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Abstract

We prove that approximating the size of stopping and trapping sets in Tanner graphs of linear
block codes, and more restrictively, the class of low-density parity-check (LDPC) codes, is NP-hard.
The ramifications of our findings are that methods used for estimating the height of the error-floor of
moderate- and long-length LDPC codes based on stopping and trapping set enumeration cannot provide
accurate worst-case performance predictions.

1 Introduction

In the past decade, the search for efficient and near-optimal decoding algorithms for linear block codes cul-
minated with the rediscovery and generalization of the notion of sparse codes and iterative message passing
algorithms. Although Maximum Likelihood (ML) decoding of linear block codes is NP-hard [5], iterative
decoders can approach the Shannon limit of reliable communication with polynomial time complexity, pro-
vided that they operate on codes with long length that have sparse parity-check matrices, also known as
LDPC codes [17]. Decoding is achieved via message passing on the Tanner graph of the code, a suitably
chosen bipartite graphical representation of the code which contains a very small number of edges. On such
graphs, probabilistic inference of the form of iterative message passing is known to have linear complexity
in the code length.

The performance of linear block codes under iterative decoding, and the performance of LDPC codes in
particular, depends on the structural properties of their chosen Tanner graphs. For each channel-decoder
pair, there exist vertex configurations in the code graph on which the given iterative decoder fails. For
some frequently encountered Discrete Memoryless Channels (DMCs), such configurations are known as
near-codewords [26], trapping and stopping sets [12, 31], pseudocodewords [41, 22], and instantons [36].

It is known that ML decoders fail when transmission errors are confined to Tanner graph configurations
containing codewords, while iterative decoders usually fail to make correct decisions on (strictly) larger sets
of configurations. For example, iterative edge-removal (ER) decoders for signalling over the Binary Erasure
Channel (BEC) fail on stopping sets [12], a subset of which are the codewords themselves. For the Additive
White Gaussian Noise (AWGN) channel and sum-product decoding, failures arise due to subsets of vertices
in the code graph that have similar structural properties as codewords, and are consequently termed near-

codewords [26]. As a result, iterative decoders exhibit sub-optimal performance compared to ML decoders,
and this performance loss most frequently manifests itself in terms of the emergence of error-floors in the
Bit-Error-Rate (BER) curve of the code.

The error-floor phenomena is a problem of focal importance in the theory of iterative decoding, since
many practical applications of codes on graphs require extremely low operational BERs. Since such low BERs
are well beyond the scope of current Monte-Carlo simulation techniques, several methods were proposed for
estimating the height of the error-floor through enumerating small stopping and small trapping sets [34],
and exploring dominant instantons [31, 36]. These techniques operate fairly accurately for codes of very
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(a) Stopping Set. (b) ZP Trapping Set.

Figure 1: Examples of Stopping and ZP-Trapping Sets.

(a) AWGN (a, b)-Trapping Set. (b) AWGN Elementary (a, b)-Trapping Set.

Figure 2: Examples of AWGN Trapping Sets.

short and moderate length and small minimum pseudoweight, but they are time consuming, and no rigorous
analytical study of the performance of these search procedures is known.

Recently, it was shown that the problem of finding the smallest stopping set in an arbitrary code graph
is NP-hard to approximate up to a constant term [27]. In [40], it was shown that finding the smallest k-out

set, which represents a straightforward generalization of the notion of a stopping set, is NP-hard as well.
Despite the fact that k-out sets may lead to decoding failures similar to those caused by trapping sets, the
results in [40] do not capture the fact that trapping sets are usually characterized in terms of two parameters.
Furthermore, the notion of a trapping set is meaningful only in conjunction with a fixed decoding method.
Finally, no hardness results for approximating k-out sets or more general trapping sets are currently known.

The main contributions of our work are three-fold. First, we improve upon the hardness results for
approximating stopping sets, presented in [27]. Furthermore, we introduce the notion of a cover stopping

set, and show that the problem of finding such a set of smallest cardinality in an arbitrary Tanner graph is
NP-hard. Second, we provide a set of new results regarding the hardness of finding trapping sets for Gallager
A decoder (GA) [4], the Zyablov-Pinsker (ZP) decoder [43, 42], and the product-sum decoder. The third,
and most important finding presented in the paper is that these hardness results carry over to the case of
LDPC code graphs (provided that the notion of “low-density” is properly defined). We discuss the impact
of these findings on the accuracy of estimating the error-floor based on trapping set enumeration techniques.
In addition, we give a brief overview of the theory of fixed parameter tractability (FPT), and show that the
minimum cover stopping set problem is FPT.

The paper is organized as follows. Section 2 introduces the trapping set structures under investigation,
as well as their corresponding decoding algorithms. Section 3 provides a brief overview of a class of NP-hard
problems that are used in the reduction proofs of our main results. Section 4 contains theorems regarding
the hardness of approximating classes of trapping sets, while Section 5 specializes these results for the class
of sparse code graphs and short code lengths. In Section 6 we briefly comment on the accuracy of error-floor
estimation procedures relying on exhaustive trapping set enumeration techniques. In Section 7, we describe
the notion of fixed parameter tractability and its implications for stopping and trapping set size estimation.
Concluding remarks are given in Section 8.

2 Definitions and Problem Formulation

A binary, linear [n, k, d] code C is a k-dimensional vector subspace of an n-dimensional vector space Fn
2 . The

generator matrix M of the code C is a k × n matrix of full row-rank, with rows that correspond to basis
vectors of the subspace. The parity-check matrix H of C is the generator matrix of the null-space of the
code. The matrix H defines a bipartite graph G = (L ∪ R, E), with columns of H indexing the variable

nodes in L, and the rows of H indexing the check nodes in R. For i ∈ L and j ∈ R, (i, j) ∈ E if and only
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if Hi,j = 1. The graph G is called the Tanner graph of C with parity-check matrix H . If the parity-check
matrix of a code contains only a “small” number of non-zero entries, i.e., it is sparse, then the corresponding
code is called a Low-Density Parity-Check (LDPC) code. A precise definition of the notion “small” will be
given in Section 5.

For the remaining definitions in this section we need to introduce the following notation and definitions.
For S ⊂ L, the notation Γ(S) is reserved for the set of neighbors of S in R. GS denotes the induced subgraph
for S ⊂ L which is defined as the graph on nodes S∪Γ(S) with edges {(u, v) : u ∈ S, v ∈ Γ(S)}. Equivalently,
GS is the Tanner graph of the punctured parity-check matrix of the code, consisting of the columns indexed
by S. For any graph G′, V (G′) denotes the set of nodes of G′ and E(G′)

Iterative decoders are a class of inference algorithms that operate on Tanner graphs of codes. These
decoders are known to compute the maximum likelihood estimates of variables only on Tanner graphs free
of cycles. Nevertheless, when applied to LDPC codes that contain cycles, they can approach the Shannon
limit on optimal performance with complexity linear in the length of the code.

The messages passed between vertices of the Tanner graphs during iterative decoding depend on the
characteristics of the transmission channel, and there usually exist many different iterative decoding methods
that can be used for the same channel. For various decoder architectures specialized for the BEC, BSC,
and AWGN channel, the interested reader is referred to [32]. For clarity of the future exposition, we briefly
describe three of these procedures: the edge-removal (ER) algorithm, the Zyablov-Pinsker (ZP) bit-flipping
method [12, 43, 42], and the regular Gallager A algorithm [7]. The first algorithm operates on outputs of the
BEC, while the second two are designed for the BSC. A detailed description of different decoding procedures
for signalling over the AWGN channel can be found in [31].

The ER algorithm is used for codes transmitted over the BEC channel, where the input to the channel
is a vector c1c2 . . . cn ∈ C, and the output is a vector v1v2 . . . vn over the symbol alphabet {0, 1, e}. For a
BEC channel with erasure probability p, one has Pr[vi = ci] = 1− p, and Pr[vi = e] = p. The ER algorithm
assigns to each vertex i in L of the Tanner graph of C the symbol vi. It then iteratively searches for vertices
in R adjacent only to one e symbol in L. Due to the even-parity restriction, the corresponding ci value for
such a symbol can be uniquely determined. The decoder terminates either when the correct codeword is
recovered or if every every parity-check vertex connected to one e symbol is connected to at least two such
symbols. In the latter case, we say that the decoder failed on a stopping set.

Definition 1 (BEC Stopping Sets). Given a bipartite graph G = (L ∪ R, E), we say that S ⊂ L is a

stopping-set if the degree of each vertex in Γ(S) in the induced subgraph GS is at least two.

Of independent interest is the problem of determining the size of the smallest stopping set S such that
Γ(S) = R, i.e., the smallest set of vertices that covers each check node in R at least twice. We refer to such a
set as the cover stopping set. If symbols corresponding to a cover stopping set are erased, then the decoding
process terminates before proceeding with the first iteration, and no erasure can be corrected.

Assume next that the Tanner graph of C is left-regular, with degree ℓ. For a BSC channel with error
probability p, the word v1v2 . . . vn ∈ {0, 1}n and Pr[vi = ci] = 1−p, and Pr[vi = c̄i] = p. In the first iteration
of ZP-decoding, the decoder scans for received symbols vi that are connected to ℓ unsatisfied parity-check
equations. If symbols with such a property are encountered, the decoder flips their values sequentially. The
procedure is repeated for vertices with ℓ−1, ℓ−2, ..., ℓ−⌊(ℓ−1)/2⌋ unsatisfied check-equations. The decoder
terminates by either recovering the correct codeword or by encountering a word for which each symbol is
included in less than ℓ− ⌊(ℓ− 1)/2⌋ unsatisfied check-equations. In the latter case, we say that the decoder
failed on a ZP trapping set.

Definition 2 (BSC ZP-Trapping Sets). Let G = (L ∪ R, E) be a left-regular bipartite graph with degree

ℓ. We say that S ⊂ L is a ZP-trapping set if the induced subgraph GS is such that all vertices in S are

connected to less than ℓ − ⌊(ℓ − 1)/2⌋ odd degree vertices in GS.

Another frequently used iterative decoding algorithm for signaling over the BSC that has a complete
characterization of trapping sets is the Gallager A algorithm for regular codes with left vertex degree ℓ = 3.
The decoding rule is straightforward: unless all incoming massages to a variable node are identical, the
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Figure 3: Example of Majority Trapping Set.

variable node transmits its received symbol. Otherwise, the node transmits the consensus vote. On the
other hand, the check-nodes pass on their parity estimates to their neighboring variable nodes.

Definition 3 (BSC GA-Trapping Sets). Let G = (L ∪ R, E) be a bipartite graph with left-degree three,

such that all vertices in R have degree r > 3. Let T ⊂ L and let GT be the subgraph of G induced by T .

Let O = {v ∈ Γ(T ) : degGT
(v)odd}. We say T is a GA-trapping set with parameter a if |O| = a and if

|Γ(u) ∩ O| ≤ 1 for each u ∈ T and no two checks in O have a common neighbor in L \ T .

For the AWGN channel, and message-passing algorithms, no precise analytic characterization of failing
configurations is known. Extensive computer simulations [31, 24] show that errors are usually confined
to near codewords, also known as trapping sets or instantons. Roughly speaking, trapping sets resemble
codewords in so far that they result in a very small number of unsatisfied check equations (for codewords,
this number equals zero). We focus our attention on three such configurations, defined below.

Definition 4 (AWGN (a, b)-Trapping Sets). Given a bipartite graph G = (L ∪ R, E), we say that S ⊂ L
is an (a, b)-trapping set if |S| = a and the induced subgraph is such that Γ(S) has exactly b vertices of odd

degree. Similarly, we say that S ⊂ L is an elementary (a, b)-trapping set if b vertices in Γ(S) have degree

one, and |Γ(S)| − b vertices have degree two.

Definition 5 (AWGN Majority Trapping Set). Given a bipartite graph G = (L ∪ R, E) we say S ⊂ L is

good if the induced subgraph GS is such that the majority of vertices of GS in Γ(S) have even degree. T is

a majority trapping set if T and L \ T are both good.

Examples of Tanner graphs including stopping sets, ZP-trapping sets, as well as AWGN trapping sets
are shown in Figures 1, 2, and 3, respectively. Circles denote variable nodes in L, while squares denote check
nodes in R of the Tanner graph G(L ∪ R, E).

Complexity Theory: A problem belongs to the class NP if it can be solved in polynomial time by a non-
deterministic Turing machine. Alternatively, the complexity category of decision problems for which answers
can be checked for correctness using a certificate and an algorithm with polynomial running time in the size
of the input is known as the NP class. A problem is NP-hard if the existence of a deterministic polynomial
time algorithm for the problem would imply the existence of deterministic polynomial time algorithms for
every problem in NP. This consequence is widely believed to be false, and hence determining that a problem
is NP-hard is a very strong indicator that the problem in computational intractable, i.e., no deterministic,
polynomial time algorithm exists for the problem.

For optimization problems, there exists a large body of work that considers approximate solutions rather
than exact solutions [39]. When minimizing a function subject to constraints, we say an algorithm is an
α-approximation algorithm if it always returns a solution whose value is at most a factor α greater than the
value for the optimal solution. For some NP-hard problems, it is possible to show that it is also NP-hard
to α-approximate the problem. For a more thorough treatment of these and other subjects in complexity
theory, the interested reader is referred to [20].

4



Our Results: We are concerned with the worst-case computational complexity of the following problems.

1. MinStop: Find a stopping set of minimum cardinality.

2. MinCStop: Find a cover stopping set of minimum cardinality .

3. MinTrapZP: Find a ZP-trapping set of minimum cardinality.

4. MinTrapGA: Given a, find a GA-trapping set of minimum cardinality.

5. MinTrapAWGN: Given a, find an (a, b)-trapping set with minimum parameter b.

6. MinTrapAWGN−elem: Given b, find an (a, b)-elementary trapping set with minimum parameter a.

7. MinTrapAWGN−maj: Find a majority trapping set of minimum cardinality.

We show that there are no polynomial time algorithms for any of the above problems under standard
complexity assumptions. Furthermore, there are no polynomial time algorithms that even approximate the
optimal solutions to a guaranteed precision. Many of these hardness results also apply when we restrict our
attention to Tanner graphs that correspond to LDPC codes. Our proofs can all be cast as reductions from the
NP-hard Minimum Set Cover, Minimum Distance [37, 38, 15], and Maximum Three-Dimensional Matching

problems [5]. These, and some other relevant problems subsequently referred to, are briefly described in the
following section.

3 A Class of NP-hard problems

For completeness, we provide known NP hardness and approximation results for a class of combinatorial
optimization problems that will be used in the proofs of Sections 3, 4, and 5. Most of the results presented
in this section are available at [21].

1. The Minimum Set Cover Problem, MinSetCov: Given a set of sets S = {S1, . . . , Sa} of [b],
find S′ ⊂ S of minimum cardinality such that ∪S∈S′S = [b]. It is NP-hard to c log N -approximate
MinSetCov [30] for some c where N is the description length of the problem. Even in the case that
|Si ∩ Sj | ≤ 1, for 1 ≤ i < j ≤ a, it can be shown that there exists no polynomial time c log N -
approximation algorithm unless NP ⊂ ZTIME(NO(log log N)) [23] where ZTIME(t) denotes the class
of problems that have a probabilistic algorithm with expected running time t and with zero error
probability.

2. The Minimum Hitting Set Problem, MinHitSet: Given a set of subsets S = {S1, . . . , Sb} of [a],
find a set S′ of smallest cardinality, such that |S′ ∩ Si| ≥ 1, for all i = 1, 2, . . . , b. The MinHitSet

problem is equivalent to the MinSetCov problem [2] and as a consequence it is also NP-hard to
(c log N)-approximate MinHitSet [30] for some c > 0. In the case when |Si| = 2 for all i ∈ [b] the
problem is often called the vertex cover problem MinVertCov. The vertex cover problem, even when
we have |{i : j ∈ Si}| ≤ 3 is NP-hard to approximate up to some constant α > 1.

3. The Maximum Three-Dimensional Matching Problem, MaxThreeDimMatch: Given a set
T ⊂ X × X × X , determine if a set S ⊂ T of size |X | exists such that no elements in S agree in any
coordinate. This decision problem is NP-hard even if no element of X appears more than 3 times in
the same coordinate of sets from T [20].

4. The Maximum Likelihood Decoding Problem, MaxLikeDecode: Given a code C specified by
an m× n parity-check matrix H (we may assume H has linearly independent rows), a vector s ∈ Fm

2 ,
and an integer ω > 0, determine if there is a vector x ∈ Fn

2 with weight bounded from above by ω and
such that H xT = s. The MaxLikeDecode problem is NP-hard to approximate within any constant
factor [1].
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5. The Minimum Weight Codeword Problem, MinCodeword: Given a code C specified by an
n × k generator matrix M of full row-rank, find the smallest weight of a non-zero codeword. The
MinCodeword problem is not approximable within any constant factor unless NP ⊂ RP , where RP
is the set of decision problems for which there exists a randomized algorithm that is always correct on
no instances and correct with probability 1/2 on yes instances.

4 Hardness of Approximation Results

4.1 Hardness of Approximation for MinStop

We start by showing that MinStop is not approximable within o(log N), where N denotes the description
length of the problem, unless P = NP . This results improves upon the finding in [27], where the weaker
claim that MinStop cannot be approximated within any positive constant was proved. This improvement
is a consequence of the fact that our proof relies on reduction from the MinSetCov, rather than the
MinVertCov problem [27].

Theorem 1. There exists a constant c > 0 such that it is NP-hard to (c log N)-approximate MinStop.

Proof. The proof is by a reduction from MinSetCov. Let b =
∣

∣∪i∈[a]Si

∣

∣, and without loss of generality,
assume that S ⊂ [b], for each S ∈ S. Form a bipartite graph G = (L ∪ R, E) with L = {u1, ...ua, x, y},
R = {v1, ...vb, w1, ..., wa, z}, and edges

E = {(ui, vj) : j ∈ Si} ∪ {(ui, wi) : i ∈ [a]} ∪ {(x, v) : v ∈ R} ∪ {(y, v) : v ∈ {w1, ..., wa, z}} .

An illustration of this graphical structure is given in Figure 4.
We show that G has stopping distance 2 + t if and only if the minimum set cover is of size t. Since there

is no polynomial algorithm returning an c logN approximation for MinSetCov unless P = NP (for some
sufficiently small c > 0), this establishes the theorem.

Let S be a stopping set. Consequently,

1. If (x ∈ S or y ∈ S), then (x ∈ S and y ∈ S) since otherwise dGS
(z) = 1.

2. If x ∈ S then ui ∈ S for some i since otherwise dGS
(vj) = 1 for some j ∈ [b].

3. If ui ∈ S then (x ∈ S or y ∈ S) since otherwise dGS
(wi) = 1.

Therefore, if S is non-empty x, y, ui ∈ S for some i ∈ [a]. But then dGS
(vj) ≥ 2 for j ∈ Si. However this

means that for all j ∈ [b], dGS\{x,y}(vj) ≥ 1. Therefore, S being a stopping set implies that the included ui

nodes correspond to a covering of [b]. The nodes corresponding to a covering of [b], in addition to x and y,
form a stopping set, since every node on the right hand side (R) is in the neighborhood and has degree at
least two. Hence the size of the minimum stopping set of G is exactly 2 plus the size of the minimum set
cover.

MinCStop: The proof of Theorem 1 also implies that there exists a c > 0 such that it is NP-hard
to (c log n)-approximate MinCStop. This is a consequence of the fact that the family of hard instances
considered all had the property that the neighborhood of all stopping sets was all the check nodes. We next
show that there exists a deterministic, polynomial-time, O(log n)-approximation algorithm for MinCStop.
This follows because we can relate MinCStop to MinHitSet as follows.

For each r ∈ R, create a set of sets Sr that consists of all (|Γ(r)| − 1)-subsets of Γ(r). For example, if
Γ(r) = {a, b, c, d}, then Sr = {(a, b, c), (a, b, d), (a, c, d), (b, c, d)}. Let S = {Sr : r ∈ R}. Then Q ⊂ L is a
hitting set for S iff it is a cover stopping set of L. This claim can be proved in a straightforward manner: if
S contains at least one element, say a, from Γ(r), then it must contain at least two elements from the same
set since otherwise, the (|Γ(r)| − 1) set that does not contain a will not be hit.

6



X

U1

U2

U3

Ua-2

Ua-1

Ua

Y

… …

W1

W2

W3

Wa-2

Wa-1

Wa

Z

…

…

V1

V2

V3

Vb-1

Vb

Incidence matrix: S1

Figure 4: Reduction from MinSetCov to MinStop.

Consequently, any α-approximation algorithm for MinHitSet can also be used to obtain an α-approximation
algorithm for MinCStop. For example the following simple greedy algorithm can be shown to be an O(log n)-
approximation algorithm for MinHitSet: At each step add the element that appears in the most sets from
S can remove these sets from S can repeat until all the elements chosen appear in every set from S.

The greedy algorithm searches for cover stopping sets by going through the list of variable nodes in
decreasing order of their degree, and it is straightforward to see that the algorithm terminates after at most
(n − k) δmax steps, where δmax denotes the largest degree of any check node in the Tanner graph of the
code. As a consequence, this algorithm is especially well suited for LDPC codes, to be formally defined in
Section 5.

Hardness under Stronger Assumptions: Under the assumption that NP 6⊂ DTIME(Npolylog N ),
it was shown in [27] that there exists no polynomial time approximation algorithm for MinStop within

2(log N)1−ǫ

, for any ǫ > 0.

4.2 Hardness of Approximation for MinTrapZP, MinTrapGA, and MinTrapAWGN

We show next that the problems MinTrapZP, MinTrapGA, and MinTrapAWGN are computationally at
least as hard as the MinCodeword problem.

Theorem 2. For any constant α, there is no polynomial-time α-approximation algorithm for MinTrapZP,

unless RP = NP .

Proof. Recall that unless RP = NP , there is no polynomial time MinCodeword problem is O(1)-hard
to approximate even under the restriction that the Tanner graph of the code is left regular. This follows
directly from the results in [15].

Given a Tanner graph G = (L ∪ R, E) that is left regular say with degree ⌊(ℓ − 1)/2⌋ + 1, for each
node u ∈ L create ℓ − ⌊(ℓ − 1)/2⌋ − 1 new nodes in R each connected to u. Call the new Tanner graph
G′. Then any S ⊂ L is a ZP-trapping set in G′ iff S is the support of a codeword in G. Hence any α-
approximation algorithm for MinTrapZP yields an α-approximation algorithm for MinCodeword and the
result follows.

A very similar argument can be used to prove the following claim.

Theorem 3. For any constant α, there is no polynomial-time, α-approximation algorithm for MinTrapGA,

unless RP = NP .
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Proof. Similarly as in the proof of Theorem 2, create for each node u ∈ L one new node in R each connected
only to u. Call the new Tanner graph G′. Then any S ⊂ L is a GA-trapping set in G′ iff S is the support of
a codeword in G. This follows due to the fact that the first condition in the definition of GA-trapping sets is
identical to the ZP-restriction, with ℓ = 3. The second condition in the definition of an GA-trapping set is
enforced automatically, since vertices in L \ S cannot be connected to odd-degree check nodes in GS due to
the fact that all such checks have degree one. Hence any α-approximation algorithm for MinTrapZP yields
an α-approximation algorithm for MinCodeword and the result follows.

Theorem 4. For any constant α, there is no polynomial-time, α-approximation algorithm for MinTrapAWGN,

unless RP = NP .

Proof. The proof is by a reduction from MinCodeword, and follows along similar lines as the proof of
the above theorems. To this end, we construct the Tanner graph (L ∪ R, E) of the dual code C⊥ where
L = {u1, ...uk}, R = {v1, ...vn}, and E = {(ui, vj) : Mi,j = 1} where M denotes a generator matrix of the code
of full row-rank. Note that for each S ⊂ L, Γ(S) corresponds to a codeword. Hence, if we have an α-approx
to the min-trapping set problem for any a, then this gives an α approximation algorithm to the minimum
weight codeword problem by running through all values of a and taking the minimum of the resulting b’s.
But, since it is impossible to O(1)-approximate MinCodeword in polynomial time unless RP = NP [15],
it is impossible to O(1)-approximate MinTrapAWGN in polynomial time unless RP = NP .

4.3 Hardness of Approximation for MinTrapAWGN−elem

Theorem 5. For any α, it is NP-hard to α-approximate MinTrapAWGN−elem.

Proof. The proof is based on showing that a polynomial time algorithm for solving MinTrapAWGN−elem can
be used for solving the MaxThreeDimMatch problem, and is based on similar arguments as those used
for showing that MaxLikeDecode is NP-complete [5]. To this end, let us construct the matching incidence

matrix D as follows. Let the collection of ordered triples be T ⊂ X × X × X , where |T | = t, and |X | = n.
Then D is a 3 n × t dimensional zero-one matrix, with entries

1 ≤ i ≤ n : Di,j = 1, iff xj = i;

n + 1 ≤ i ≤ 2n : Di,j = 1, iff yj = i;

2n + 1 ≤ i ≤ 3n : Di,j = 1, iff zj = i.

As an example, the matrix D for the set of triples

{(1, 2, 2), (3, 2, 1), (2, 3, 1), (1, 2, 3), (2, 3, 3), (3, 1, 3)}

over X = {1, 2, 3} has the form

D =





























1 0 0 1 0 0
0 0 1 0 1 0
0 1 0 0 0 1
0 0 0 0 0 1
1 1 0 1 0 0
0 0 1 0 1 0
0 1 1 0 0 0
1 0 0 0 0 0
0 0 0 1 1 1





























.

The set of triples {(1, 2, 2), (2, 3, 1), (3, 1, 3)} is a maximum three-dimensional matching over the set {1, 2, 3}.
Observe that all rows in the sub-matrix of D induced by the three columns corresponding to these triples
have Hamming weight one. This is a consequence of the defining constraint of the MaxThreeDimMatch

problem that asserts that every element in X appears at a given position of the matching exactly once.
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Assume next that there exists a polynomial-time, α-approximation algorithm for the MinTrapAWGN−elem

problem. Construct D for a given matching problem, set b = 3 × n, and run the MinTrapAWGN−elem al-
gorithm on D. If the algorithm the algorithm finds an elementary trapping set then it must have size n.
Consider the corresponding set of n columns indexed by a set of n triples from T . Each row in the sub-
matrix induced by the triples has weight one, which follows from the definition of an elementary trapping
set. Consequently, these triples represent a matching for T . This implies that no polynomial time algorithm
for the MinTrapAWGN−elem problem exists, unless P=NP.

4.4 Hardness of Approximation for MinTrapAWGN−maj

First we prove a hardness of approximation result for the problem of finding the good set of minimum
cardinality. Recall that a set S ⊂ L us good if the majority of nodes in Γ(S) have even degree in GS .
We call this problem MinGood. We will then use this to show a hardness of approximation result for
MinTrapAWGN−maj.

Our proof uses a reduction from MinCodeword. Let H be the n × (n − k) parity check of some
code. We may assume that the code specified by H includes at least one codeword in addition to the zero
vector. This gives rise to the graph G′ = (L′ ∪ R′, E′) where L′ = {x1, . . . , xn}, R′ = {y1, . . . , ym}, and
E′ = {(xi, yj) : Hi,j = 1}. We will create a bipartite graph G = (L∪R, E) by augmenting G′ with graphical
objects termed “ZigZag”s and “OrGate”s. These graphical objects will ensure that the minimum cardinality
of a good set is approximately proportional to the minimum weight of any codeword.

4.4.1 The ZigZag

For each x ∈ L′ we add a ZigZag(x) structure. This structure consists of 3(m − 1) nodes, given by
L(ZigZag(x)) = {v1, . . . , vm−1}, R(ZigZag(x)) = {u1, . . . , um−1, w1, . . . , wm−1}, and edges,

E(ZigZag(x)) = {(ui, vi), (vi, wi) : i ∈ [m − 1]} ∪ {(vi, wi+1 : i ∈ [m − 2]} ∪ {(x, w1)}

The intuition behind the ZigZag(x) structure is that if x is in the trapping set then the nodes L(ZigZag(x))
will also be in the trapping set. For a subgraph G′′ of G, and S ∈ L we define

DiscS(G′′) = |{v ∈ Γ(S) ∩ V (G′′) : dGS
(v) even}| − |{v ∈ Γ(S) ∩ V (G′′) : dGS

(v) odd}|.

Lemma 1. For all x ∈ S, DiscS(ZigZag(x)) ≤ 0 and DiscS(ZigZag(x)) = 0 iff ZigZag(x) ∩ L ⊂ S.

Proof. Note that

|{v ∈ Γ(S) ∩ V (ZigZag(x)) : dGS
(v) odd}| ≥ |{v ∈ S ∩ V (ZigZag(x))|

with equality iff L′ ∩ V (ZigZag(x)) ⊂ S because each vi ∈ S is connected to wi which has degree 1. But for
any S,

|{v ∈ Γ(S) ∩ V (ZigZag(x)) : dGS
(v) even}| ≤ |{v ∈ S ∩ V (ZigZag(x))|

with equality iff L′ ∩ V (ZigZag(x)) ⊂ S.

4.4.2 The OrGate

For each y ∈ R′ we add OrGate(y), and let Γ(y) ∩ L′ = {u1, . . . , uk′}. Let k = 2⌈log2
k′⌉. The construction

OrGate(y) consists two node sets L(OrGate(y)) and R(OrGate(y)). Consider a binary tree on the nodes
{u1, . . . , uk} where uk′+i = uk′ for i ∈ [k − k′]. Then L(OrGate(y)) consists of nodes corresponding to the
internal nodes of the tree, i.e.

L(OrGate(y)) = {vu1∨u2
, . . . , vuk−1∨uk

, vu1∨u2∨u3∨u4
, . . . , vuk−3∨uk−2∨uk−1∨uk

, . . . , vu1∨u2∨...∨uk
}

For each internal node v with children u and w, we add four new check nodes C(v) := {c1(v), c2(v), c3(v), c4(v)}:
all are connected v, the first and third are connected to u and the first and second are connected to w. If v
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(a) OrGate(y) (b) ZigZag(x) (c) Ballast

Figure 5: Reduction from MinCodeword to MinTrapAWGN−maj.

is the root of the tree, we also add one more new check node which is connected only to v. We call this node
z. Let R(OrGate(y)) be the set of such nodes, and let E(OrGate(y)) be the set of such edges. Finally, let

f(S, y) = {vui∨...∨uj
∈ L(OrGate(y)) : |S ∩ {ui, . . . , uj}| ≥ 1} .

Lemma 2. For all y ∈ GS ∩ R, DiscS(OrGate(y)) ≤ −1 with equality if S ∩ L(OrGate(y)) = f(S, y).

Proof. Consider the four check nodes C(v) for some internal node v of the tree used in the construction of
OrGate(y). Let u, w be the children of v in the original binary tree tree. Then, if either u, v, w ∈ S then
DiscS(C(v)) ≤ 0 with equality iff v ∈ S and at least one of u, w ∈ S. Consequently, if Γ(y) ∩ L′ ∩ S 6= ∅,
DiscS(∪vC(v)) ≤ 0 with equality iff S ∩L(OrGate(y)) = f(S, y). In particular, the root of the binary tree is
in S and therefore the final check node z has odd degree. Therefore, if Γ(y)∩L′∩S 6= ∅, DiscS(∪vC(v)) ≤ −1
with equality if S ∩ L(OrGate(y)) = f(S, y).

4.4.3 Hardness of MinGood

Note that the graph G that has been constructed has |L| ≤ mn + 2n(n− k) and |R| ≤ (n − m) + n2.

Lemma 3. DiscS(G) ≥ 0 iff S ∩ L′ is a codeword and for each x ∈ S ∩ L′, ZigZag(x) ∩ L ⊂ S.

Proof. According to Lemma 1 and 2,

DiscS(G) = DiscS(G′) +
∑

x∈L′

DiscS(ZigZag(x)) +
∑

y∈R′

DiscS(OrGate(y))

≤ DiscS(G′) −
∑

x∈L′

IZigZag(x)∩L 6⊂S − |Γ(S) ∩ R′|.

Note that DiscS(G′) ≤ |Γ(S)∩R′| and therefore DiscS(G) ≥ 0 implies that dGS
(y) is even for all y ∈ R′ and

ZigZag(x) ⊂ GS for all x ∈ S ∩ L′. Again, according to Lemma 1 and 2 if ∀y ∈ R′, dGS
(y) = 0 mod 2, and

∀x ∈ S ∩ L′, ZigZag(x) ⊂ GS , then DiscS(G) ≥ 0.

Theorem 6. For any constant α, there is no polynomial-time, α-approximation algorithm for MinGood,

unless RP = NP .

10



)(xZigZag 1

)(xZigZag 2

)(xZigZag 3

)(xZigZag 4

1x

2x

3x

4x

1y

2y

3y

)(yOrGate 1

)(yOrGate 2

)(yOrGate 3

Ballast

Ballast

Ballast

Figure 6: Combining the ZigZag, OrGate, and Ballast constructions.

Proof. Assume that S is a good set such that S ≤ αMinGood for some constant α. By Lemma 3 and
Lemma 2,

|S| = |S ∩ L′|m +
∑

y∈Γ(S∩L′)

|f(S, y)|,

and S∩L′ corresponds to a codeword. But
∑

y∈Γ(S∩L′) |f(S, y)| ≤ 2n(n−k), and so by setting m sufficiently
large we get a constant approximation for MinCodeword. But no such approximation exists unless RP =
NP [15].

4.4.4 Hardness of MinTrapAWGN−maj

To achieve the hardness result for MinTrapAWGN−maj we need to further augment our graph G with multiple
“Ballast” constructions. We call the resulting graph G+. The intuition behind Ballast is that no nodes from
Ballast will be chosen in S while the multiple copies of Ballast will ensure that the complement of S is also
good. A single Ballast consists of nodes L(Ballast) = {u1, . . . , ul}, R(Ballast) = {v1, . . . , vl, w2, . . . , wl}, and
edges,

E(Ballast) = {(ui, vi) : i ∈ [l]} ∪ {(vi, ui+1) : i ∈ [l − 1]} ∪ {(vl, u1)} ∪ {(ui, wi) : 1 ≤ i ≤ l − 1} .

We consider setting l = n|L| and adding |R| copies of Ballast to G.

Lemma 4. DiscS(Ballast) ≤ 1 with equality iff L(Ballast) ⊂ S.

Proof. Let A = S∩{u1, . . . , ul}. Note that Γ(A) contains at least |A|−1 nodes with odd degree with equality
iff L(Ballast) ⊂ S. Γ(A) contains at most |A| nodes of even degree with equality iff L(Ballast) ⊂ S.

Lemma 5. Assuming there exists a non-zero codeword, there is a good set in G. Furthermore, any good set

in G is a trapping set for G+.

Proof. Let S′ be the subset of L′ corresponding to the minimum weight codeword. Let

S = S′ ∪

(

⋃

x∈S′

L(ZigZag(x))

)

∪





⋃

y∈Γ(S′)

f(S, y)



 .

Then S is a good set in G. For the second part of the lemma note that by Lemma 4, for S ⊂ L, DiscS̄(G+) ≥
|R| − |R| = 0.

Theorem 7. For any constant α, there is no polynomial-time, α-approximation algorithm for MinGood,

unless RP = NP .

Proof. Assume that S is a trapping set such that S ≤ αMinTrapAWGN−maj for some constant α. By
Lemma 5, we know that |S| ≤ α|L| and hence S does not include all left hand side nodes of any copy of
Ballast because doing so would imply that |S| ≥ |L(Ballast)| = n|L|. But then by Lemma 4, we may assume
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that no nodes from Ballast are included in S because removing all such nodes from S increases DiscS(G).
Consequently S must be a subset of L. Since any good subset of L is a trapping set, MinGood(G) =
MinTrapAWGN−maj(G

+). But, by Theorem 6, there is no constant approximation of MinGood.

5 Hardness of Approximation Results for Sparse Codes

The fact that a problem is NP-hard usually does not imply that a special instance of the problems is NP-hard.
Since iterative decoding algorithms have both linear-time complexity and offer good decoding performance
only for special classes of codes, it is important to establish the analogues of the results in Section 4 for such
codes. We provide next a set of results establishing the hardness of approximating stopping and trapping
sets for low-density parity-check (LDPC) codes.

LDPC codes are linear block codes for which the parity-check matrix H is sparse -i.e., for which H has
a “small” number of non-zero entries. More formally, we define an LDPC code as follows. An LDPC code is
a code with the property that each variable and check node in its Tanner graph G = (L ∪ R, E) has degree
at most δv and δc, respectively, for some constants δv, δc > 2 independent on n.

Theorem 8. There exists a constant α > 1 such that it is NP-hard to α-approximate MinStop in the

Tanner graph of an LDPC code.

The proof follows along the same lines as the proof of NP-hardness using reduction from the problem
MinVertCov problem [27]: Let G = (V, E) be an undirected graph, which, without loss of generality, can
be assumed to be connected and of vertex degree bounded from above by three. Furthermore, also assume
that |V | = n, |E| = m, and that E = {e1, . . . , em}, V = {v1, . . . , vn}. Without loss of generality, one can set
e1 = (v1, v2) ∈ E. A bipartite graph Gvc is constructed as follows: the left hand side vertices of the graph
consist of nodes L = L0 ∪ L1, where L0 = V , and L1 = {e′1, . . . , e

′
m}. The right hand side vertices of the

graph consist of nodes R = R0 ∪ R1, with R0 = E, and R1 = {z1, . . . , zm}. The set of edges of Gvc is a
collection of ordered pairs the following form:

{(ei ∈ R0, u ∈ L0), (ei ∈ R0, v ∈ L0) : ei = (u, v) ∈ E} ∪ {(ei ∈ R0, e
′
i ∈ L2) : 1 ≤ i ≤ m}∪

{(zi ∈ R1, e
′
i ∈ L1), (zi ∈ R1, e

′
i+1 ∈ L1) : 1 ≤ i ≤ m − 1} ∪ {(zm ∈ R1, v1 ∈ L0), (zm ∈ R1, e

′
1 ∈ L1)}.

It is straightforward to show that if S is a stopping set in G, then S ∩ L0 is a vertex cover in G [27]. As
a consequence, there exists a constant ǫ > 0 such that there is no (1 + ǫ) approximation algorithm for the
MinStop problem, unless P=NP.

Note that in the construction, each vertex in L has degree bounded from above by four (the auxiliary
variable node e′1, . . . , e|E| have, by construction, degree two, while all vertices in V other than v1 and v2 have
degree at most three; the vertices v1 and v2 can have degree at most four). Similarly, the check nodes have
maximum degree three, since by construction, the vertices z1, . . . , z|E| have degree two, while the vertices in
R0 have degree three.

One can establish the even stronger result that the MinStop problem for LDPC codes remains NP hard
even for codes with Tanner graphs that avoid cycles of length four. This follows from the same arguments used
in the proof of the theorem above, with an additional reference to the hardness of the MinSetCovInterOne

problem, which also holds in the setting of sparse codes [23].

Theorem 9. There exists a constant α > 1 such that it is NP-hard to α-approximate MinTrapAWGN−elem

in the Tanner graph of an LDPC code.

Proof. The proof follows along the same lines as the proof of Theorem 5, with the three-dimensional matching
problem replaced by its constraint version involving a bounded number ℓ of appearances of each element in
X .

Theorem 10. The problems MaxLikeDecode and MinCodeword are NP-hard for LDPC codes.
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Proof. The proof is a direct consequence of the fact that the parity-check matrix used in the reduction from
the MaxThreeDimMatch to the MaxLikeDecode problem is sparse (it has column weight three, and
the row weight can be made bounded as well by invoking the constraint that any element of X cannot appear
more than r ≥ 3 times). The claimed result follows from the observation that there exists a polynomial-time
reduction algorithm from the MaxLikeDecode to the MinCodeword problem [37, 38].

As a consequence of the above finding, all trapping set problems described in Section 4, for which the
hardness was established in terms of reductions from the MinCodeword problem, remain NP-hard for the
class of LDPC codes.

6 Estimation of the Error-Floor

The error floor is a phenomena inherent to iterative decoders that manifests itself as a sudden change in the
slope of the BER performance of a code. Alternatively, it represents a phase transition in the dynamical
system of the decoder that prohibits it from attaining a sufficiently low BER. The error floor usually appears
at moderate to high signal-to-noise ratios, i.e. for small values of the erasure and error probability p of the
BEC and BSC channel. For such values of p, the codeword error-rate R(p) has the form

log (R(p)) ≃ log(Nκ) + κ log(p), (1)

where κ denotes the size of the smallest stopping/trapping sets, while Ni represents the number of such sets.
The dominating term in the expression is the linear term κ log(p).

As a consequence of the results in Section 4, we have the following result.

Corollary 6. Unless P = NP , there is no polynomial time algorithm for estimating the error-floor of codes

used over the BEC and BSC within an O(1) term.

For the AWGN channel with noise variance σ2, a heuristic formula for the codeword error-rate was derived
in [31], where it was shown that

R(σ) ≥
∑

T∈T

P (T, σ),

where T denotes the set of dominant (small) elementary trapping sets for the given code, and P (T, σ) is
the probability of decoder failure on a trapping set T . It was observed that simulation of decoding can be
viewed as stochastic process for finding trapping sets [31]. This, and other methods that rely on combining
simulation techniques with “aided flipping” methods and greedy search strategies, were all observed to be
inefficient when estimating the error-floor of “good codes” - i.e. codes with large minimum stopping and
trapping set sizes. In the next section, we show that some problems discussed in the paper has complexity
that grows exponentially with the size of the smallest set being sought, but only polynomially with respect
to the size of the input (i.e., code length). Consequently, one can easily find the smallest stopping sets of
fairly long codes, provided that the size of such stopping sets is not greater than 10 − 15 [14, 13, 34]. This
was observed in several papers, including [34].

7 Fixed-Parameter Tractability

Parameterized complexity represents a measure of the computational cost of problems that have several input
parameters. Problems for which one of the parameters, say π, is fixed are called parameterized problems.
There exist problems that require exponential running time in the parameter π but that are computable in
a time that is polynomial in the input size. Hence, if π is fixed at a small value, such problems can still
be exactly solved in an efficient manner. A parameterized problem that allows for the existence of such
polynomial time algorithms is termed a fixed-parameter tractable problem and it belongs to the class FPT,
first studied by Downey and Fellows [13].
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Many NP-complete problems are fixed-parameter tractable. As an example, the MinVertCov is FPT,
with complexity O(κ n + (4/3)κ κ2), where κ denotes the size of the smallest vertex cover, and n is the size
of the input, i.e., the number of vertices in the graph. Despite the fact that MinVertCov is a special
instant of MinHitSet with set sizes equal to two, the latter is not known to have FPT algorithms when
parameterization is performed only with respect to the size of the smallest hitting set κ. Strong evidence
suggests that such an algorithm does not exist, since MinHitSet is W [2]-complete (for the non-trivial
definition of the W [2] class, see [14]). It is only known that MinHitSet is FPT when the set sizes are
bounded, and parameterization is performed with respect to, say, κ + δmax, where δmax denotes the size of
the largest set in the MinHitSet formulation.

In this section, we use the results of [8, 16, 33] to show that the MinCStop problem is FPT. Furthermore,
by invoking the recent results in [11], we show that the problem of enumerating all cover stopping sets is
FPT as well.

Theorem 11. The problem MinCStop for LDPC codes of maximal constant check node degree δc is in

FTP, with best known complexity bound of the form

O

((

δc − 2

2

(

1 +

√

1 +
4

(δc − 2)2

))κ

+ n

)

. (2)

The algorithm that achieves this bound is a tree search algorithm, see [16].

Theorem 12. The problem of enumerating all minimal cover stopping sets in LDPC codes of maximal

constant check node degree δc is in FTP, with best known complexity bound of the form O⋆ ((δc − 1 + o(1))κ) ,
where O⋆ refers to an O(·) function for which all polynomial factors are suppressed, and where κ stands for

the size of the smallest cover stopping set.

As a final remark, the problem MinStop can be shown to be W[1]-hard, due to its connection to the
Exact Even Set problem [8].

8 Conclusion

We showed that a class of problems, pertaining to the size of the smallest stopping and trapping sets in
Tanner graphs is NP-hard to even approximate. Furthermore, we showed that similar results apply to the
class of LDPC codes. Our findings provide one of the few known families of codes for which the minimum
distance and stopping set problems are NP-hard. We also show that a simple instance of the stopping set
problem for LDPC codes, namely the complete stopping set problem, is fixed parameter tractable.
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