
Sorting and Selection with Random Costs

Stanislav Angelov1 and Keshav Kunal1 and Andrew McGregor2

1 Department of Computer and Information Science,
University of Pennsylvania, Philadelphia, PA 19104, USA

{angelov,kkunal}@cis.upenn.edu
2 Information Theory & Applications Center,

University of California, San Diego, CA 92093, USA
andrewm@ucsd.edu

Abstract. There is a growing body of work on sorting and selection in
models other than the unit-cost comparison model. This work treats a
natural stochastic variant of the problem where the cost of comparing
two elements is a random variable. Each cost is chosen independently
and is known to the algorithm. In particular we consider the following
three models: each cost is chosen uniformly in the range [0, 1], each cost
is 0 with some probability p and 1 otherwise, or each cost is 1 with
probability p and infinite otherwise. We present lower and upper bounds
(optimal in most cases) for these problems. We obtain our upper bounds
by carefully designing algorithms to ensure that the costs incurred at
various stages are independent and using properties of random partial
orders when appropriate.

1 Introduction

In the relatively recent area of priced information [5, 6, 4], there is a set of facts
each of which can be revealed at some cost. The goal is to pay the least amount
such that the revealed facts allow some inference to be made. A specific problem
in this framework, posed by Charikar et al. [4], is that of sorting and selection
where each comparison has an associated cost. Here we are given a set V of n
elements and the cost of comparing two elements u and v is c(u,v). This cost is
known to the algorithm. We wish to design algorithms for sorting and selection
that minimize the total cost of the comparisons performed. Results can be found
in [15, 11, 12] where the performance of the algorithms is measured in terms of
competitive analysis. In all cases assumptions are made about the edge costs,
e.g., that there is an underlying monotone structure [15, 11] or metric structure
[12].

A related problem that predates the study of priced information is the prob-
lem of sorting nuts and bolts [1, 17]. This is a problem that may be faced by
“any disorganized carpenter who has a mixed pile of bolts and nuts and wants
to find the corresponding pairs of bolts and nuts” according to the authors of
[1]. The problem amounts to sorting two sets, X and Y , each with n elements
given that comparisons are only allowed between u ∈ X and v ∈ Y . It can be

shown that this problem can be generalized to the priced information problem
in which comparison costs are either 1 or ∞.

In this paper we study a natural stochastic variant of the sorting problem.
We consider each comparison cost to be chosen independently at random. Specif-
ically, we consider the following three models:

(a) Uniform Costs: c(u,v) is chosen uniformly in the range [0, 1],
(b) Boolean Costs: c(u,v) = 0 with probability p and 1 otherwise,
(c) Unit and Infinite Costs: c(u,v) = 1 with probability p and ∞ otherwise.

The first model is in the spirit of the work on calculating the expected cost of
the minimum spanning tree [10]. The second and third models are related to
the study of random partially ordered sets (see [3] for an overview) and linear
extensions [9, 13, 2]. Specifically, in Model (b), the free comparisons define a
partial order (V,4) that is chosen according to the random graph model. To sort
V we need to do the minimum number of remaining comparisons to determine
the linear extension, or total order. In Model (c) we have the problem of inferring
properties of the random partial order (V,4) defined by the cost 1 edges.

1.1 A Motivation from Game Theory

The framework of priced information lends itself naturally to a game theoretic
treatment where there are numerous sellers each owning one or more facts. Some
facts will be, in a sense, more valuable than others. In the case of sorting, the
value of a comparison (u, v) is inversely related to |{w : u < w < v or v < w <
u}| because for each such w, the comparisons (u, w) and (w, v) together provide
an alternative way of implying (u, v). How should sellers price their information
in an effort to maximize their profit? Herein lies the dilemma — if the pricing
of the facts is strictly monotonic with their value, the buyer can infer the sorted
order from the prices themselves and by performing a single (cheapest) compar-
ison! Yet, if there is no correlation, the seller is not capitalizing on the value of
the information they have to sell. It seems likely that the optimum pricing of a
fact will be a non-deterministic function of the value. While a treatment of the
game theoretic problem seems beyond our reach at this time, we feel that a first
step will be to find optimal buyer strategies when the price of each fact is chosen
randomly and independently of the value of the fact.

1.2 Our Results

For p = 1/2, our results are summarized in Table 1. In general, we will present
bounds in terms of both n and p. Note that rather than using a competitive
analysis of our algorithms (as in [15, 11, 12]) we estimate the expected cost of
our algorithms and the expected cost of the respective minimum certificate.

We would like to note that for the first three rows of Table 1, the expected cost
of each comparisons is 1/2 but the variance differs. For selection type problems
the variance makes a big difference since there are many ways to certify the rank

Max and Min Selection Sorting

Upper Bound Min. Certificate Upper Bound Min. Certificate Upper Bound Min. Certificate

c(u,v) = 1/2 O(n) Ω(n) O(n) Ω(n) O(n log n) Ω(n)

c(u,v) ∈ [0, 1] O(log n) Ω(log n) O(log6 n) Ω(log n) O(n) Ω(n)

c(u,v) ∈ {0, 1} O(1) Ω(1) O(log n) Ω(1) O(n) Ω(n)

c(u,v) ∈ {1,∞} O(n log n) Ω(n) − − − −

Table 1. Comparison between the expected costs of our algorithms and the minimum
certificates for sorting and selection for various cost functions when p = 1/2. The first
row follows from standard algorithms and is given as a reference point for comparison.
Also, in the case of c(u,v) ∈ {1,∞} we consider finding all maximal/minimal elements.

of an element. However for sorting there is only one (minimal) certificate for the
sorted order. Nevertheless, a little bit of variance makes it possible to sort with
only linear cost rather than O(n log n) cost.

One of the main challenges in the analysis of our algorithms is to ensure
that the costs incurred at various stages of the algorithm are independent. We
achieve this by carefully designing the algorithms and describing an alternative
random process of cost assignment that we argue is equivalent to the original
random process of cost assignment.

2 Preliminaries

We are given a set V of n elements, drawn from some totally ordered set. We are
also given a non-negative symmetric function c : V ×V → R+ which determines
the cost of comparing two elements of V . Given V and c, we are interested in
designing algorithms for sorting and selection that minimize the total cost of the
performed comparisons.

The above setting is naturally described by the complete weighted graph on
V , call it G, where the weight ce of an edge e is determined by the cost function
c. The direction of each edge (u, v) in G is consistent with the underlying total
order and is unknown unless the edge e is probed, i.e., the comparison between u
and v is performed, or it is implied by transitivity, i.e., a directed path between
u and v is already revealed. In this case we call u and v comparable.

An algorithm for sorting or selection should reveal a certificate of the cor-
rectness of its output. In the case of sorting, the minimal certificate is unique,
namely the Hamiltonian path in G between the largest and the smallest elements
of V . In the case of selection, the certificate is a subgraph of G that includes a
(single) directed path between the element of the desired rank and each of the
remaining elements of V . In the special case of max-finding, the certificate is a
rooted tree on V , the maximum element being the root. The cost of a certificate
is defined as the total cost of the included edges.

In this paper we consider three different stochastic models for determining
the cost function c (see Section 1). In Models (b) and (c), the graphs induced
respectively by the cost 0 or 1 edges have natural analogue to random graphs with
parameter p, denoted by Gn,p. Note that in Models (a) and (b), the maximum
cost of a comparison is 1. When this is case, the following proposition will be
useful and follows from a natural greedy strategy to find the maximum element
in the standard comparison model.

Proposition 1. Given a set V of n elements, drawn from a totally ordered set,
where the cost of the comparison between any two elements is at most 1, we can
find (and certify) the maximum element performing n−1 comparisons incurring
a cost of at most n− 1.

We will measure the performance of our algorithms by comparing the ex-
pected total cost of the edges probed with the expected cost of a minimum
certificate. Note that the cost of the minimum certificate is concentrated around
the mean in most cases. Even when the minimum certificate cost is far from the
mean, we can obtain good bounds on the expected ratio by using algorithms
from [4] (Model (a)) or standard algorithms (Model (b) and (c)).

Finally, in the analysis, it would be often useful to number the elements of
V , v1, · · · , vn such that v1 < · · · < vn. We also define the rank of an element v
with respect to a set S ⊆ V to be rkS(v) = |{u : u ≤ v, u ∈ S}|.

3 Uniform Comparison Costs

In this section we will assume that the cost of each comparison is chosen uni-
formly at random in the range [0, 1]. We consider the problems of finding the
maximum or minimum elements, general selection, and sorting. The algorithms
are presented in Fig. 1.

Theorem 1. The expected cost of UniformFindMax is at most 2(Hn−1) where
Hk =

∑k
i=1 1/i.

Proof. We analyze a random process where we consider edges one by one in a
non-decreasing order of their cost. Note that the costs of edges define a random
permutation on the edges. If an edge is incident to two candidate elements, i.e.,
elements that have not lost so far a performed comparison, we probe the edge,
otherwise we ignore the edge. Either way we say the edge is processed.

We divide the analysis in rounds. A round terminates when an edge is probed.
After the end of a round, the number of candidates for the maximum decreases
by one. Therefore after n− 1 rounds the last candidate would be the maximum
element. For r ∈ {1, . . . , n− 1}, let tr denote the random variable which counts
the number of edges processed in the rth round. Let Tr =

∑r
i=1 ti denote the

rank of the edge (in the sorted by costs order) found in the rth round. Therefore,
the expected cost of the performed comparison is E [Tr] /(

(
n
2

)
+ 1).

It remains to show an upper bound on the value of E [Tr] =
∑r

i=1 E [ti]. So far
Tr−1 edges have been processed. The probability that the next edge is between

two candidate elements is p =
(
n−(r−1)

2

)
/

((
n
2

)
− Tr−1

)
≥

(
n−(r−1)

2

)
/
(
n
2

)
. Hence,

for r ∈ {1, . . . , n− 2}, E [tr] ≤ 1/p ≤
(
n
2

)
/
(
n−(r−1)

2

)
, and for r = n− 1, we have

E [Tr] ≤
(
n
2

)
. We conclude that the total expected cost is at most,

n−1∑
r=1

E [Tr]
(
(
n
2

)
+ 1)

≤ 1 +
n−2∑
r=1

r∑
i=1

1(
n−(i−1)

2

) ≤ 1 +
n−2∑
r=1

2
n− r + 1

= 2(Hn − 1) .

Theorem 2. The expected cost of the cheapest rank k certificate is Hk+Hn−k+1−
2.

Proof. Consider vi with i < k. Any certificate must include a comparison with
at least one of vi+1, . . . , vk. The expected cost of the minimum of these k − i
comparisons is 1

k−i+1 . Summing over i, i < k, yields Hk − 1. Similarly, now
consider vi with i > k. Any certificate must include a comparison with at least
one of vk, . . . , vi−1. The expected cost of the minimum of these i−k comparisons
is 1

i−k+1 . Summing over i, n ≥ i > k, yields Hn−k+1 − 1. The theorem follows.

Note that the theorem above also implies a lower bound of Ω(log n) on the
expected cost of the cheapest certificate for the maximum (minimum) element.
To prove a bound on the performance of UniformSelection we need the following
preliminary lemma.

Lemma 1. Let v ∈ V and perform each comparison (not just those involving v)
with probability p . Then, with probability at least 1−1/n4 (assuming p > 1/n3),
for all u such that

| rkV (u)− rkV (v)| ≥ 150 log n (log n + log(1/p))
p

,

the relationship between u and v is certified by the comparisons performed.

Proof. Without loss of generality, rkV (v) ≥ n/2. We will consider elements in
S = {u : rkV (u) < rkV (v)}. The analysis for elements among {u : rkV (u) >
rkV (v)} is identical and the result follows by the union bound. Throughout the
proof we will assume that n is sufficiently large.

Let D be the subset of S such that u ∈ D is comparable to v. We partition
S into sets,

Bi = {u : rkV (v)− wi ≤ rkV (u) < rkV (v)− w(i− 1)} ,

where w = 12 log n
p(1−e−1) . Let Xi = D∩Bi, that is, the elements from set Bi that are

comparable to v. For the sake of notation, let X0 = {v}. Let Di =
⋃

0≤j≤i−1 Xj .
If we perform a comparison between an element of Di and an element u of Bi

then we certify that u is less than v. The probability that an element of Bi gets
compared to an element of Di is,

1− (1− p)Di ≥ 1− e−pDi ≥ (1− e−1) max{1, pDi} .

Let (Yi)1≤i be a family of independent random variables distributed as Bin(w, q)
where q = (1− e−1) max{pDi, 1}. Note that E [Yi] = 12Di log n if pDi ≤ 1.

1. For i such that Di < 1/p. Using the Chernoff Bounds,

P [Xi < Di log n] = P
[
Xi <

qw

12

]
≤ P

[
Yi <

E [Y]
12

]
≤ e−6(11/12)2Di log n ≤ n−5 .

In other words, the number of comparable elements increases by at least a
log n factor until Di ≥ 1/p. Hence, with probability at least 1− log(1/p)/n5,
for all i, Di ≥ min{1/p, (log n)i−1}. In particular, Dlog 1/p ≥ 1/p.

2. Assume that i > log(1/p) and therefore Dlog 1/p ≥ 1/p. Using Chernoff
Bounds, we get

P
[
Xi <

1
p

]
≤ P

[
Yi <

1
p

]
≤ P

[
Yi <

E [Yi]
12 log n

]
≤ e−(1− 1

12 log n)26Di log n ≤ n−5 .

Therefore with probability at least 1− t/n5, Dt ≥ 6p−1 log n where t = 6 log n+
log(1/p). Consider an element u ∈ Bt′ where t′ > t. The probability that u
is not in D is at most (1 − p)6 log n/p ≤ 1/n6. Hence, with probability at least
1− (1 + t)/n5,

|S \D| ≤ wt ≤ 150 log n (log n + log(1/p))
p

.

Lemma 2. Consider the algorithm UniformFindRankCertificate called on a ran-
domly chosen v. With probability at least 1−n−3 the algorithm returns a certifi-
cate for the rank of v. The expected cost of the comparisons is O(log5 n).

Proof. Let Vi be the set of elements at the start of iteration i. Let p1 = α/n be the
probability that ce ∈ [0, α/n]. For i > 1, let pi = α2i−1/n be the probability that
ce ∈ [α2i−1/n, α2i/n]. First we show that, with probability at least 1− log2(n/α)

n4 ,
for all 1 ≤ i ≤ log2(n/α), |Vi| < n/2i−1. Assume that |Vi| < n/2i−1. Appealing
to Lemma 1, there are less than

300 log |Vi|(log |Vi|+ log(1/p))
p

≤ 600 log2 n

α2i−1/n
= |Vi|/2

elements in Vi+1 \ Vi and hence |Vi+1| < n/2i. It remains to show that the cost
per iteration is O(log4 n). This follows since the expected number of comparisons
is O(V 2

i α2i/n) = O(αn/2i) and each comparison costs at most α2i/n.

The following theorem can be proved using standard analysis of the appro-
priate recurrence relations and Lemma 2.

Theorem 3. The algorithm UniformSelection can be used to select the kth el-
ement. The expected cost of the certificate is O(log6 n). The algorithm Uniform-
Sort returns a sorting certificate with expected cost O(n).

Note that we can check if a certificate is a valid one without performing any
additional comparisons. In the case when UniformFindRankCertificate fails, we
can reveal all edges to obtain a certificate without increasing asymptotically the
overall expected cost.

Algorithm UniformFindMax (V)
1. for j = 1 to n− 1
2. do Perform cheapest remaining comparison
3. Remove the smaller element of the performed comparison
4. return remaining element

Algorithm UniformFindRankCertificate(V, v)
1. Let α = 1200 log2 n
2. Perform all comparisons e such that ce ∈ [0, α/n]
3. for u ∈ V
4. do if u is comparable with v
5. then V ← V \ {u}
6. if u < v then V1 ← V1 ∪ {u} else V2 ← V2 ∪ {u}
7. for i = 1 to log2(n/α)
8. do Perform all comparisons e such that ce ∈ [α2i−1/n, α2i/n]
9. Repeat Steps 3-6
10. return V1, V2

Algorithm UniformSelection(V, k)
1. if |V | = 1 then return V
2. Pick random pivot v ∈ V
3. (V1, V2)←UniformFindRankCertificate(V, v)
4. V ← V \ {v}
5. if |V1| > k then UniformSelection(V1, k) else UniformSelection(V2, k − |V1|)

Algorithm UniformSort(V)
1. Pick random pivot v ∈ V
2. (V1, V2)←UniformFindRankCertificate(V, v)
3. return (UniformSort(V1), v,UniformSort(V2))

Fig. 1. Algorithms for uniform comparison costs.

Theorem 4. The expected cost of the cheapest sorting certificate is (n− 1)/2.

Proof. For each 1 ≤ i ≤ n− 1 there must be a comparison between vi and vi+1.
The expected cost of each is 1/2. The theorem follows by linearity of expectation.

4 Boolean Comparison Costs

In this section we assume that comparisons are for free with probability p and
have cost 1 otherwise. We consider the problems of finding the maximum or
minimum elements, general selection, and sorting. The algorithms for maximum
finding and selection are presented in Fig. 2. For sorting we use results from [2]
and [15] to obtain a bound on the number of comparisons needed to sort the
random partial order defined by the free comparisons.

Theorem 5. The expected cost of BooleanFindMax is 1/p− 1 as n →∞.

Algorithm BooleanFindMax (V)
1. Perform all free comparisons
2. Find the maximum element among the elements that have not lost a compar-

ison in Step 1 using cost 1 comparisons.

Algorithm BooleanSelection(V, k)
1. Perform all free comparisons
2. w ← 3(log n)/p2

3. S ← {v : v wins at least k − 1 − w comparisons and loses at least n − k − w
comparisons}

4. Find the minimum and maximum element of S and determine their exact rank
by comparing them to all elements whose relation to them is unknown.

5. rmin ← rkV (minimum element of S)
6. rmax ← rkV (maximum element of S)
7. T ← {v : rmin ≤ rkV (v) ≤ rmax}
8. if rmin ≤ k and rmax ≥ k
9. then return StandardSelection(T, k − rmin)
10. else return StandardSelection(V, k)

Fig. 2. Algorithms for boolean comparison costs

Proof. Consider the ith largest element. The probability that there is no free
comparison to a larger element is (1 − p)i−1. Hence, after performing all the
free comparisons, the expected number of non-losers, in the limit as n tends to
infinity, is

lim
n→∞

n∑
i=1

(1− p)i−1 = lim
n→∞

1− (1− p)n

p
= 1/p .

Hence, by Proposition 1, the expected number of comparisons of cost 1 that are
necessary is 1/p− 1.

The theorem above leads to an immediate corollary:

Corollary 1. The expected cost of the cheapest certificate for the maximum el-
ement and the element of rank k is Ω(1/p) as n →∞.

Using Theorem 5, we obtain a sorting algorithm with expected cost of at most
(1/p − 1)(n − 1) by repeating n − 1 times BooleanFindMax . We improve this
result (for sufficiently small p) by observing that the free comparisons define a
random partial order on the n elements, call it Gn,p. In [2], the expected number
of linear extensions of Gn,p was shown to be

p−1
n∏

k=1

1− (1− p)k ≤ 1/pn−1 .

A conjecture, proposed by Kislitsyn [16], Fredman [9], and Linial [18], states
that given a partial order P , there is a comparison between two elements such

that the fraction of extensions of P where the first elements precedes the second
one is between 1/3 and 2/3. Ignoring running time, this would imply sorting
with cost log3/2 e(P), where e(P) denotes the number of linear extensions of P .
In [14], a weaker version of the conjecture was shown giving rise to an efficient,
via randomization [8], sorting algorithm with cost log11/8 e(P). Taking a differ-
ent approach, Kahn and Kim [13] described a deterministic polynomial time,
O(log e(P)) cost algorithm to sort any partial order P .

Combining the above results, and using Jensen’s inequality, we obtain a sort-
ing algorithm with expected cost at most,

log11/8 e(Gn,p) ≤ (log11/8 p−1)(n− 1) .

Note that for p < 0.1389, log11/8(1/p) < 1/p − 1. Combining the two sorting
methods, we obtain the following theorem.

Theorem 6. There is a sorting algorithm for the Boolean Comparison Model
with expected cost of min{log11/8 1/p, 1/p− 1} · (n− 1).

The proof of the following theorem about the cheapest sorting certificate is
nearly identical to that of Theorem 4.

Theorem 7. The expected cost of the cheapest sorting certificate is (1−p)(n−1).

We next present our results for selection.

Theorem 8. The algorithm BooleanSelection can be used to select the kth ele-
ment. The expected cost of the algorithm is O(p−2 log n).

Proof. We want to bound the size of set S as defined in the algorithm. Fix an
element vj . For an element vi such that i < j, let l = j − i − 1. Consider the
event that we can infer vi < vj from the free comparisons because there exists an
element vi′ such that vi < vi′ < vk and c(vi,vi′)

= c(vi′ ,vj) = 0. The probability
of this event is 1− (1−p2)l and hence with probability at least 1−1/n3 we learn
vi < vj if l ≥ w = 3(log n)/p2. Therefore, with probability at least 1− 1/n2, vj

wins at least j−1−w comparisons. Similarly with probability at least 1−1/n2,
vj loses at least n− j + w comparisons.

Hence, with probability 1− 2/n2, every element from the set

S′ = {v : k − w ≤ rkV (v) ≤ k + w} ,

belongs to the set S and in particular the element of rank k also belongs to
S. Note that no element from outside S′ can belong to S and hence |S| ≤ 2w.
By Proposition 1, it takes O(w) comparisons to compute the minimum and
maximum elements in S. There are at most 2w elements incomparable to the
minimum (maximum) element with probability at least 1− 2/n2 and hence the
expected cost for determining the exact rank of minimum (maximum) element
from S is bounded by

2w(1− 2/n2) + (n− 1)2/n2 = O(w)

Algorithm PosetFindMaximal
1. Pick v ∈ V
2. while |V | > 0
3. do Perform cost 1 comparisons with v until it loses (or is certified maximal)
4. if v wins all of its comparisons then return v maximal
5. else V ← V \ {v} and set v to the winner of the last comparison

Algorithm PosetFindAllMaximal
1. for each v ∈ V
2. do Perform, in a random order, cost 1 comparisons with v
3. until v loses or all such comparisons are performed
4. return All elements that did not lose comparison

Fig. 3. Algorithms for 1/∞ comparison costs

in expectation. Since the size of T is also O(w), step 5 takes O(w) time if vk ∈ T ,
which happens with probability at least 1 − 2/n2, and O(n) otherwise. Similar
to the previous step, the expected cost is O(w).

Note that with a slight alteration to the BooleanSelection algorithm it is
possible to improve upon Theorem 8 if p is much smaller than 1/ log n. Namely,
setting w = 150p−1 log n log(n/p), and appealing to Lemma 1 in the analysis,
gives an expected cost of O

(
p−1 log n log(n/p)

)
.

5 Unit and Infinite Comparison Costs

In this section we consider the setting where only a subset of the comparisons
is allowed. More specifically, each comparison is allowed with probability p (has
cost 1) and is not allowed otherwise (has infinite cost). Here, the underlying total
order might not be possible to infer even if all comparisons are performed. This is
because, for example, adjacent elements can be compared only with probability
p. Hence, even the maximum element might not be possible to certify exactly.
We therefore relax our goals to finding maximal elements and inferring the poset
defined by the edges of cost 1. In what follows, we present algorithms for finding
a maximal element as well as all maximal elements (see Fig. 3). We consider an
element maximal if it wins (directly or indirectly) all allowed comparisons to its
neighbors.

Theorem 9. The expected cost of the cheapest certificate for all maximal ele-
ments is Ω

(
n(1− (1− p)n−1)

)
.

Proof. In this setting, each element that has no edges of cost 1 incident to it is a
maximal element. In expectation, there are n(1− p)n−1 such elements. For each
of the remaining elements we need to do at least one comparison. Note that each
comparison satisfies this requirement for two elements. Therefore, we need to do
at least 1

2 (n− n(1− p)n−1) comparisons in expectation.

Theorem 10. The expected cost of PosetFindAllMaximal is O(n log n). The
expected cost of PosetFindMaximal is at most n− 1.

Proof. We first analyze PosetFindAllMaximal . Fix an element v. Let i = rkV (v).
Consider the following equivalent random process that assigns costs (1 or ∞) to
edges in the following way:

1. Pick t from a random variable T distributed as Bin(n− 1, p).
2. Repeat t times: Assign cost 1 to a random edge adjacent to v whose cost has

not yet been determined.
3. Declare the cost of all other edges adjacent to v to be ∞.
4. For each remaining graph edge assign cost 1 with probability p and ∞ oth-

erwise.

We may assume that the algorithm probes the cost 1 edges in this order until
v loses a comparison or until all cost 1 edges are revealed. If v has not lost
a comparison, v loses the next performed comparison with probability at least
(i− 1)/(n− 1). Hence, the expected number of comparisons involving v is∑

t

P [T = t]
t∑

j=1

i− 1
n− 1

(
1− i− 1

n− 1

)j−1

j ≤
∑

t

P [T = t]
n− 1
i− 1

≤ n− 1
i− 1

.

Therefore, by linearity of expectation the total number of comparisons we expect
to do is at most (n− 1)Hn−1 + (n− 1).

The second part of the theorem follows easily from Proposition 1. The algo-
rithm PosetFindMaximal is given for completeness.

Recently, Daskalakis et al. [7] gave algorithms with O(wn) cost for finding
all maximal elements in a poset where w is the width or maximum size of in-
comparable elements in the poset. Note that for p < 1/2, E [w] = Ω(log n) but
for higher values of p, their algorithm yields a cheaper solution. However, their
results also apply in the worst case, not just the expected case.

6 Conclusions and Open Questions

We have presented a range of algorithms for finding cheap sorting/selection
certificates in three different stochastic priced-information models. Most of our
algorithms are optimal up to constants and the remaining algorithms are optimal
up to poly-logarithmic terms (for constant values of the parameter p). Beyond
improving the existing algorithms there are numerous ways to extend this work.
In particular,

– What about the price model in which the comparison costs are chosen in an
adversarial manner but the order of the elements is randomized?

– In this work we have compared expected cost of minimum certificates to
expected cost of the algorithms presented. Is it possible to design algorithm
which are optimal in the sense that the expected cost of the certificate found
is minimal over all algorithms? Perhaps this would admit an information
theoretic approach.

Finally, this work was partially motivated by the game theoretic framework
described in Section 1.1. A full treatment of this problem was beyond the scope of
the present work. However, the problem seems natural and deserving of further
investigation.

References

1. N. Alon, M. Blum, A. Fiat, S. Kannan, M. Naor, and R. Ostrovsky. Matching nuts
and bolts. In SODA, pages 690–696, 1994.

2. N. Alon, B. Bollobás, G. Brightwell, and S. Janson. Linear extensions of a random
partial order. Annals of Applied Probability, 4:108–123, 1994.

3. G. Brightwell. Models of random partial orders. pages 53–83, 1993.
4. M. Charikar, R. Fagin, V. Guruswami, J. M. Kleinberg, P. Raghavan, and A. Sahai.

Query strategies for priced information. J. Comput. Syst. Sci., 64(4):785–819, 2002.
5. F. Cicalese and E. S. Laber. A new strategy for querying priced information. In

H. N. Gabow and R. Fagin, editors, STOC, pages 674–683. ACM, 2005.
6. F. Cicalese and E. S. Laber. An optimal algorithm for querying priced information:

Monotone boolean functions and game trees. In G. S. Brodal and S. Leonardi,
editors, ESA, volume 3669 of Lecture Notes in Computer Science, pages 664–676.
Springer, 2005.

7. C. Daskalakis, R. M. Karp, E. Mossel, S. Riesenfeld, and E. Verbin, Sorting and
Selection in Posets. http://arxiv.org/abs/0707.1532, 2007.

8. M. E. Dyer, A. M. Frieze, and R. Kannan. A random polynomial time algorithm
for approximating the volume of convex bodies. In STOC, pages 375–381. ACM,
1989.

9. M. L. Fredman. How good is the information theory bound in sorting? Theor.
Comput. Sci., 1(4):355–361, 1976.

10. A. M. Frieze. Value of a random minimum spanning tree problem. J. Algorithms,
10(1):47–56, 1985.

11. A. Gupta and A. Kumar. Sorting and selection with structured costs. In FOCS,
pages 416–425, 2001.

12. A. Gupta and A. Kumar. Where’s the winner? Max-finding and sorting with
metric costs. In C. Chekuri, K. Jansen, J. D. P. Rolim, and L. Trevisan, editors,
APPROX-RANDOM, volume 3624 of Lecture Notes in Computer Science, pages
74–85. Springer, 2005.

13. J. Kahn and J. H. Kim. Entropy and sorting. J. Comput. Syst. Sci., 51(3):390–399,
1995.

14. J. Kahn and M. Saks. Balancing poset extensions. Order, 1:113–126, 1984.
15. S. Kannan and S. Khanna. Selection with monotone comparison cost. In SODA,

pages 10–17, 2003.
16. S. S. Kislitsyn. A finite partially ordered set and its corresponding set of permu-

tations. Mathematical Notes, 4:798 – 801, 1968.
17. J. Komlós, Y. Ma, and E. Szemerédi. Matching nuts and bolts in O(n log n) time.

SIAM J. Discrete Math., 11(3):347–372, 1998.
18. N. Linial. The information-theoretic bound is good for merging. SIAM J. Comput.,

13(4):795–801, 1984.

