∣|{i ∈ [m] : Xi 6= ⊥}| 6= 0

]
(4) DISTINCT = E [|{j ∈ [n] : ∃i ∈ [m], Xi = j}|]

(5) REPEAT-RATE = E
[∑

j∈[n] |{i ∈ [m] : Xi = j}|2
]

(6) MEDIAN = x such that

dCOUNTe /2 ≥ max{E [|{i ∈ [m] : Xi < x}|] , E [|{i ∈ [m] : Xi > x}|]} .

(7) RANGE = E [maxi(Xi)−mini(Xi) + 1].1

These are fundamental aggregates for stream monitoring, and well-studied in the
classical stream model. For example, REPEAT-RATE in the classical model is the F2

estimation problem studied in the seminal [Alon et al. 1999]. DISTINCT (also known
as F0) and MEDIAN have a long history in the classical data stream model [Munro
and Paterson 1980; Flajolet and Martin 1985]. In the probabilistic stream model,
we do not know of any prior algorithm with guaranteed bounds for these aggregates
except the MEAN (SUM and COUNT are trivial) which, as we discuss later, we will
improve.

As in classical data stream algorithms, our algorithms need to use polylog(n)
space and time per item, on a single pass over the data. It is realistic to assume that
l = O(polylog n) so that processing each item in the stream is still within this space
and time bounds. In most motivating instances, l is likely to be quite small, say
O(1). In fact, it was shown in [Jayram et al. 2007] that l = 1 is sufficient for OLAP
queries. Also, since the deterministic stream is an instance of the probabilistic
stream (with each item in the probabilistic stream being one deterministic item
with probability 1), known lower bounds for the deterministic stream model carry
over to the probabilistic stream model. As a result, for most estimation problems,
there does not exist streaming algorithms that precisely calculate the aggregate.

1While the range of continuous data is usually defined as the maximum value minus the minimum

value, since our data takes values from [n], we include a “+1” term such that 1 ≤ RANGE ≤ n.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Estimating Statistical Aggregates on Probabilistic Data Streams · 5

Space Randomized/Deterministic
MEAN O(log ε−1) Deterministic

DISTINCT O((ε−2 + log n) log δ−1) Randomized
REPEAT-RATE O(ε−2(log n + log m) log δ−1) Randomized

MEDIAN O(ε−2 log m) Deterministic
RANGE O(ε−1 log m) Deterministic

Table I. Streaming Algorithms for Probabilistic Streams. All algorithms are one-pass
with the exception of the algorithm for RANGE that requires two passes and requires
the assumption that COUNT = Ω(log(nε−1)).

Instead, we will focus on returning approximations to the quantities above. We
say a value Q̂ is an (ε, δ)-approximation for a real number Q if |Q̂−Q| ≤ εQ with
probability at least (1− δ) over its internal coin tosses. Many of our algorithms will
be deterministic and return (ε, 0)-approximations. When approximating MEDIAN
it makes more sense to consider a slightly different notion of approximation. We say
x is an ε-approximate median if (1/2 + ε) dCOUNTe is greater than

max{E [|{i ∈ [m] : Xi < x}|] , E [|{i ∈ [m] : Xi > x}|]} .

1.2.1 Related Models. The probabilistic stream model complements a stream
model that has been recently considered where the stream consists of independent
samples drawn from a single unknown distribution [Chang and Kannan 2006;
Guha and McGregor 2007]. In this alternative model, the probabilistic stream
A = 〈ϑ1, . . . , ϑ1〉 consists of a repeated element encoding a single probability
distribution over [n], but the crux is that the algorithm does not have access to
the probabilistic stream. The challenge is to infer properties of the probability
distribution ϑ1 from a randomly chosen deterministic stream. (In this setting it
is assumed that l is large.) There is related work on reconstructing strings from
random traces [Batu et al. 2004; Kannan and McGregor 2005]. Here, each element
of probabilistic stream is of the form {(i, 1− p), (⊥, p)} for some i ∈ [n]. As before,
the algorithm does not have access to the probabilistic stream but rather tries to
infer the probabilistic stream from a limited number of independently generated
deterministic streams. We emphasize that the results in [Batu et al. 2004; Chang
and Kannan 2006; Guha and McGregor 2007; Kannan and McGregor 2005] do not
provide any bounds for estimating aggregates such as the ones we study here when
input is drawn from multiple, known probability distributions.

1.3 Our Results

We present the first single-pass algorithms for estimating the aggregate properties
MEAN, MEDIAN, REPEAT-RATE, and DISTINCT. The algorithms for MEAN and
MEDIAN are deterministic while the other two algorithms are randomized. While
it is desirable for all the algorithms to be deterministic, this randomization can
be shown to be necessary using the standard results in streaming algorithms, eg.,
of Alon, Matias, and Szegedy [Alon et al. 1999, Proposition 3.7]. Our results are
summarized in the Table I.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

6 · Jayram et al.

At first glance, MEAN seems trivial to estimate and this is the case with deter-
ministic streams. SUM and COUNT can indeed be estimated easily since they are
linear in the input and, hence, we can write straightforward formulas to compute
them. However MEAN is not simply SUM/COUNT as shown in [Jayram et al. 2007]
and needs nontrivial techniques.

We present two single-pass, deterministic, (ε, 0)-approximation algorithms for
MEAN. The first using O(log ε−1) words of space while the second, using an
alternative technique, uses O(ε−1/2) space. Furthermore, if COUNT is sufficiently
large then we present a simple algorithm that only needs O(1) words of space.
We further demonstrate a tradeoff between update time and space, additionally
giving a one-pass (ε, 0)-approximation algorithm for MEAN that works in O(1/ε)
words of space, but has update time of just O(1). (The algorithm using O(log ε−1)
words has update time of O(log ε−1).) The best known previous work [Jayram et al.
2007] presents an O(log m) pass algorithm using O(ε−1 log2 m) space. Thus our
algorithms represent a considerable improvement.

Other aggregates such as MEDIAN, REPEAT-RATE, and DISTINCT have previ-
ously known algorithms for deterministic streams. A natural approach therefore
would be to randomly instantiate multiple deterministic streams, apply standard
stream algorithms and then apply a robust estimator. This approach works to an
extent but typically gives poor approximations to small quantities. This is the case
for DISTINCT and we need to develop an alternative strategy for when DISTINCT
is small. For MEDIAN, we show that it is possible to deterministically instantiate a
single deterministic stream and run standard stream algorithms.

Our approach for estimating REPEAT-RATE is somewhat different. REPEAT-RATE
is the expected value of the second frequency moment (recall that the i-th frequency
moment Fi for an input stream of elements from a fixed domain of size n is defined
to be the sum of the i-th power of the frequencies of the different elements in the
stream.) Data stream algorithms for frequency moments are well-studied and use
sophisticated techniques based on hashing to produce high quality estimates. We
show that REPEAT-RATE can be computed in one pass using space and update
time of O(ε−2(log n + log m)), matching the resources used by the well-known data
stream algorithm for F2 [Alon et al. 1999]. Our algorithm exploits some simple but
powerful features of the classical data stream algorithm for F2. We make the general
observation that for any aggregator, an unbiased estimator for that aggregator over
streams is also an unbiased estimator for that aggregator over probabilistic streams.
Now, the basic estimator for F2 simply hashes the stream and then applies a simple
aggregration algorithm on the hashed input. We design a simple algorithm for
this very same aggregator on probabilistic streams. Although this technique works
in general, we have no a priori guarantee that estimators found in this way will
have small variance in the probabilistic-stream setting. Still, we show that the
variance associated with the estimator for F2 is small by analyzing its algebraic
structure. After demonstrating that the variance is small, we appeal to a standard
set of techniques to get the estimate to within the desired relative error with high
confidence.

We finish by considering the problems of answering OLAP-style queries involving
roll-ups and drill-downs in a more efficient manner. Traditionally this is achieved by
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Estimating Statistical Aggregates on Probabilistic Data Streams · 7

keeping a small set of sufficient statistics for queries at lower levels of the dimension
hierarchy so that they can be combined to answer queries at higher levels of the
hierarchy. Ideally, the size of this set should be independent of the size of the
database. For MEAN, we show that it suffices to keep a O(log ε−1)-size set of
sufficient statistics in order to answer such related queries. For F2, it also suffices
to keep a small set of sufficient statistics; for this case, the set-size is O(ε−2). For
MIN/MAX, we show that the algorithm in [Jayram et al. 2007] yields a set of O(ε−1)
sufficient statistics.

2. ESTIMATING MEAN

As has been noted previously in [Burdick et al. 2005a; Jayram et al. 2007], this is
more technically challenging than might be expected. The näıve approach, simply
computing SUM and COUNT and looking at their quotient, fails to be a good
estimator in even simple examples. Consider the example from [Jayram et al. 2007],
in which we have a probabilistic stream {〈1, 1.0〉}, {〈10, 0.1〉}. The true value of
MEAN is 1.45, while the value of SUM/COUNT is approximately 1.81. Despite this,
we will see that SUM/COUNT is a good approximation when COUNT is sufficiently
large.

The difficulty in computing MEAN arises in part since we must divide by the
number of items actually occurring in the stream, a quantity that varies over different
possible worlds. The approach taken in [Jayram et al. 2007] was to rewrite the
expression for the expected value of the average in terms of a generating function.
Taking a derivative of this expression eliminated the division, but then required us
to estimate an integral.

Their computation was based on the observation that only two relevant values
were needed for each probabilistic item (i.e., sufficient statistics): pi, the probability
that item i is not ⊥; and ai, the expected value of item i, given that it is not ⊥.
They then show the following.

Proposition 1 [Jayram et al. 2007]. MEAN can be rewritten as

MEAN = ρ

∫ 1

0

∑
i∈[m]

aipi ·
∏
j 6=i

(1− pj + pjx)dx

where ρ = 1/(1−
∏

i∈[m](1− pi)).

We note that their definition of MEAN assumed that at least one item in the stream
appeared with probability 1. That is, ρ = 1. Under our definition, we allow a stream
to have no certain elements; this is equivalent to the formulation of [Jayram et al.
2007], divided by the probability that the stream contains at least one element (i.e.,
1−

∏
i∈[m](1− pi)). Hence, we have modified the original statement by multiplying

by the proper factor. This does not qualitatively affect any of the arguments, and
we do not belabor the point any further.

The approach of [Jayram et al. 2007] led to an O(log m)-pass algorithm that
estimated the integral; each pass required O(ε−1 log m) update time per item.
Although this may be adequate for off-line applications, it is simply too slow for
on-line applications with large m and small ε. Here, we provide a one-pass algorithm
with update time O(log ε−1), an exponential improvement.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

8 · Jayram et al.

Our approach uses a careful, technically-involved analysis of the integral. We
might hope that a simple Taylor-series expansion would give us a good estimate.
Unfortunately, this approach fails. (To illustrate this, take ai = 1, pi = 1/2 for all i.
Note that the integrand in Proposition 1 is only interesting near x = 1, while the
coefficients of the Taylor series expansion about x = 1 grow exponentially.) However,
by properly rewriting the integral, we get a step closer. Define

g(z) =
∏

i∈[m]

(1− piz), h(z) =
∑

i∈[m]

aipi

1− piz
, and f(z) = g(z)h(z) .

Notice that f(z) is actually a polynomial, and further, f(1− x) is precisely the inte-
grand of Proposition 1. Applying a change of variable to the integral in Proposition 1
(setting z = 1− x), and rewriting somewhat, we see that

MEAN = ρ

∫ 1

0

g(z)h(z)dz .

Not surprisingly, it will be easier to approximate g and h when z is bounded
away from 1. Let P =

∑
i pi = COUNT, and for any ε < 1/2, define z0 =

min{1, 1
P ln(2P/ε)} if P ≥ 1 and z0 = 1 otherwise. We have the following lemma.

(It is actually a special case of Lemma 5 appearing in Section 2.2.)

Lemma 2. Let ε < 1/2, with z0 defined as above. Then

(1− ε)MEAN ≤ ρ

∫ z0

0

g(z)h(z)dz ≤ MEAN .

One of our key insights is that, whereas approximating the integrand directly is
difficult, approximating the functions individually can be done with low-degree
polynomials. A second key insight is that, while approximating h(z) can be done
directly with a Taylor-series expansion, we need to approximate the logarithm of
g(z). If z0 is sufficiently small, say z0 ≤ θ for some θ < 1/2, then the approximations
of ln g(z) and h(z) can be written as Taylor series with quickly converging remainder
terms. However, if z0 is near 1 (which happens when P is small), then we need an
extra trick. In this case, we let θ ∈ [ε, 1/2], and define

I = {i ∈ [m] : pi ≤ θ} and J = [m]− I .

We further define gI(z) =
∏

i∈I(1− piz) and hI(z) =
∑

i∈I
aipi

1−piz
. Then we will see

that the approximations of ln gI(z) and hI(z) converge because the coefficients are
tiny. Further, it is not hard to see that |J | is necessarily small, since P must be
small; in fact, |J | ≤ P/θ. So fJ(z), gJ(z) are already low-degree polynomials; we
simply calculate them. Amazingly, the degree of the approximating polynomials is
independent of m.

With this approach, we can find good approximations to gI(z) and hI(z). But
we are not quite done. Our approximation to hI(z) is a low-degree polynomial,
while our approximation to gI(z) is exp(low-degree polynomial). There is no closed-
form evaluation for the integral of the product of these two expressions. So we
approximate our approximation of g(z), as a polynomial. The details appear in
Section 2.2.
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Estimating Statistical Aggregates on Probabilistic Data Streams · 9

In fact, when P is very large (and I = [m]), h(z) is approximately SUM, while
ln g(z) is approximately −Pz (i.e. polynomials of degree 0 and 1, respectively).
Applying this argument more carefully allows us to bound the error of using
SUM/P = SUM/COUNT to approximate MEAN. We show this in Section 2.1.

Finally, we develop an entirely different approach for approximating the mean in
Section 2.3. Although the bounds we obtain are not as strong, the techniques may
be of independent interest.

2.1 Long Streams

In this subsection, we show that SUM/COUNT is a good approximation to MEAN
when P = COUNT is large. (Somewhat more accurately, we show ρ · SUM/COUNT
is a good approximation.) The techniques we use here will serve as a warm-up to
the more involved analysis of the next subsection. We have the following.

Theorem 1. For any δ ∈ [0, 1) and for any P > 0, we have

ρ
SUM

COUNT
· δ

ln(1
1−δ)

(1− (1− δ)P) ≤ MEAN .

Furthermore, for P ≥ e,

ρ
SUM

COUNT

(
1− 2 ln P

P

)
≤ MEAN ≤ ρ

SUM

COUNT

(
1 +

1
P − 1

)
.

Proof. We first prove the upper bound.

MEAN = ρ
∑

i∈[m]

aipi

∫ 1

0

∏
j 6=i

(1− pjz)dz ≤ ρ
∑

i∈[m]

aipi

∫ 1

0

e−z
P

j 6=i pj dz .

Now, for any i, we have∫ 1

0

e−z
P

j 6=i pj dz ≤
∫ 1

0

e−z(P−1)dz =
e−z(P−1)

−(P − 1)

∣∣∣∣1
0

≤ 1
P − 1

.

Recalling that P = COUNT, we have

MEAN ≤ ρ
∑

i∈[m]

aipi
1

P − 1
= ρ

SUM

P

P

P − 1
= ρ

SUM

COUNT

(
1 +

1
P − 1

)
.

For the other inequality, let δ ∈ [0, 1). We use the fact that h(z) =
∑

i∈[m] aipi(1−
piz)−1 ≥ SUM for all z ≥ 0. Further, noting that 1− y ≥ (1− δ)y/δ for y ∈ [0, δ],
we get that for z ≤ δ,

g(z) =
∏

i∈[m]

(1− piz) ≥
∏

i∈[m]

(1− δ)piz/δ = (1− δ)Pz/δ .

Putting this together, we have

MEAN = ρ

∫ 1

0

g(z)h(z)dz ≥ ρ

∫ δ

0

(1− δ)Pz/δ · SUMdz

= ρ
SUM

COUNT
· δ

ln(1
1−δ)

(1− (1− δ)P) ,

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

10 · Jayram et al.

proving the first inequality.
Examining the Taylor series reveals that − ln(1 − δ) =

∑∞
i=1 δi/i ≤ δ + δ2 for

δ ≤ 1/2. Hence,

δ

ln(1
1−δ)

≥ 1
1 + δ

≥ 1− δ for δ ≤ 1/2.

So we have, for δ ≤ 1/2,

MEAN ≥ ρ
SUM

COUNT
(1− δ)(1− (1− δ)P) ≥ ρ

SUM

COUNT
(1− δ)(1− e−δP) .

Setting δ = ln P/P , and noting lnP/P ≤ 1/e ≤ 1/2 for P ≥ e, we have for P ≥ e,

MEAN ≥ ρ
SUM

COUNT
(1− 2 ln P/P) .

With some algebra, we have the following corollary.

Corollary 3. For any ε < 1, if P ≥ 4
ε ln(2/ε), then

(1− ε)ρ
SUM

COUNT
≤ MEAN ≤ (1 + ε)ρ

SUM

COUNT

Proof. We first prove the lower bound. Since P ≥ 4
ε ln(2/ε), we have

2 ln P

P
≤

2 ln(4
ε ln(2/ε))

4
ε ln(2/ε)

=
2(ln 2 + ln(2

ε) + ln ln(2/ε))
4
ε ln(2/ε)

<
4 ln(2/ε)
4
ε ln(2/ε)

= ε ,

where the second line follows because ln 2 + ln ln(2/ε) < ln(2/ε) for ε < 1.
For the upper bound, note that since ε < 1 and P ≥ 4

ε ln(2/ε), we have that
P > 2. Hence, P − 1 > P/2. So we have

1
P − 1

<
2
P
≤ 2

4
ε ln(2/ε)

< 2/(4/ε) = ε/2

The proof follows.

Therefore, in the case that we know COUNT (i.e., P) is very large, or when we
are not concerned with estimating MEAN extremely well, then the simple method
of using SUM/COUNT works well. However, when COUNT is small or we need to
be very accurate then using SUM/COUNT provides an inadequate estimate. We
address this in the next subsection.

2.2 Short Streams

We now give an extremely efficient one-pass streaming algorithm that estimates
MEAN within a multiplicative (1 + ε) factor. Remarkably, both the update time
and the number of memory registers are independent of m, the number of items in
the stream. It is also interesting that the algorithm is entirely deterministic, so it is
guaranteed to return a good estimate. In contrast to typical streaming algorithms,
there is no chance of failure.

We note that throughout this section, we may assume that P < (4/ε) ln(2/ε),
since the last section showed that there is a simple algorithm for P greater than
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Estimating Statistical Aggregates on Probabilistic Data Streams · 11

this value. Let ε < 1/2, and θ ∈ [ε, 1/2]. Our datastream algorithm maintains∑
i∈[m]

pk
i and

∑
i∈[m]

aip
k
i for k ∈ [O

(
log(1/ε)
log(1/θ)

)
] ,

where the exact values for k are given below. In addition, we also remember the
values aj , pj for every j such that pj > θ, until P ≥ (3/θ) ln(2/ε). (Notice that we
will need to remember at most (3/θ2) ln(2/ε) such values.) Using these maintained
values, we can quickly compute a (1 + 5ε)-approximations for MEAN. The full
pseudocode for this algorithm is given in the appendix.

Somewhat more formally, let I = {i ∈ [m] : pi ≤ θ} if P < (3/θ) ln(2/ε), and let
I = [m] otherwise. Let J = [m]− I, and define

Pk =
∑
i∈I

pk
i , Ak =

∑
i∈I

aip
k
i , fJ(z) =

∑
i∈J

aipi

∏
j∈J

j 6=i

(1− pjz), gJ(z) =
∏
j∈J

(1− pjz) .

Note that given the maintained values, it is easy to calculate fJ(z), gJ(z) and
Pk, Ak for k = 1, 2, . . . , O(log(1/ε)/ log(1/θ)). We have our main result:

Theorem 2. Let ε < 1/2, θ ∈ [ε, 1/2], and define Pk, Ak, I, J ,fJ ,gJ as above
and ρ = 1/(1−

∏
i∈[m](1− pi)), and suppose that P < 4

ε ln(2/ε). If P ≥ 1, define
` to be the smallest even integer greater than or equal to 5 ln(2P/ε) and define
z0 = min{1, 1

P ln(2P/ε)}; if P < 1, define ` to be the smallest even integer greater
than or equal to max{ln(2/ε), 7} and define z0 = 1. Define

M̃EAN =
ρ

1− ε

∫ z0

0

k0∏
i=1

∑̀
j=0

(−Piz
i)j

j! · ij

(fJ(z) + gJ(z)
k1∑

i=0

Ai+1z
i

)
dz

where k0 = 2 ln(2/ε)/ ln(1/θ), k1 = ln(2/ε)/ ln(1/θ). Then

MEAN ≤ M̃EAN ≤ (1 + 5ε)MEAN .

Before proving this main result, we first note an important corollary, which follows
from Corollary 3 and Theorem 2.

Corollary 4. Fix ε < 1/2 and θ ∈ [ε, 1/2]. There is a single-pass (ε, 0)-
approximation datastream algorithm for MEAN with update time O(ln(1/ε)/ ln(1/θ))
and using O(θ−2 ln(1/ε) + ln(1/ε)/ ln(1/θ)) registers2. In order to transform the
maintained sketch into an estimate for MEAN, the algorithm takes an additional
time of O(ln(1/ε) · (θ−2 + ln2(1/ε)) · (ln ln(1/ε) + ln(1/θ))). Here, we assume that
arithmetic operations take O(1) time, and probabilities and values are representable
in O(log n) space. In particular,

—Setting θ = 1/e yields an (ε, 0)-approximation for MEAN with update time
O(ln(1/ε)), using O(ln(1/ε) ln(mn)) space, and with O(ln3(1/ε) ln ln(1/ε)) re-
construction time.

—Setting θ = ε1/2 yields an (ε, 0)-approximation for MEAN with update time O(1),
using O(1

ε ln(mn)) space, and with reconstruction time of O(ε−1 ln2(1/ε)).

2We assume a single register may store O(log m + log n) bits

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

12 · Jayram et al.

Proof. The algorithm simply maintains the value

P big
k =

∑
i∈[m]

pk
i and P small

k =
∑

i∈[m]:pi≤θ

pk
i

for k ∈ [k0], where k0 is defined as in Theorem 2. It also maintains

Abig
k =

∑
i∈[m]

aip
k
i and Asmall

k =
∑

i∈[m]:pi≤θ

aip
k
i

for k ∈ [k1], where k1 is as in Theorem 2 (hence, k0, k1 ∈ O(ln(1/ε)/ ln(1/θ))). We
also maintain the value ρ. Finally, we store the values of ai, pi for all i such that
pi > θ, until P = P big

1 ≥ (3/θ) ln(2/ε). If P ever grows larger than (3/θ) ln(2/ε),
then we may throw away the stored values of the ai, pi, as well as the value of P small

k

and Asmall
k for all k. If P ever grows larger than 4

ε ln(2/ε), then we may throw away
all of the maintained values except for P big

1 = SUM, Abig
1 = COUNT, and ρ. (Notice

that if P < (3/θ) ln(2/ε), then P small
k = Pk and Asmall

k = Ak; otherwise P big
k = Pk

and Abig
k = Ak. Notice additionally that maintaining P small

k , P big
k and the values pi

for all pi > θ is somewhat redundant—and likewise for the Ak. However, we include
it for clarity.)

Clearly, the update time for this algorithm is O(k0 + k1 + 1) = O(ln(1/ε)).
Furthermore, the number of i such that pi > θ is at most P/θ. Since we stop storing
these values once P > (3/θ)/ ln(2/ε), this takes at most 3θ−2 ln(2/ε) registers.
Hence, the total number of registers is at most

O(2k0 + 2k1 + 3θ−2 ln(2/ε)) = O(θ−2 ln(1/ε) + ln(1/ε)/ ln(1/θ)) .

If P ≥ 4
ε ln(2/ε), the algorithm outputs the value ρ/(1− ε) · (SUM/COUNT). By

Corollary 3, this is a (5ε, 0)-approximation.
Otherwise, the algorithm outputs the value of M̃EAN as defined in Theorem 2.

Note that we have maintained sufficient information to obtain this value (and the
value of z0, which depends on P , is not needed until reconstruction time). The time
to evaluate M̃EAN is dominated by the time to multiply the various polynomials in
the integrand; once this polynomial is found, integration is simple. But the total
degree of the polynomial is at most

k2
0` + k1 + |J | ≤ k2

0` + k1 + 3θ−2 ln(2/ε) = O(ln3(1/ε) + θ−2 ln(1/ε)) .

Multiplying polynomials whose product has degree d can be done in O(d log d) time
(see [Lipson 1981]). Hence, the reconstruction time follows.

Finally, the above proof provides a (5ε, 0)-approximation. Of course, applying
the same technique using ε/5 yields the desired (ε, 0)-approximation.

We now proceed with the proof of Theorem 2. In order to accommodate the fact
that we may need to remember ai, pi for all i such that pi > θ, we need a slight
generalization of Lemma 2. Recall that

gI(z) =
∏
i∈I

(1− piz), hI(z) =
∑
i∈I

aipi

1− piz
.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Estimating Statistical Aggregates on Probabilistic Data Streams · 13

Using the fact that g(z) = gI(z)gJ (z), that h(z) = hI(z) + hJ (z), and that fJ (z) =
gJ(z)hJ(z), we see

MEAN = ρ

∫ 1

0

g(z)h(z)dz = ρ

∫ 1

0

gI(z)gJ(z)(hI(z) + hJ(z))dz

= ρ

∫ 1

0

gI(z)(hI(z)gJ(z) + fJ(z))dz .

The following lemma shows that the mass of the integrand is concentrated near
z = 0.

Lemma 5. Let ε < 1/2. Further, define z0 = min{1, 1
P ln(2P/ε)} for P ≥ 1, and

z0 = 1 otherwise. Then for any I ⊆ [n], J = [n]− I,

(1− ε)MEAN ≤ ρ

∫ z0

0

gI(z)(hI(z)gJ(z) + fJ(z))dz ≤ MEAN .

Proof. We may assume z0 = 1
P ln(2P/ε), for otherwise z0 = 1 and the lemma

follows trivially. Thus, we may also assume P ≥ 1.
Notice that for any I, J = [n]− I,

gI(z)(hI(z)gJ(z) + fJ(z)) = gI(z)gJ(z)(hI(z) + hJ(z)) = f(z) .

Next, note that f(z) is a decreasing function on [0, 1]:

For all i ∈ [n],
∂

∂z

 ∏
j∈[n],j 6=i

(1− pjz)

 < 0

Hence,

∂

∂z
f =

∂

∂z

∑
i

aipi

∏
j 6=i

(1− pjz)

 =
∑

i

aipi
∂

∂z

 ∏
j∈[n],j 6=i

(1− pjz)

 < 0 .

So we have ∫ 1

z0

f(z)dz ≤ f(z0)(1− z0) = g(z0)h(z0)(1− z0)

=
∏

i

(1− piz0)
∑

i

aipi

1− piz0
(1− z0)

≤ e−Pz0
∑

i

aipi = SUM · e−Pz0 .

Recalling that z0 = ln(2P/ε)
P , we see that e−Pz0 = ε

2P . Hence,

ρ

∫ 1

z0

f(z)dz ≤ ρSUM
ε

2P
=

ε

2
ρ

SUM

COUNT
.

We now appeal to Theorem 1. Recall that

MEAN ≥ ρ
SUM

COUNT
· δ

ln(1
1−δ)

(1− (1− δ)P)

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

14 · Jayram et al.

for any δ ∈ [0, 1). Since, by our assumption, z0 = 1
P ln(2P/ε) ≤ 1, we see that

P ≥ ln(2/ε) > ln 4 since ε < 1/2. Using P ≥ ln 4 and δ = 1/2 in the above
inequality yields

MEAN ≥ ρ

2
SUM

COUNT
.

Hence, we see that

ρ

∫ 1

z0

f(z)dz ≤ ε

2
ρ

SUM

COUNT
≤ εMEAN .

So we have

MEAN = ρ

∫ z0

0

f(z)dz + ρ

∫ 1

z0

f(z)dz ≤ ρ

∫ z0

0

f(z)dz + εMEAN .

Hence, ρ
∫ z0

0
f(z)dz ≥ (1−ε)MEAN. The other side of the inequality follows trivially

since z0 ≤ 1.

Define

g̃k(z) = exp

− k∑
j=1

Pj

j
zj

 and h̃k(z) =
k∑

j=0

Aj+1z
j .

We will show that these are good approximations to gI , hI , respectively. The key
idea is that for large P , z0 is small, while for small P , Pi and Ai decrease as θi.
More specifically, we have the following claim.

Claim 6. For all i > 0 and 0 ≤ z ≤ z0, we have Piz
i ≤ (Pz)θi−1 and Ai+1z

i ≤
A1θ

i.

Proof. First, note that (c + lnx)/x is a decreasing function for x ≥ e and
constant c > 0. Hence, when P ≥ (3/θ) ln(2/ε) > e, we have

z0 ≤
ln(2P/ε)

P
≤ ln(2/ε) + ln((3/θ) ln(2/ε))

(3/θ) ln(2/ε)
=

ln(2/ε) + ln(2/ε) + ln(3
2

ε
θ ln(2/ε))

(3/θ) ln(2/ε)

≤ 3 ln(2/ε)
(3/θ) ln(2/ε)

= θ ,

where the last line follows since 3
2

ε
θ ≤

3
2 < 2/ε for ε < 1/2 and θ ≥ ε. So in the case

that P ≥ (3/θ) ln(2/ε), we have (by definition) J = ∅, and Pkzk =
∑

i∈[n] p
k
i zk ≤

Pzθk−1 for z ≤ z0.
On the other hand, if P < (3/θ) ln(2/ε), then I contains only indices i such that

pi ≤ θ. Hence, Pkzk =
∑

i∈I pk
i zk ≤

∑
i∈I pk

i z ≤ Pzθk−1 for z ≤ z0 ≤ 1.
So in both cases, Pkzk ≤ Pzθk−1. A similar argument shows that Ak+1z

k ≤ A1θ
k

for z ≤ z0.

With the claim in hand, we are ready to show that g̃k and h̃k are good approxi-
mations.

Lemma 7. Define g̃k0 and h̃k1 as above, and let k0 ≥ 2 ln(2/ε)/ ln(1/θ) and
k1 ≥ ln(2/ε)/ ln(1/θ). Then

gI(z) ≤ g̃k0(z) ≤ (1 + ε)gI(z) and hI(z) ≤ h̃k1(z) ≤ (1 + ε)hI(z) .

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Estimating Statistical Aggregates on Probabilistic Data Streams · 15

Proof. We first do a Taylor series expansion for the logarithm of gI(z). (The
series is absolutely convergent for z ∈ [0, 1), so we do not go through the formality
of writing the above expression as a finite sum with a remainder term that goes to
0.)

ln gI(z) =
∑
i∈I

ln(1− piz) = −
∑
i∈I

∑
j≥1

pj
iz

j

j
= −

∑
j≥1

Pj

j
zj .

Hence, using Claim 6, we see

0 ≤ ln g̃k0(z)− ln gI(z) ≤
∑

j≥k0+1

Pjz
j

j
≤ Pz0

k0 + 1

∑
j≥k0+1

θj−1 ≤ Pz0

k0 + 1
2θk0

since θ ≤ 1/2. For k0 ≥ (ln(2/ε) + ln(Pz))/ ln(1/θ) (assuming k0 ≥ 1), this bounds
the error by ε/2. But if P ≥ 1, the value of Pz0 is bounded above by ln(2P/ε),
while otherwise, Pz0 < 1. Hence, the error is bounded by ε/2 so long as

k0 ≥ (ln(2/ε) + ln(max{ln(2P/ε), 1}))/ ln(1/θ) .

Since 2/ε > max{ln(2P/ε), 1} for P ≤ 4ε−1 ln(2/ε) and ε < 1/2, this implies that
the error is still bounded by ε/2 for k0 ≥ 2 ln(2/ε)/ ln(1/θ). Thus,

gI(z) ≤ g̃k0(z) ≤ gI(z) · exp(ε/2) ≤ gI(z)(1 + (e− 1)ε/2)) ≤ gI(z)(1 + ε) .

where the second line follows from the fact that ey ≤ 1 + (e− 1)y for all y ∈ [0, 1].
We now approximate hI(z) using a Taylor series expansion. We have

hI(z) =
∑
i∈I

aipi

1− piz
=
∑
i∈I

aipi

∑
j≥0

pj
iz

j =
∑
j≥0

Aj+1z
j .

Hence,

0 ≤ hI(z)− h̃k1(z) ≤
∑

j≥k1+1

Aj+1z
j ≤

∑
j≥k1+1

A1θ
j ≤ hI(z) · θk1

since θ ≤ 1/2. Hence, for k1 ≥ ln(2/ε)/ ln(1/θ),

hI(z) ≤ h̃k1(z) ≤ (1 + ε)hI(z) .

Thus we have reduced the problem to that of estimating∫ z0

0

g̃k0(z)(fJ(z) + gJ(z)h̃k1(z))dz

where k0 = 2 ln(2/ε)/ ln(1/θ) and k1 = ln(2/ε)/ ln(1/θ). Unfortunately, g̃k0 is not a
polynomial, hence integrating is difficult. So we now expand it.

Lemma 8. Let ε < 1/2. If P ≥ 1, let ` be the smallest even integer greater than
5 ln(2P/ε); otherwise, let ` be the smallest even integer greater than max{ln(2/ε), 7}.
Then, for z ≤ z0,

g̃k0(z) ≤
k0∏

i=1

∑̀
j=0

1
j!

(−Piz
i)j

ij

 ≤ (1 + ε)g̃k0(z) .

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

16 · Jayram et al.

Proof. Recall that g̃k(z) =
∏k

i=1 exp
(

Pi

i zi
)
. We expand exp(−Piz

i/i) as

exp(−Piz
i/i) =

∑̀
j=0

1
j!

(−Piz
i)j

ij
+ Ri(z) ,

where Ri(z) =
∑

j≥`+1
1
j!

(−Piz
i)j

ij . We will first bound Ri(z).
First, consider the case that P ≥ 1. From Claim 6, we note that Piz

i ≤ (Pz)θi−1 ≤
ln(2P/ε)θi−1. Consider the absolute value for an individual term in the series for
Ri(z):

1
j!

(Piz
i)j

ij
≤
(

e

j

)j (ln(2P/ε)θi−1

i

)j

=
(

e ln(2P/ε)
j

)j (
θi−1

i

)j

.

Since j ≥ ` + 1 > 5 ln(2P/ε), we see that (the absolute values of) these terms are
decreasing (in j). Since the series is alternating and ` is even, we see that Ri(z) is
bounded by its j = ` + 1 term:

0 ≤ −Ri(z) ≤ −1
(` + 1)!

(−Piz
i)`+1

i`+1
≤
(

e ln(2P/ε)
` + 1

)`+1(
θi−1

i

)`+1

.

Since ` > 5 ln(2P/ε) and θ ≤ 1/2, we have

−Ri(z) ≤
(

e ln(2P/ε)
5 ln(2P/ε)

)5 ln(2P/ε)+1(1
i2i−1

)
≤ (e/5)5 ln(2P/ε) 1

i2i−1
< e−2 ln(2P/ε)

(
1

i2i−1

)
=
(ε

2P

)2
(

1
i2i−1

)
<

(
1

i2i

)
ε ·
(ε

2P

)
.

Note that since z0 ≤ ln(2P/ε)/P , we have that Pz0 ≤ ln(2P/ε), hence e−Pz0 ≥
ε/(2P). Furthermore, we have that Piz

i ≤ Pz0θ
i−1 < Pz0 for z ≤ z0. So e−Pz0 ≤

e−Piz
i/i. Putting this together, we see that

−Ri(z) <

(
1

i2i

)
ε ·
(ε

2P

)
<

(
1

i2i

)
ε · e−Pz0 ≤

(
1

i2i

)
ε · e−Piz

i/i .

Now, consider the case P < 1. Note that the absolute values of the terms in
the series for Ri(z) are again decreasing: in this case, is follows simply because
Piz

i/i < 1. So, again, since the series is alternating and ` is even, we may bound
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Estimating Statistical Aggregates on Probabilistic Data Streams · 17

Ri(z):

0 ≤ −Ri(z) ≤ −1
(` + 1)!

(−Piz
i)`+1

i`+1
≤
(

e

` + 1

)`+1((Pz)θi−1

i

)`+1

≤
(

e

` + 1

)`+1(1
i2i−1

)
≤
(e

9

)`+1
(

1
i2i−1

)
≤
(

1
e

)ln(2/ε)+1(1
i2i−1

)
≤
(

1
e

)(
1

i2i

)
ε

where the fifth inequality follows since ` ≥ 8 and the sixth inequality follows since
` ≥ ln(1/ε) and e/9 < 1/e. In this case, note that Piz

i/i < 1, hence e−Piz
i/i > 1/e.

Thus, −Ri(z) <
(

1
i2i

)
ε · e−Piz

i/i.
So in both cases, we see that

0 ≤ −Ri(z) ≤
(

1
i2i

)
ε · e−Piz

i/i .

We now bound our expression. We have

k0∏
i=1

∑̀
j=0

1
j!

(−Piz
i)j

ij

 =
k0∏

i=1

(
e−Piz

i/i −Ri(z)
)
≥

k0∏
i=1

(
e−Piz

i/i
)

= g̃k0(z)

since Ri(z) ≤ 0. To bound the other side, we combine our bound for −Ri(z)
obtained above with the following claim, whose proof appears in the appendix.

Claim 9. For all k > 0 and for ε < 1/2,

k∏
i=1

(1 +
1

i2i
ε) ≤ (1 +

k

k + 1
ε) .

Given this, we have

k0∏
i=1

∑̀
j=0

1
j!

(−Piz
i)j

ij

 =
k0∏

i=1

(
e−Piz

i/i −Ri(z)
)

≤
k0∏

i=1

(
e−Piz

i/i

(
1 +

1
i2i

ε

))

=
k0∏

i=1

(
e−Piz

i/i
) k0∏

i=1

(
1 +

1
i2i

ε

)
≤ (1 + ε)g̃k0(z) .

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

18 · Jayram et al.

To complete the proof of the theorem, we combine our lemmas:

M̃EAN =
ρ

1− ε

∫ z0

0

k0∏
i=1

∑̀
j=0

(−Piz
i)j

j! · ij

(fJ(z) + gJ(z)
k1∑

i=0

Ai+1z
i

)
dz

≤ (1 + ε)
ρ

1− ε

∫ z0

0

g̃k0(z)
(
fJ(z) + gJ(z)h̃k1(z)

)
dz by Lemma 8

≤ (1 + ε)3

1− ε
ρ

∫ z0

0

gI(z)(fJ(z) + gJ(z)hI(z)) dz by Lemma 7

≤ (1 + ε)3

1− ε
MEAN by Lemma 5

≤ (1 + 5ε)MEAN .

The other side follows similarly:

M̃EAN =
ρ

1− ε

∫ z0

0

k0∏
i=1

∑̀
j=0

(−Piz
i)j

j! · ij

(fJ(z) + gJ(z)
k1∑

i=0

Ai+1z
i

)
dz

≥ ρ

1− ε

∫ z0

0

g̃k0(z)
(
fJ(z) + gJ(z)h̃k1(z)

)
dz by Lemma 8

≥ ρ

1− ε

∫ z0

0

gI(z)(fJ(z) + gJ(z)hI(z)) dz by Lemma 7

≥ MEAN by Lemma 5 .

2.3 Short Streams (Alternative Approach)

In this section, we briefly discuss an alternative idea in the short stream case that
may be of independent interest, although the space and time bounds are not as
good as those of the algorithm in the previous section. For the duration of this
section let Y and Z be the random variables defined by,

Y =
∑

i:Xi 6=⊥

Xi and Z = |{i ∈ [m] : Xi 6= ⊥}| .

The main idea behind our algorithm is that if COUNT is not large then it is
sufficient to estimate MEAN from Pr [Z = z] and E [Y |Z = z] for a relatively small
range of values of z.

Theorem 3. There is a single-pass (ε, 0)-approximation of MEAN that uses
O(ε−1/2(log n + log m + log ε−1)) space.

Proof. Let c = 9ε−1 ln(mnε−1). First, if COUNT ≥ c then by Corollary 3,
SUM/COUNT is an (ε, 0)-approximation of MEAN. Alternatively, assume that
COUNT ≤ c.

For j ∈ [m], let

Zj = |{i ∈ [j] : Xi 6= ⊥}| and Yj =
∑

i≤j:Xi 6=⊥

Xi .

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Estimating Statistical Aggregates on Probabilistic Data Streams · 19

Algorithm 1 Stream Algorithm for MEAN

Takes, ε, θ as input, with θ ∈ [ε, 1/2], ε < 1/2.

Initialization:
Set k0 := 2 ln(2/ε)/ ln(1/θ) and k1 := ln(2/ε)/ ln(1/θ).

Initialize P big
k = P small

k := 0 for all k ∈ [k0].

Initialize Abig
k = Asmall

k := 0 for all k ∈ [k1].

Initialize t := 0. // t tracks the number of indices in J that we have seen so far.

Initialize α = 1 // We will maintain α =
Q

i(1 − pi).

Update: Item (ai, pi) arrives.
Update α := α · (1 − pi).

Increment P big
k := P big

k + pk
i for all k ∈ [k0].

Increment Abig
k := Abig

k + aip
k
i for all k ∈ [k1].

if P big
1 < (3/θ) ln(2/ε), then:

if pi > θ, then:

Increment t by one.

Store the values of bt := ai and qt := pi.

else

Increment P small
k := P small

k + pk
i for all k ∈ [k0].

Increment Asmall
k := Asmall

k + aip
k
i for all k ∈ [k1].

endif

endif

Reconstruction:
Set ρ := 1/(1 − α).

Set z0 := min{1, 1
P

ln(2P/ε)} if P big
1 ≥ 1; otherwise, set z0 = 1.

Set ` := 2d(5/2) ln(2P/ε)e if P big
1 ≥ 1; otherwise, set ` := 2dmax{ 1

2
ln(2/ε), 7/2}e.

if P big
1 ≥ 4

ε
ln(2/ε), then:

return ρAbig
1 /P big

1 .

endif

if P big
1 ≥ 3

θ
ln(2/ε), then:

Calculate Q(z) = ρ
1−ε

Qk0
i=1

„P`
j=0

(−P
big
i zi)j

j!·ij

«“Pk1
i=0 Abig

i+1z
i
”

else

Calculate Q(z) = ρ
1−ε

Qk0
i=1

“P`
j=0

(−P small
i zi)j

j!·ij

”
·
„Pt

i=1 biqi

Q
j∈[t]
j 6=i

(1 − qjz) +
Q

j∈[t](1 − qjz)
Pk1

i=0 Asmall
i+1 zi

«
endif

Let Qi denote the coefficient for zi in Q(z).

Initialize estimate := 0. // We now integrate Q(z) from 0 to z0.

for i := 0 to degree(Q):

Increment estimate := estimate + Qiz
i+1
0 /(i + 1).

endfor

return estimate.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

20 · Jayram et al.

Note that E [Ym] = SUM and E [Zm] = COUNT. For j, z ∈ [m], let

Aj,z = Pr [Zj = z] and Bj,z =
∑

y

y Pr [Yj = y, Zj = z] .

First note that for j, z ∈ [m],

Aj,z = Aj−1,z−1pj + Aj−1,z(1− pj)

where A0,z = 1 if z = 0 and 0 otherwise. Similarly,

Bj,z =
∑

y

y
(
Pr [Yj−1 = y, Zj−1 = z,Xj = ⊥]

+
∑

a

Pr [Yj−1 = y − a, Zj−1 = z − 1, Xj = a]
)

= (1− pj)Bj−1,z + pj

∑
a,y

Pr [Xj = a|Xj 6= ⊥] y Pr [Yj−1 = y − a, Zj−1 = z − 1]

= (1− pj)Bj−1,z + pj

∑
a

Pr [Xj = a|Xj 6= ⊥] (aPr [Zj−1 = z − 1] + Bj−1,z−1)

= (1− pj)Bj−1,z + pj(E [Xj |Xj 6= ⊥]Aj−1,z−1 + Bj−1,z−1)

and B0,z = 0 for all z. Hence, given Aj−1,z and Bj−1,z for all z, it is possible to
compute Aj,z and Bj,z on seeing the ϑj .

In the rest of the proof we argue that ignoring any values of Aj,z or Bj,z that
are smaller than some carefully chosen value β ensures that a) there are at most
O(
√

εc) values of z such that Aj,z or Bj,z are non-zero and b) the error in the final
answer is sufficiently small.

First note that if each of the above calculations is performed with additive error
β, a simple induction argument shows that Aj,z is computed with error,

(pj + 1− pj)(j − 1)β + β = jβ .

Similarly, Bj,z is computed with error at most,

(1− pj)n(j − 1)2β + pj(n(j − 1)β + n(j − 1)2β) + β ≤ j2nβ .

Therefore β = εm−2n−2 suffices to compute

MEAN =
∑
y,z

Pr [Y = y, Z = z] y/z =
∑

z

Bm,z/z

with additive-error at most ε which translates into a relative-error since the quantity
being estimated is Ω(1).

Secondly, note that because E [Zj] < c,

Pr
[
|Zj − E [Zj] | ≥

√
εc
]
≤ 2 exp(εc/3) < β/n ,

by an application of the Chernoff-Hoeffding bound. Hence, for each j ∈ [m], there
at most O(

√
εc) values of z such that Aj,z or Bj,z (noting Bj,z ≤ nAj,z) are greater

than β.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Estimating Statistical Aggregates on Probabilistic Data Streams · 21

3. ESTIMATING DISTINCT ITEMS

In this section, we present an (ε, δ)-approximation algorithm for DISTINCT, i.e., the
expected value of F0. Even with deterministic streams, approximating DISTINCT
is nontrivial. Of course, with no memory limitations, the problem becomes much
easier. But when space is bounded, the solution requires more work. A now standard
deterministic stream technique from [Flajolet and Martin 1985] approaches the
problem in the following way: Each item is hashed to a random value between 0
and 1 (so items with identical values will always be hashed to the same value). We
track only the minimum hashed value. Intuitively, we expect that if this minimum
value is 1/k, then there are about k − 1 distinct values. More accurate algorithms,
such as that found in [Bar-Yossef et al. 2002], build on this basic idea.

A major part of our algorithm, in contrast to the algorithm from MEAN, is to
actually randomly instantiate a deterministic stream. However, this approach will
only give an (ε, δ)-approximation in small space if the expected number of distinct
values is not very small. In the following theorem, we show that it is possible to
also deal with this case. Furthermore, the random instantiation will be performed
in a slightly non-obvious fashion for the purpose of achieving a tight analysis of the
appropriate probability bounds.

Theorem 4. We can (ε, δ)-approximate DISTINCT in a single pass and taking
O((ε−2 + log n) log δ−1) space.

Proof. First note that,

DISTINCT =
∑
j∈[n]

1−
∏

i∈[m]

(1− pi(j))

 .

Consider COUNT =
∑

i∈[m],j∈[n] pi(j). Then DISTINCT ≤ COUNT by the union
bound and

e−COUNTCOUNT ≤ 1− e−COUNT ≤ 1−
∏

i∈[m]

pi(⊥) ≤ DISTINCT .

(The first inequality follows because e−00 = 1−e−0 and the derivative of e−xx is less
than the derivative of 1− e−x for x > 0.) Hence if COUNT ≤ ln(1+ ε) then COUNT
is an (ε, 0)-approximation for DISTINCT. We now assume that COUNT > ln(1 + ε)
and hence

DISTINCT ≥ ln(1 + ε)e− ln(1+ε) ≥ ε/2

assuming ε is sufficiently small.
Let c1 = 33 · 2ε−3 ln(4/δ) and consider the following algorithm:

(1) For k ∈ [c1] and each tuple (j, pi(j)) in ϑi: place jc1 + k in an induced stream
A′ with probability pi(j).

(2) Compute an (ε/3, δ/2)-approximation X of F0(A′)/c1 using the algorithm of
[Bar-Yossef et al. 2002].

Claim 10. Pr [|Z − DISTINCT| ≤ εDISTINCT/3] ≤ δ/2 where Z = F0(A′)/c1.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

22 · Jayram et al.

Proof. By linearity of expectation E [Z] = DISTINCT. Furthermore, note that
c1Z can be thought of as the sum of nc1 independent boolean trials corresponding
to whether each jc1 + k appears in A′ (some trials may have zero probability of
success) and hence,

Pr
[
|Z − DISTINCT|

DISTINCT
≤ ε

3

]
≤ 2 exp

(
−ε2c1DISTINCT

27

)
≤ 2 exp

(
−ε3c1

2 · 27

)
=

δ

2
.

The result follows because X is a (ε/3, δ/2)-approximation of F0(A′)/c1. The space
bound follows since all that is required the O((ε−2 + log n) log δ−1) space used by
the algorithm of [Bar-Yossef et al. 2002].

4. ESTIMATING REPEAT-RATE

In this section, we address the problem of computing frequency moments on proba-
bilistic data, with a particular application to the second frequency moment. For
an input ~a = (a1, a2, . . . , am) over a domain [n], let fa denote the frequency of
element a in ~a. We define Fk(~a) =

∑
a fk

a . We write the expected value of F2 as
REPEAT-RATE.

We assume that each item in the data stream, ϑi, is of the form {(ai, pi)}. Let (~a, ~p)
denote a probabilistic stream where ~a = (a1, a2, . . . , am) and ~p = (p1, p2, . . . , pm).
Let h be a function (chosen randomly according to some distribution), and let h(~a)
denote the vector obtained by applying h to each element in ~a. The following simple
lemma shows that any unbiased estimator working over streams is also an unbiased
estimator working over probabilistic streams.

Lemma 11. Let Q and Q′ be two aggregate functions such that Q(~b) = Eh[Q′(h(~b))]
for any input ~b over the base domain. Let Q(~a, ~p) denote the expected value of Q(~b)
where ~b is a deterministic stream chosen according to the distribution specified by
(~a, ~p). Similarly for Q′(~a, ~p). Then, for any probabilistic stream (~a, ~p),

Q(~a, ~p) = Eh[Q′(h(~a), ~p)] ,

i.e., Q′(h(~a), ~p) is an unbiased estimator of Q(~a, ~p).

Proof. For any possible world, let ~b = (b1, . . . , bm) denote the subset of ~a that
appears in that world. The premise of the lemma implies that Q(~b) = Eh[Q(h(~b))].
Taking the expected value over possible worlds, and interchanging the expectation
on the right hand side yields the lemma.

Thus, given an unbiased estimator for streams, our task reduces to finding an
algorithm that efficiently computes the estimator over probabilistic streams. In
fact, this technique is useful in deriving one-pass probabilistic stream algorithms
for a variety of frequency moments. Although these algorithms have approximately
the correct expectations, showing that they are tightly concentrated about their
expected values must be done on an algorithm-by-algorithm basis. Here, we apply
the method to approximating REPEAT-RATE.

Let us first briefly review the classical algorithm for F2 over streams [Alon et al.
1999]. Let H denote a uniform family of 4-wise independent hash functions such
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Estimating Statistical Aggregates on Probabilistic Data Streams · 23

that h : [n] → {−1,+1} for each h ∈ H. In other words, h(z1), h(z2), h(z3), and
h(z4)) are independent over the random choice of h for any distinct z1, z2, z3,
and z4. For an input ~a = (a1, a2, . . . , am), and a hash function h ∈ H, define the
estimator Bh = (

∑
i h(ai))2. Note that this can be computed in one pass. It is

well-known that Eh[Bh] = F2(~a) and that Varh[Bh] ≤ 2F2(~a)2. Let the aggregator
Sum2(b1, b2, . . .) denote square of the sum of the input values, (

∑
i bi)2.

Theorem 5. For a probabilistic stream (~a, ~p), the quantity Sum2(h(~a), ~p) is an
unbiased estimator of F2(~a, ~p), if h is chosen uniformly from a 4-wise independent
hash family on [n] with range {−1, +1}. The estimator can be computed in one-pass
and yields a one-pass (ε, δ)-approximation algorithm for computing REPEAT-RATE
using space and update time of O(ε−2 log n log δ−1).

Proof. By the previous discussion, F2(~b) = Eh[Sum2(h(~b)], so the premise of
Lemma 11 is satisfied with Q = F2 and Q′ = Sum2, so F2(~a, ~p) = Eh[Sum2(h(~a), ~p)].
We now show that Sum2(h(~a), ~p) can be computed efficiently over the probabilistic
stream (h(~a), ~p).

It will be convenient to introduce the jointly independent random variables Ui,
for i ∈ [m] where each Ui equals 1 with probability pi and equals 0 otherwise. Then

Sum2(h(~a), ~p) = E[(
∑

i∈[m]

h(ai)Ui)2]

=
∑

i∈[m]

h(ai)2E[U2
i] +

∑
i 6=j

h(ai)h(aj)E[UiUj]

=
∑

i∈[m]

h(ai)2pi +
∑
i 6=j

h(ai)h(aj)pipj

= (
∑

i∈[m]

h(ai)pi)2 +
∑

i∈[m]

pi(1− pi),

using the fact that h(a)2 = 1. This is easy to compute in one pass.
Finally, we show that this basic estimator can be used to produce a good estimate

with high confidence. The approach is a standard one—first we compute the variance
of the basic estimator.

Varh[Sum2(h(~a), ~p)] = Varh[(
∑

a

h(a)Pa)2], (1)

where Pa =
∑

i:ai=a pi for every a ∈ [n]. This expression is very similar to the one
encountered in the variance bound of F2, except that the values Pa are generalized
frequencies that can be non-integral. On the other hand, the same derivation shows
that

Varh[(
∑

a

h(a)Pa)2] = Eh[(
∑

a

h(a)Pa)4]− (Eh[(
∑

a

h(a)Pa)2])2

=
∑

a

P 4
a + 6

∑
ai1<ai2

P 2
ai1

P 2
ai2

− (
∑

a

P 2
a)2

= 4
∑

ai1<ai2

P 2
ai1

P 2
ai2

≤ 2(
∑

a

P 2
a)2 ≤ 2Eh[Sum2(h(~a), ~p)]2 .

(2)
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

24 · Jayram et al.

where the second and last steps use the fact that h is 4-wise independent. Combining
Equations 1 and 2 shows that the variance of the estimator is at most twice the
square of its expectation. Therefore, the standard technique of taking the average
of O(1/ε2) such estimators reduces the relative error to ε. As usual the confidence
can be increased by taking the median of sufficiently many estimators; we omit the
standard calculations.

5. ESTIMATING MEDIAN

In this section, we present an algorithm for finding an ε-approximate MEDIAN. To
solve this problem we use the algorithm of Greenwald and Khanna [Greenwald and
Khanna 2001], which approximates the median of a deterministic data stream. Very
roughly, their algorithm works as follows: For each item, we calculate the minimum
and maximum possible rank within the data seen so far, based on information we
have stored; for example, if we have seen 1, 5, 3, 7, then 6 will have an actual rank
of 4, since it is the fourth largest item seen. However, if we only remember that 3
has a minimum rank of 1 and a maximum rank of 3, then all we can say for certain
is that the minimum rank of 6 is at least 2 and the maximum rank is at most 5
(since there have been 5 items so far). The value of some of the items, together
with their minimum and maximum rank, are stored. Periodically, we sweep through
the stored items and remove those that are no longer necessary. So long as the
gaps between items’ minimum and maximum rank, as well as the gaps between
consecutive minimum ranks, is not too large, then the value of any quantile can be
approximated well. In particular, we can estimate the value of the median.

Our approach to estimating MEDIAN is based on a deterministic reduction of the
problem to median finding in a deterministic stream.

Theorem 6. There exists a single pass algorithm finding an ε-approximate
MEDIAN in O(ε−1 log m) space.

Proof. The idea is use the Greenwald-Khanna selection algorithm [Greenwald
and Khanna 2001], on an induced stream A′ as follows:

(1) For each tuple (j, pi(j)) in ϑi, put
⌊
2mpi(j)ε−1

⌋
copies of j in A′.

(2) Using the Greenwald-Khanna algorithm, find an element l such that

max{|{i ∈ A′ : 1 ≤ i < l}|, |{i ∈ A′ : l < i ≤ n}|} ≤ (1/2 + ε/2)|A′| . (3)

where |A′| denotes the length of the stream A′.

Note that pi(j) ≥
⌊
2mpi(j)ε−1

⌋
/(2mε−1) ≥ pi(j)− ε/(2m). Therefore, dividing

Equation 3 by 2mε−1 yields

max


 ∑

1≤j<l,i∈[m]

pi(j)

 ,

 ∑
l<j≤n,i∈[m]

pi(j)

− ε/2 ≤ (1/2 + ε/2) dCOUNTe .

The result follows since COUNT > 0.

6. ESTIMATING RANGE

In this section, we address the problem of estimating the expected range of a
probabilistic stream. We present a deterministic algorithm that uses two passes and
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Estimating Statistical Aggregates on Probabilistic Data Streams · 25

O(ε−1 log m) space. Our algorithm capitalizes on ideas from [Jayram et al. 2007] in
combination with the algorithm for estimating MEDIAN presented in Section 5.

Theorem 7. There exists a 2-pass O(ε−1 log m)-space deterministic algorithm
to (1 + ε)-approximate RANGE if COUNT > 4C = 4 log(6n/ε).

Proof. In the first pass we use the MEDIAN estimation algorithm to find a k
such that E [|{i : Xi ≤ k}|] ≥ C and E [|{i : Xi ≥ k}|] ≥ C. Let A be the event that
there exist i1, i2 ∈ [m] such that Xi1 ≤ k ≤ Xi2 . Note that i1 and i2 need not be
distinct if Xi1 = k = Xi2 .

Claim 12. Pr [A] ≥ 1− ε/(3n).

Proof. The probability that an element at least as large as k is at least,

1−
∏

i∈[m]

1−
∑
j≥k

pi(j)

 ≥ 1− exp

− ∑
i∈[m],j≥k

pi(j)

 ≥ 1− ε/(6n) .

Similarly, with probability at least 1 − ε/(6n), there exists an element that is
not-strictly larger than k. The claim follows by the union bound.

Therefore, with probability at least 1− ε/(3n),

max
i

Xi −min
i

Xi + 1 = max
i:Xi≥k

(k −Xi) + max
i:Xi≤k

(Xi − k) + 1 .

Hence,

RANGE = (1± ε/3)
(

E
[

max
i:Xi≥k

(k −Xi)
]

+ E
[

max
i:Xi≤k

(Xi − k)
]

+ 1
)

,

because 1 ≤ RANGE ≤ n.
Therefore, it suffices to estimate E [maxi:Xi≤k(k −Xi)] and E [maxi:Xi≥k(Xi − k)]

up to a (1 + ε/3) factor. We can do this in a second pass by utilizing the
geometric grouping technique employed in [Jayram et al. 2007]. First consider
E [maxi:Xi≤k(k −Xi)]. Consider the following families of events:

A` = {∀i ∈ [m] : Xi > k/(1 + ε/3)` or Xi = ⊥}
B` = {∃i ∈ [m] : Xi ∈

(
k/(1 + ε/3)`, k/(1 + ε/3)`−1

]
}

and let q` = Pr [A` ∩B`] = Pr [A`] Pr [B`|A`] where ` ∈ [`∗] and `∗ =
⌈
log1+ε/3 k

⌉
.

Note that each q` can easily be computed in small space as in [Jayram et al. 2007].
Then,

E
[

max
i:Xi≤k

(k −Xi)
]

=
∑
r≤k

Pr
[

min
i:Xi≤k

Xi = r

]
(k − r)

= (1± ε/3)
∑

`∈[`∗]

q`

(
k − k

(1 + ε/3)`

)
.

We estimate E [maxi:Xi≥k(Xi − k)] similarly.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

26 · Jayram et al.

7. COMBINING RELATED OLAP QUERIES

As mentioned in the introduction, OLAP is a multi-dimensional model with dimen-
sions arranged according to some hierarchy. Any single query involves specifying
both the values for the dimension attributes, each at some level of the hierarchy, as
well as the aggregate operator. In a typical use of an OLAP system, the analyst will
not specify one but multiple related OLAP queries. These are typically referred to
as roll-ups and drill-downs since they involve navigating the dimensional hierarchy.
For example, using the scenario described in the introduction, the analyst might
be interested in computing average sales for every city in California, followed by
average sales for California as a whole. Computing these separately will involve
multiple scans of the data, and it is desirable to use the results computed in previous
queries. For example, can the computation of the queries for each city in California
be used to aid the query corresponding to California?

There is a well-known strategy that can be used to speed up the computations for
roll-ups and drill-downs on probabilistic data. This is described in detail in [Burdick
et al. 2005a] but for the purposes of this paper we can translate this to the setting
of probabilistic streams as follows: we are given an aggregator A, and a set of
probabilistic data {S1, S2, . . . , Sk}. The goal is to compute a set of sufficient
statistics on each Si so that it is possible to compute A on the composite stream
S1, S2, . . . , Sk formed by concatenating the Si’s. For the example given above, every
Si represents the data for a particular city.

It can be seen that the sufficient statistics for computing SUM and COUNT are
just their values on the individual probabilistic streams. On the other hand, the
solution for MEAN is not that simple. Consider the following approach where the
sufficient statistics are just SUM and COUNT. We compute MEAN for the composite
stream by taking the ratio of the sum of the SUM values to the sum of the COUNT
values. This is valid only when the data is not probabilistic (which is not surprising
since otherwise it would yield a simple data stream algorithm for MEAN). We now
show how this can be properly achieved for MEAN and other aggregation operators
considered in this paper.

For MEAN, observe that it only requires maintaining the values of Pk and Ak for
k = 1, 2, ..., O(log(1/ε)). (For convenience, we assume here that P ≥ 6 ln(2/ε).) To
combine one stream with sufficient statistics Pk, Ak with another having P ′k, A′k, we
simply add the corresponding statistics: Pk + P ′k, Ak + A′k. From this, the estimate
for MEAN can be generated. Thus the number of sufficient statistics needed for any
stream is just O(log ε−1).

For F2, the sufficient statistics are just
∑

i pi(1− pi) together with
∑

i h(ai)pi for
each of the chosen hash functions. (The hash functions chosen must be the same
across all streams.) Again, to combine streams, we simply add their corresponding
sufficient statistics.

For MIN, the algorithm in [Jayram et al. 2007] divides the domain into a sequence
of O(1/ε) geometrically increasing intervals (bins) and iteratively computes two
quantities for each bin: (1) the probability, over possible worlds, that the minimum
lies within the bin, and (2) the probability, over possible worlds, that the minimum
does not belong to previous bins. The key aspect of that algorithm is that for each
item in the input, all that is required of the item is the knowledge of those same
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Estimating Statistical Aggregates on Probabilistic Data Streams · 27

two quantities. Consequently, the sufficient statistics for each stream are just these
values computed for all bins. The same principle also applies to MAX; we omit the
details.

Although this approach is quite general, it is not obvious how to make this work
for combining queries using different aggregators e.g. estimating the MIN of the
MEAN of different streams. The key issue seems to be maintaining a succinct data
structure that enables fast computation of sufficient statistics corresponding to
different aggregators. We leave it as an open problem.

8. CONCLUDING REMARKS

A number of remarkable algorithmic ideas have been developed for estimating
aggregates over deterministic streams since the seminal work of [Alon et al. 1999].
Some of them are applicable to estimating aggregates over probabilistic streams
such as when estimating MEDIAN and REPEAT-RATE by suitable reductions, but
for other aggregates such as DISTINCT and MEAN, we need new ideas that we have
presented here.

The probabilistic stream model was initially motivated by probabilistic databases
where data items have a distribution associated with them because of the uncertain-
ties and inconsistencies in the data sources. This model has other applications too,
including in the motivating scenario we described here in which the stream (topic
distribution of search queries) derived from the deterministic input stream (search
terms) is probabilistic. We believe that the probabilistic stream model will be very
useful in practice in dealing with such applications.

There are several technical and conceptual open problems in addition to the
question of combining queries using different aggregators mentioned in the previous
section. For example, could one characterize problems for which there is a (de-
terministic or randomized) reduction from probabilistic streams to deterministic
streams without significant loss in space bounds or approximations? We suspect
that for additive approximations, there is a simple characterization. Also, can we
extend the solutions for estimating the basic aggregates we have presented here to
others, in particular, geometric aggregates [Indyk 2004] or aggregate properties of
graphs [Feigenbaum et al. 2005a; 2005b]?

9. ACKNOWLEDGEMENTS

We would like to thank Graham Cormode for a helpful comment regarding the
results in Section 3. We also thank the anonymous referees for suggestions that
improved the presentation of our results.

REFERENCES

Alon, N., Matias, Y., and Szegedy, M. 1999. The space complexity of approximating the
frequency moments. Journal of Computer and System Sciences 58, 1, 137–147.

Babcock, B., Babu, S., Datar, M., Motwani, R., and Widom, J. 2002. Models and issues in

data stream systems. ACM Symposium on Principles of Database Systems, 1–16.

Balazinska, M., Balakrishnan, H., and Stonebraker, M. 2004. Load management and
high availability in the medusa distributed stream processing system. In ACM International
Conference on Management of Data. 929–930.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

28 · Jayram et al.

Bar-Yossef, Z., Jayram, T., Kumar, R., Sivakumar, D., and Trevisan, L. 2002. Counting

distinct elements in a data stream. In Proc. 6th International Workshop on Randomization and
Approximation Techniques in Computer Science. 1–10.

Batu, T., Kannan, S., Khanna, S., and McGregor, A. 2004. Reconstructing strings from

random traces. In ACM-SIAM Symposium on Discrete Algorithms. 910–918.

Burdick, D., Deshpande, P., Jayram, T. S., Ramakrishnan, R., and Vaithyanathan, S. 2005.
OLAP over uncertain and imprecise data. In International Conference on Very Large Data

Bases. 970–981.

Burdick, D., Deshpande, P. M., Jayram, T. S., Ramakrishnan, R., and Vaithyanathan, S.

2006. Efficient allocation algorithms for OLAP over imprecise data. In International Conference
on Very Large Data Bases. 391–402.

Chang, K. L. and Kannan, R. 2006. The space complexity of pass-efficient algorithms for

clustering. In ACM-SIAM Symposium on Discrete Algorithms. 1157–1166.

Cormode, G. and Garofalakis, M. 2007. Sketching probabilistic data streams. In ACM
International Conference on Management of Data.

Cranor, C. D., Johnson, T., Spatscheck, O., and Shkapenyuk, V. 2003. Gigascope: A stream

database for network applications. In ACM International Conference on Management of Data.

647–651.

Dalvi, N. N. and Suciu, D. 2004. Efficient query evaluation on probabilistic databases. In

International Conference on Very Large Data Bases. 864–875.

Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., and Zhang, J. 2005a. Graph distances

in the streaming model: the value of space. In ACM-SIAM Symposium on Discrete Algorithms.
745–754.

Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., and Zhang, J. 2005b. On graph problems

in a semi-streaming model. Theoretical Computer Science 348, 2-3, 207–216.

Flajolet, P. and Martin, G. N. 1985. Probabilistic counting algorithms for data base applications.
J. Comput. Syst. Sci. 31, 2, 182–209.

Fuhr, N. and Roelleke, T. 1997. A probabilistic relational algebra for the integration of

information retrieval and database systems. ACM Trans. Inf. Syst. 15, 1, 32–66.

Greenwald, M. and Khanna, S. 2001. Efficient online computation of quantile summaries. In
ACM International Conference on Management of Data. 58–66.

Guha, S. and McGregor, A. 2007. Space-efficient sampling. In AISTATS. 169–176.

Indyk, P. 2004. Algorithms for dynamic geometric problems over data streams. In ACM

Symposium on Theory of Computing. 373–380.

Jayram, T. S., Kale, S., and Vee, E. 2007. Efficient aggregation algorithms for probabilistic
data. In ACM-SIAM Symposium on Discrete Algorithms.

Kannan, S. and McGregor, A. 2005. More on reconstructing strings from random traces:

Insertions and deletions. In IEEE International Symposium on Information Theory. 297–301.

Lipson, J. D. 1981 Elements of algebra and algebraic computing. Addison-Wesley Publishing

Company.

Munro, J. I. and Paterson, M. 1980. Selection and sorting with limited storage. Theor. Comput.

Sci. 12, 315–323.

Muthukrishnan, S. 2006. Data Streams: Algorithms and Applications. Now Publishers.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Estimating Statistical Aggregates on Probabilistic Data Streams · 29

Appendix

Claim 9. For all k > 0 and for ε < 1/2,

k∏
i=1

(1 +
1

i2i
ε) ≤ (1 +

k

k + 1
ε) .

Proof. We proceed by induction. The base case k = 1 follows immediately.
Furthermore, for k = 2 we have (1 + ε/2) (1 + ε/8) = 1 + 5ε/8 + ε2/16 ≤ 1 + 2ε/3,
where the last inequality follows because ε ≤ 1/2. So assume the statement is true
for some k− 1 ≥ 2, and consider the case for k. With a little foresight, we first note
that for k ≥ 2,

(k + 1)(3k − 1) ≤ k2k+1 . (4)

Thus,

(k + 1)[(k − 1)k2k+1 + 2k + (k − 1)] = (k3 − k)2k+1 + (k + 1)(3k − 1) by (4)
≤ (k3 − k)2k+1 + k2k+1

= k32k+1 .

Dividing both sides by (k + 1)k22k+1, we find

k

k − 1
+

1
k2k

+
1
2

k − 1
k

1
k2k

≤ k

k + 1
. (5)

Thus, we have
k∏

i=1

(1 +
1

i2i
ε) = (1 +

ε

k2k
)

k−1∏
i=1

(1 +
1

i2i
ε)

≤
(
1 +

ε

k2k

)(
1 +

k − 1
k

ε

)
by induction.

= 1 + ε

(
k − 1

k
+

1
k2k

+ ε
k − 1

k

1
k2k

)
≤ 1 + ε

(
k − 1

k
+

1
k2k

+
1
2

k − 1
k

1
k2k

)
≤ 1 +

k

k + 1
ε by (5) .

Received October 2007; accepted ?????

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

