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Abstract

When comparing discrete probability distributions, natural measures of similarity are not `p

distances but rather are information divergences such as Kullback-Leibler and Hellinger. This
paper considers some of the issues related to constructing small-space sketches of distributions in
the data-stream model, a concept related to dimensionality reduction, such that these measures
can be approximated from the sketches. Related problems for `p distances are reasonably well
understood via a series of results by Johnson & Lindenstrauss (1984), Alon et al. (1999), Indyk
(2000), and Brinkman & Charikar (2003). In contrast, almost no analogous results are known to
date about constructing sketches for the information divergences used in statistics and learning
theory.

Our main result is an impossibility result that shows that no small-space sketches exist for
the multiplicative approximation of any commonly used f -divergences and Bregman divergences
with the notable exceptions of `1 and `2 where small-space sketches exist. We then present
data-stream algorithms for the additive approximation of a wide range of information divergences.
Throughout, our emphasis is on providing general characterizations.
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1 Introduction

In recent years, the data-stream model has enjoyed significant attention because of the need to
process massive data sets (e.g. Henzinger et al., 1999; Alon et al., 1999; Feigenbaum et al., 2002).
A streaming computation is a sublinear space algorithm that reads the input in sequential order
and any item not explicitly remembered is inaccessible. A fundamental problem in the model
is the estimation of distances between two objects that are determined by the stream, e.g., the
network traffic matrices at two routers. Estimation of distances allows us to construct approximate
representations, e.g., histograms, wavelets, Fourier summaries, or equivalently, find models of the
input stream, since this problem reduces to finding the “closest” representation in a suitable class.
In this paper, the objects of interest are empirical probability distributions defined by a stream of
updates as follows.

Definition 1. For a data stream S = 〈a1, . . . , am〉 where ai ∈ {p, q} × [n] we define empirical
distributions p and q as follows. Let m(p)i = |{j : aj = 〈p, i〉}|, m(p) = |{j : aj = 〈p, ·〉}| and
pi = m(p)i/m(p). Similarly for q.

One of the cornerstones in the theory of data stream algorithms has been the result of Alon et al.
(1999). They showed that it is possible to estimate `2(p, q) := ‖p− q‖2 (the Euclidean distance) up
to a (1 + ε) factor using only poly(ε−1, log n) space. The algorithm can, in retrospect, be viewed
in terms of the famous embedding result of Johnson & Lindenstrauss (1984). This result implies
that for any two vectors p and q and an k × n matrix A whose entries are independent Normal(0, 1)
random variables (scaled appropriately),

(1 + ε)−1`2(p, q) ≤ `2(Ap, Aq) ≤ (1 + ε)`2(p, q)

with high probability for some k = poly(ε−1, log n). Alon, Matias, and Szegedy demonstrated that
an “effective” A can be stored in small space and can be used to maintain a small-space, updateable
summary, or sketch, of p and q. The `2 distance between p and q can then be estimated using only
the sketches of p and q. While Brinkman & Charikar (2003) proved that there was no analog of the
Johnson-Lindenstrauss result for `1, Indyk (2000) demonstrated that `1(p, q) could also be estimated
in poly(ε−1, log n) space by using Cauchy(0, 1) random variables rather than Normal(0, 1) random
variables. The results extended to all `p-measures with 0 < p ≤ 2 using stable distributions. Over a
sequence of papers (Saks & Sun, 2002; Chakrabarti et al., 2003; Cormode et al., 2003; Bar-Yossef
et al., 2004; Indyk & Woodruff, 2005; Bhuvanagiri et al., 2006; Cormode & Ganguly, 2007) `p

and Hamming distances have become well understood. Concurrently several methods of creating
summary representations of streams have been proposed (Broder et al., 2000; Charikar et al., 2002;
Cormode & Muthukrishnan, 2005) for a variety of applications; in terms of distances they can be
adapted to compute the Jaccard coefficient (symmetric difference over union) for two sets. One of
the principal motivations of this work is to characterize the distances that can be sketched.
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The Information Divergences: Applications in pattern matching, image analysis, statistical
learning, etc., use distances which are not `p norms. Several distances1 such as the Kullback-Leibler
and Hellinger divergences are central to estimating the distances between distributions, and have
had a long history of study in statistics and information theory literature. We will discuss two
broad classes of measures (1) f -divergences, which are used in statistical tests and (2) Bregman
divergences which are used in finding optimal models via mathematical programming.

Definition 2 (f -Divergences). Let p and q be two n-point distributions. A convex function f :
(0,∞) → R such that f(1) = 0 gives rise to an f-divergence,

Df (p, q) =
∑
i∈[n]

pif(qi/pi) .

where we define 0f(0/0) = 0, af(0/a) = a limu→0 f(u), and 0f(a/0) = a limu→∞ f(u)/u if these
limits exist.

The quantity qi/pi is the “likelihood ratio” and a fundamental aspect of these measures is that
these divergences are tied to “ratio tests” in Neyman-Pearson style hypothesis testing (e.g. Cover &
Thomas, 1991). Several of these divergences appear as exponents of error probabilities for optimal
classifiers, e.g., in Stein’s Lemma. Results of Csiszár (1991), Liese & Vajda (1987), and Amari (1985)
show that f -divergences are the unique class of distances on distributions that arise from a fairly
simple set of axioms, e.g., permutation invariance, non-decreasing local projections, and certain
direct sum theorems. In many ways these divergences are “natural” to distributions and statistics,
in much the same way that `2 is a natural measure for points in Rn. Given the sub-streams defining
p and q, it is natural to ask whether these streams are alike or given a prior model of the data, how
well does either conform to the prior? These are scenarios where estimation of f -divergences is the
most natural problem at hand. Notably, `1 distance is an f -divergence where f(u) = |u− 1| and is
often referred to as the variational distance in this context. However, `1 distances do not capture the
“marginal” utilities of evidence and in innumerable cases Kullback–Leibler where f(u) = − log(u),
Hellinger where f(u) = (

√
u− 1)2, Triangle where f(u) = (1− u)2/(1 + u), and Jensen–Shannon

divergences where f(u) = −(u + 1) log(1/2 + u/2) + u log u are preferred. An important “smooth”
subclass of the f -divergences are the α-divergences where f(u) = 1− u(1+α)/2.

A major reason for investigating these f -divergences lies in loss functions used in statistical
learning. The `1 distance captures the “hinge loss” and the other divergences are geared towards
non-linear losses. To understand the connection better, we need to also discuss the connections
between f -divergences and Bregman divergences. The general family of “arcing” (Breiman, 1999)
and “AnyBoost” (Mason et al., 1999) family of algorithms fall into a constrained convex programming
framework introduced earlier by Bregman (1967). Friedman et al. (2000) established the connection

1Several of the “distances” used are not metric, and we henceforth use the more appropriate term “divergence.”

3



between boosting algorithms and logistic loss, and subsequently over a series of papers (Lafferty
et al., 1997; Lafferty, 1999; Kivinen & Warmuth, 1999; Collins et al., 2002), the study of Bregman
divergences and information geometry has become the method of choice for studying exponential
loss functions. The connection between loss functions and f -divergences are investigated more
recently by Nguyen et al. (2005).

Definition 3 (Decomposable Bregman Divergences). Let p and q be two n-point distributions. A
strictly convex function F : (0, 1] → R gives rise to a Bregman divergence,

BF (p, q) =
∑
i∈[n]

(
F (pi)− F (qi)− (pi − qi)F ′(qi)

)
.

Perhaps the most familiar Bregman divergence is `2
2 with F (z) = z2. The Kullback–Leibler

divergence is also a Bregman divergence with F (z) = z log z, and the Itakura–Saito divergence
F (z) = − log z. Lafferty et al. (1997) suggest F (z) = −zα + αz − α + 1 for α ∈ (0, 1), F (z) =
zα − αz + α− 1 for α < 0.

The principal use of Bregman divergences is in finding optimal models. Given a distribution
q we are interested in finding a p that best matches the data, and this is posed as the convex
optimization problem minp BF (p, q). It is easy to verify that any positive linear combination of
Bregman divergences is a Bregman divergence and that the Bregman balls are convex in the
first argument but often not in the second. This is the particular appeal of the technique, that
the divergence depends on the data naturally and the divergences have come to be known as
Information Geometry techniques. Furthermore, there is a natural convex duality between the
optimum representation p∗ under BF , and the divergence BF . This connection to convex optimization
is one of the many reasons for the emerging heavy use of Bregman divergences in the learning
literature.

Given that we can estimate `1 and `2 distances between two streams in small space, it is natural
to ask which other f -divergences and Bregman divergences are sketchable?

Our Contributions: In this paper we take several steps towards a characterization of the distances
that can be sketched. Our first results, in Section 3, are negative and help us understand why the
`1 and `2 distances are special among the f and Bregman divergences.

• We prove the Shift Invariant Theorem that characterizes a large family of distances that
can not be approximated multiplicatively in the data-stream model. This theorem pertains
to decomposable distances, i.e., distances d : Rn × Rn → R+ for which there exists a
φ : R×R → R+ such that d(x, y) =

∑
i∈[n] φ(xi, yi). The theorem suggest that unless φ(xi, yi)

is a function of xi − yi the measure d cannot be sketched.

• For all f -divergence for which f is twice differentiable and f ′′ is strictly positive, no polynomial
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factor approximation of Df (p, q) is possible in o(n) bits of space. Note that for `1, which can
be sketched, the function f(u) = |u− 1| and therefore f ′′ is not defined at 1.

• For all Bregman divergences BF for which F is twice differentiable and there exists ρ, z0 > 0
such that,

∀ 0 ≤ z2 ≤ z1 ≤ z0,
F ′′(z1)
F ′′(z2)

≥
(

z1

z2

)ρ

or ∀ 0 ≤ z2 ≤ z1 ≤ z0,
F ′′(z1)
F ′′(z2)

≤
(

z2

z1

)ρ

no polynomial factor approximation of BF is possible in o(n) bits of space. This condition
effectively states that F ′′(z) vanishes or diverges monotonically, and polynomially fast, as
z approaches zero. Note that for `2

2, which can be sketched, F (z) = z2 and therefore F ′′ is
constant everywhere.

Then, in Section 4, we consider finding additive approximations. We say an algorithm returns an
(ε, δ)-additive-approximation for a real number Q if it outputs a value Q̂ such that |Q̂−Q| ≤ ε with
probability at least (1− δ) over its internal coin tosses. (ε, δ)-additive-approximation algorithms
that took two passes over the data stream were presented in Guha et al. (2006). In this paper we
show sharp characterizations about what can be achieved in a single pass. We show the following:

• IfDf is bounded, then there is an (ε, δ)-additive-approximation forDf using O(ε−2τ(ε) log δ−1(log n+
log m)) bits of space where τ(·) is a function determined by the derivative of f , e.g., τ(ε) = O(1)
for Triangle and τ(ε) = O(ε−1) for Hellinger. Complementing this, any (ε, 1/4)-additive-
approximation of Df requires Ω(ε−2) bits of space. Any (ε, 1/4)-additive-approximation of an
unbounded Df requires Ω(n) bits of space for any ε.

• If F and F ′′ are bounded in the range [0, 1], then there is an (ε, δ)-additive-approximation
for BF using O(ε−2 log δ−1(log n + log m)) bits of space. If F (0) or F ′(0) are unbounded, any
(ε, 1/4)-additive-approximation of an unbounded BF requires Ω(n) bits of space for any ε.

2 Preliminaries

In this section we present some simple results that will allow us to make certain useful assumptions
about an f or F defining an f -divergence or Bregman divergence.

2.1 f-Divergences

We start by defining a conjugate f∗(u) = uf(1/u). We can then write,

Df (p, q) =
∑

i:pi>qi

pif(qi/pi) +
∑

i:qi>pi

qif
∗(pi/qi) .
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Lemma 4. Let f be a real-valued function that is convex on (0,∞) and satisfies f(1) = 0. Then
there exists a real-valued function g that is convex on (0,∞) and satisfies g(1) = 0 such that

1. Df = Dg.

2. g is positive and if f is differentiable at 1 then g′(1) = 0.

3. If Df is bounded then g(0) = limu→0 g(u) and g∗(0) = limu→0 g∗(u) exists.

Proof. For p = (1/2, 1/2) and q = (0, 1),

Df (p, q) = (f(0) + f(2))/2 and Df (q, p) = 0.5 lim
u→0

uf(1/u) + f(0.5) .

Hence, if Df is bounded then f(0) = limu→0 f(u) and f∗(0) = limu→0 f∗(u) = limu→0 uf(1/u) exist.
Let c = limu→1−

f(1)−f(u)
1−u . If f is differentiable then c = f ′(1). Otherwise, this limit still exists

because f is convex and defined on (0,∞). Then g(u) = f(u) − c(u − 1) satisfies the necessary
conditions.

For example, the Hellinger divergence can be realized by either f(u) = (
√

u−1)2 or f(u) = 2−2
√

u.
Henceforth, we assume f is non-increasing in the range [0, 1] and non-decreasing in the range [1,∞).

The next lemma shows that, if we are willing to tolerate an additive approximation, we may
make certain assumptions about the derivative of f . This is achieved by approximating f by a
straight line for very small and very large values.

Lemma 5. Given a bounded Df with f differentiable (w.l.o.g., f is unimodal and minimized at 1)
and ε ∈ (0, 1), let

u0(ε) = max {u ∈ (0, 1] : f(u)/f(0) ≥ 1− ε, f∗(u)/f∗(0) ≥ 1− ε}

and define g:

g(u) =


f(u) for u ∈ (u0, 1/u0)
f(0)− u(f(0)− f(u0))/u0 for u ∈ [0, u0]
uf∗(0)− (f∗(0)− f∗(u0))/u0 for u ∈ [1/u0,∞)

Then, Dg(p, q)(1− ε) ≤ Df (p, q) ≤ Dg(p, q) and

max
u

|g′(u)| ≤ max (εf(0)/u0, f
∗(0)) and max

u
|g∗′(u)| ≤ max (εf∗(0)/u0, f(0)) .

Proof. Because f, f∗, g, g∗ are non-increasing in the range [0, 1], for all u ∈ [0, u0],

1 ≤ g(u)
f(u)

≤ f(0)
f(u)

≤ f(0)
f(u0)

and 1 ≤ g∗(u)
f∗(u)

≤ f∗(0)
f∗(u)

≤ f∗(0)
f∗(u0)

. (1)
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The first claim follows from equation 1 and the assumption that

min (f(u0)/f(0), f∗(u0)/f∗(0)) ≥ 1− ε .

To bound the derivatives note that g(u) and g∗(u) are convex and hence the absolute value of the
derivative is maximized at u = 0 or u →∞. The second claim follows by taking the derivative at
these points and bounding f(u0) ≥ (1− ε)f(0) and f∗(u0) ≥ (1− ε)f∗(0)

Note that limu→0 |g′(u)| is bounded whereas limu→0 |f ′(u)| need not be bounded. For example,
for the Hellinger divergence, f(u) = (

√
u − 1)2 and therefore f ′(u) = (

√
u − 1)/

√
u which is

unbounded as u tends to 0.

2.2 Bregman Divergences

Similar to Lemma 4, the following lemma demonstrates that, without loss of generality, we may
make various assumptions about the F that defines a Bregman divergence.

Lemma 6. Let F be a differentiable, real valued function that is strictly convex on (0, 1] such that
limu→0+ F (u) and limu→0+ F ′(u) exist. Then there exists a differentiable, real valued function G

that is strictly convex on (0, 1] and,

1. BF (p, q) = BG(p, q) for all distributions p and q.

2. G(z) ≥ 0 for x ∈ (0, 1] and G is increasing in the range (0, 1].

3. limu→0+ G′(u) = 0 and limu→0+ G(u) = 0.

Proof. The function G(z) = F (z)− F ′(0)z − F ′(0) satisfies the necessary conditions.

3 Multiplicative Approximations

We start with the central theorem of this section, the Shift Invariance Theorem. This theorem
characterizes a large class of divergences that are not sketchable. In essence the results shows
that it is impossible to approximate dφ(p, q) =

∑
i φ(pi, qi) in small space if φ(α, α + δ) can vary

significantly for different values of the “shift” α.

Theorem 7 (Shift Invariance Theorem). Let φ : [0, 1]2 → R+ be such that φ(x, x) = 0 for all
x ∈ [0, 1] and for all sufficiently large n there exists a, b, c ∈ N such that,

max
(

φ

(
a

t
,
a + c

t

)
, φ

(
a + c

t
,
a

t

))
>

α2n

4

(
φ

(
b + c

t
,
b

t

)
+ φ

(
b

t
,
b + c

t

))
(2)

where t = an/4+bn+cn/2. Then any algorithm returning an estimate of dφ(p, q) =
∑

i∈[5n/4] φ(pi, qi)
within a factor α with probability at least 3/4 where p and q are defined by a stream of length
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O((a + b + c)n) over [5n/4] requires Ω(n) space. This remains true even if the algorithm may take a
constant number of passes over the stream.

The factor n on the right-hand side of Eqn. 2 is only necessary if we wish to prove a Ω(n) space
lower bound and thereby rule out sub-linear space algorithms. In particular, if n is replaced by
some w ≤ n then the lower bound would become Ω(w). However, the above formulation will be
sufficient for the purposes of proving results on the estimation of information divergences.

Proof. The proof is by a reduction from the communication complexity of the Set-Disjointness prob-
lem. An instance of this problem consists of two binary strings, x, y ∈ {0, 1}n such that

∑
i xi =∑

i yi = n/4. We consider two players, Alice and Bob, such that Alice knows the string x and
Bob knows the string y. Alice and Bob take turns to send messages to each other with the goal
of determining if x and y are disjoint, i.e., x · y = 0 (where the inner product is taken over the
reals). It is known that determining if x · y = 0 with probability at least 3/4 requires Ω(n) bits to
be communicated (Razborov, 1992).

However, suppose that there exists a streaming algorithm A that takes P passes over a stream
and uses W working memory to α-approximate dφ(p, q) with probability 3/4. We will show that
this algorithm gives rise to a (2P − 1)-round protocol for Set-Disjointness that only requires
O(PW ) bits to be communicated and therefore W = Ω(n/P ).

We will assume that φ(a/t, (a + c)/t) ≥ φ((a + c)/t, a/t). If φ(a/t, (a + c)/t) ≤ φ((a + c)/t, a/t)
then the proof follows by reversing the roles of the p and q that we now define. Consider the
multi-sets,

SA(x) =
⋃

i∈[n]

{axi + b(1− xi) copies of {〈p, i〉,〈q, i〉}} ∪
⋃

i∈[n/4]

{b copies of {〈p, i + n〉, 〈q, i + n〉}}

SB(y) =
⋃

i∈[n]

{cyi copies of 〈q, i〉} ∪
⋃

i∈[n/4]

{c copies of 〈p, i + n〉} .

This defines the following frequencies:

m(p)i =


a if xi = 1 and i ∈ [n]

b if xi = 0 and i ∈ [n]

b + c if n < i ≤ 5n/4

and m(q)i =



a if (xi, yi) = (1, 0) and i ∈ [n]

b if (xi, yi) = (0, 0) and i ∈ [n]

a + c if (xi, yi) = (1, 1) and i ∈ [n]

b + c if (xi, yi) = (0, 1) and i ∈ [n]

b if n < i ≤ 5n/4

.

Consequently,

dφ(p, q) = (x · y)φ (a/t, (a + c)/t) + (n/4− x · y)φ (b/t, (b + c)/t) + (n/4)φ ((b + c)/t, b/t) ,
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where t = m(p) = m(q) = an/4 + bn + cn/2 and therefore,

x · y = 0 ⇔ dφ(p, q) = (n/4)(φ(b/t, (b + c)/t) + φ((b + c)/t, b/t))

x · y ≥ 1 ⇔ dφ(p, q) ≥ α2(n/4)(φ(b/t, (b + c)/t) + φ((b + c)/t, b/t)) .

Hence any α-approximation of dφ(p, q) determines if x · y = 0. Alice and Bob can emulate A on
SA(x) ∪ SB(y) in the natural way: Alice runs A on SA(x), communicates the memory state of A,
Bob runs A initiated with this memory state on SB(x) and communicates the memory state of A to
Alice and so on. If the algorithm returns an α-approximation for dφ(p, q) then Bob can successfully
infer if x · y = 0 from the approximation.

The above theorem suggests that unless φ(xi, yi) is some function of xi − yi then the distance is
not sketchable. The result holds even if the algorithm may take a constant number of passes over the
data. It is also possible to prove a simpler result for single pass algorithms using a reduction from
the communication complexity of the Index problem, a variant of the Set-Disjointness problem
in which Bob’s string has weight one. In this case the result states that if there exist a, b, c ∈ N
such that

max
(
φ

(
a+c

t , a
t

)
+ φ

(
b
t ,

b+c
t

)
, φ

(
a
t ,

a+c
t

)
+ φ

(
b+c

t , b
t

))
φ

(
b
t ,

b+c
t

)
+ φ

(
b+c

t , b
t

) > α2 ,

where t = an/4 + 3bn/4 + b + c, then any single-pass α-approximation of
∑

i∈[n+1] φ(pi, qi) requires
Ω(n) bits of space.

We next present two corollaries of Theorem 7. These characterize the f -divergences and Bregman
divergences that can be not be sketched. We note that `1 and `2

2, which can be sketched, are the
only commonly used divergences that do not satisfy the relevant conditions. In both cases the result
follows by finding conditions on f or F such that it is possible to appeal to Theorem 7.

Corollary 8 (f -Divergences). Given an f-divergence Df , if f is twice differentiable and f ′′ is
strictly positive, then no polynomial factor approximation of Df is possible in o(n) bits of space.

The idea behind the proof is to establish that b
tf(b/(b + 1)) can be made very small compared to

1
t f(1/2) for large b if f ′(u) tends to zero as u tends to 1. A sufficient condition for this to happen
will be if f is twice differentiable and f ′′ is strictly positive. For `1, which can be sketched, the
function f(u) = |u− 1| and therefore f ′′ is not defined at 1.

Proof. We first note that by Lemma 4 we may assume f(1) = f ′(1) = 0. Let a = c = 1 and
b = α2n(f ′′(1) + 1)/(8f(2)) where α is an arbitrary polynomial in n. Note that f(2) > 0 because f

is strictly convex. We start by observing that,

φ(b/t, (b + c)/t) = (b/t)f(1 + 1/b) = (b/t)
[
f(1) +

1
b
f ′(1) +

1
2!b2

f ′′(1 + γ)
]
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for some γ ∈ [0, 1/b] by Taylor’s Theorem. Since f(1) = f ′(1) = 0 and f ′′(t) is continuous at t = 1
this implies that for sufficiently large n, f ′′(1 + γ) ≤ f ′′(1) + 1 and so,

φ(b/t, (b + c)/t) ≤ f ′′(1) + 1
2tb

=
f ′′(1) + 1
2f(2)b

t−1f(2) ≤ 8
α2n

φ(a/t, (a + c)/t) .

Similarly we can show that for sufficiently large n, φ((b+ c)/t, b/t) ≤ 8φ(a/t, (a+ c)/t)/(α2n). Then,
appealing to Theorem 7 we get the required result.

Corollary 9 (Bregman Divergences). Given a Bregman divergence BF , if F is twice differentiable
and there exists ρ, z0 > 0 such that,

∀ 0 ≤ z2 ≤ z1 ≤ z0,
F ′′(z1)
F ′′(z2)

≥
(

z1

z2

)ρ

or ∀ 0 ≤ z2 ≤ z1 ≤ z0,
F ′′(z1)
F ′′(z2)

≤
(

z2

z1

)ρ

then no polynomial factor approximation of BF is possible in o(n) bits of space.

This condition effectively states that F ′′(z) vanishes or diverges monotonically, and polynomially
fast, as z → 0. Note that for `2

2, which can be sketched, F (z) = z2 and therefore F ′′ is constant
everywhere.

Proof. By the Mean-Value Theorem, for any t, r ∈ N, there exists γ(r) ∈ [0, 1] such that,

φ(r/t, (r + 1)/t) + φ(r/t + 1/t, r/t) = t−1(F ′(r/t + 1/t)− F ′(r/t)) = t−2F ′′((r + γ(r))/t) .

Therefore, for any a, b ∈ N, c = 1 and t = an/4 + bn + n/2,

max
(
φ

(
a
t ,

a+c
t

)
, φ

(
a+c

t , a
t

))
φ

(
b+c

t , b
t

)
+ φ

(
b
t ,

b+c
t

) ≥ 1
2

F ′′((a + γ(a))/t)
F ′′((b + γ(b))/t)

.

If ∀ 0 ≤ z2 ≤ z1 ≤ z0, F ′′(z1)/F ′′(z2) ≥ (z1/z2)ρ then set a = (α2n)1/ρ and b = 1 where α is
an arbitrary polynomial in n. If ∀ 0 ≤ z2 ≤ z1 ≤ z0, F ′′(z1)/F ′′(z2) ≤ (z2/z1)ρ then set a = 1
and b = (αn)1/ρ. In both cases we deduce that the RHS of Eqn. 3 is greater than α2n/4. Hence,
appealing to Theorem 7, we get the required result.

4 Additive Approximations

In this section we focus on additive approximations. As mentioned earlier, the probability of
misclassification using ratio tests is often bounded by 2−Df , for certain Df . Hence, an additive ε

approximation translates to a multiplicative 2ε factor for computing the error probability.
Our goal is the characterization of divergences that can be approximated additively. We first

present a general algorithmic result based on an extension of a technique first used by Alon
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et al. (1999). We then prove two general lower-bounds. In the subsequent sections, we consider
f -divergences and Bregman divergences in particular.

Theorem 10. For φ : [0, 1]2 → R such that φ(0, 0) = 0, there exists an (ε, δ)-additive-approximation
for dφ(p, q) using O(τε−2 log δ−1(log n + log m)) bits of space where

τ = 4 max
x,y∈[0,1]

(∣∣∣∣ ∂

∂x
φ(x, y)

∣∣∣∣ +
∣∣∣∣ ∂

∂y
φ(x, y)

∣∣∣∣) .

The algorithm does not need to know m(p) or m(q) in advance.

Proof. We will describe a basic estimator that can be computed in small space without prior
knowledge of m(p) or m(q). We will then argue that the estimator is correct in estimation. Finally,
we show that, by averaging a small number of independent basic estimators, we may return a
sufficiently accurate estimator with the necessary probability.

Let d ∈R {p, q} and jd ∈R [m(d)] where ∈R denotes an element being chosen uniformly from the
relevant set. Let aj = 〈d, k〉 be the jd-th element in the stream of the form 〈d, ·〉 and compute

r := I[d = p] · r0 + |{` > j : a` = 〈p, k〉}| ·m(q)

s := I[d = q] · s0 + |{` > j : a` = 〈q, k〉}| ·m(p)

where r0 ∈R [m(q)] and s0 ∈R [m(p)].
Note that r and s can be computed without prior knowledge of m(p) and m(q) since all that

needs to be computed before we reach the end of the stream is jd, |{` > j : a` = 〈p, k〉}|, and
|{` > j : a` = 〈q, k〉}|. To do this we set jd = 1 when we see the first element of the form 〈d, ·〉 and
start computing |{` > j : a` = 〈p, k〉}|, and |{` > j : a` = 〈q, k〉}|. On seeing the i-th element of
the form 〈d, ·〉 we reset jd to i with probability 1/i and start computing |{` > j : a` = 〈p, k〉}|, and
|{` > j : a` = 〈q, k〉}| afresh. Note that the probability that jd is set to i at the end of the algorithm
is

1
i

(
1− 1

i + 1

) (
1− 1

i + 2

)
. . .

(
1− 1

m(d)

)
=

1
i
· i

i + 1
· i + 1
i + 2

. . .
m(d)− 1

m(d)
=

1
m(d)

,

and hence this procedure computes jd, |{` > j : a` = 〈p, k〉}|, and |{` > j : a` = 〈q, k〉}| as required.
Given r and s we define the basic estimator as

X(r, s) =

{
2m∗(φ(r/m∗, s/m∗)− φ(r/m∗ − 1/m∗, s/m∗)) if d = p

2m∗(φ(r/m∗, s/m∗)− φ(r/m∗, s/m∗ − 1/m∗)) if d = q

where m∗ = m(p)m(q).
Note that Pr [k = i] = (pi + qi)/2 and that, because of a telescoping property of the appropriate

sum,

E [X(r, s)|k = i] = 2m∗
(

φ(m(p)im(q)/m∗,m(q)im(p)/m∗)
m(p)m(q)i + m(q)m(p)i

)
=

2φ(pi, qi)
pi + qi

.

11



To see this consider the sub-stream consisting of the elements of the form 〈·, i〉, e.g.,

〈p, i〉, 〈q, i〉, 〈q, i〉, 〈p, i〉, 〈q, i〉, 〈p, i〉 .

and expand E [X(r, s)|k = i] as follows:

E [X(r, s)|k = i] = γ
( ∑

i∈[m(q)]

X(2m(q) + i, 3m(p)) +
∑

i∈[m(p)]

X(2m(q), 2m(p) + i) +

+
∑

i∈[m(p)]

X(2m(q),m(p) + i) +
∑

i∈[m(q)]

X(m(q) + i, m(p))

+
∑

i∈[m(p)]

X(m(q), i) +
∑

i∈[m(q)]

X(i, 0)
)

= 2m∗γ


φ(2/m(q), 3/m(q))− φ(2/m(q), 2/m(q))

+φ(2/m(p), 2/m(q))− φ(2/m(q), 1/m(q))
+φ(2/m(p), 1/m(q))− φ(1/m(q), 1/m(q))
+φ(1/m(p), 1/m(q))− φ(1/m(q), 0/m(q))
+φ(1/m(p), 0/m(q))− φ(0/m(q), 0/m(q))

 =
2φ(pi, qi)
pi + qi

.

where γ = 1
m(p)im(q)+m(p)m(q)i

.
Therefore E [X(r, s)] =

∑
i φ(pi, qi) as required. Furthermore,

|X(r, s)| ≤ 2 max

{
max

x∈[ r−1
m∗ , r

m∗ ]

∣∣∣∣ ∂

∂x
φ(x, s/m∗)

∣∣∣∣ , max
y∈[ s−1

m∗ , s
m∗ ]

∣∣∣∣ ∂

∂y
φ(r/m∗, y)

∣∣∣∣
}
≤ τ .

Hence, by an application of the Chernoff bound, averaging O(τε−2 log δ−1) independent basic
estimators gives an (ε, δ)-additive-approx.

We next prove a lower bound on the space required for additive approximation by any single-
pass algorithm. The proof uses a reduction from the one-way communication complexity of the
Gap-Hamming problem (Woodruff, 2004). It is widely believed that a similar lower-bound exists
for multi-round communication (e.g. McGregor, 2007, Question 10 (R. Kumar)) and, if this is the
case, it would imply that the lower-bound below also applies to algorithms that take a constant
number of passes over the data.

Theorem 11. Any (ε, 1/4)-additive-approximation of dφ(p, q) requires Ω(ε−2) bits of space if,

∃a, b > 0,∀x, φ(x, 0) = ax, φ(0, x) = bx, and φ(x, x) = 0.

Proof. The proof is by a reduction from the communication complexity of the Gap-Hamming prob-
lem. An instance of this problem consists of two binary strings, x, y ∈ {0, 1}n such that

∑
i xi =

12



∑
i yi = cn for some constant c. We consider two players, Alice and Bob, such that Alice knows

the string x and Bob knows the string y. Alice sends a single message to Bob with the goal of Bob
then being able to determine dH(x, y), the Hamming distance between x and y, up to an additive
√

n term. It is known that achieving this with probability at least 3/4 requires Ω(n) bits to be
communicated (Woodruff, 2004).

However, suppose that there exists a single-pass algorithm A using W working memory that
returns an (ε, 1/4)-additive-approximation for dφ(p, q). We will show that this algorithm gives
rise to a one-way protocol for Gap-Hamming for n =

⌊
ε−2

⌋
that only requires O(W ) bits to be

communicated and therefore W = Ω(n).
Consider the sets SA(x) =

⋃
i:xi=1{〈p, i〉} and SB(y) =

⋃
i:yi=1{〈q, i〉}. Then,

dφ(p, q) =
a|{i : xi = 1, yi = 0}|

cn
+

b|{i : xi = 0, yi = 1}|
cn

= dH(x, y)
a + b

2cn
.

Therefore an ε(a + b)/(4c)-additive-approximate determines dH(x, y) up to additive
√

n.
Alice and Bob can emulate A on SA(x) ∪ SB(y) in the natural way: Alice runs A on SA(x),

communicates the memory state of A and then Bob runs A initiated with this memory state on
SB(x). If the algorithm returns an ε(a + b)/(4c)-additive-approximation for dφ(p, q) then Bob can
successfully infer dH(x, y) up to an additive

√
n.

Finally in this section we demonstrate that no o(n) space, constant pass algorithm can return
any additive approximation if dφ is unbounded.

Theorem 12. Any (ε, 1/4)-additive-approximation of dφ(p, q) =
∑

i∈[n] φ(pi, qi) requires Ω(n) space
if either φ(x, 0) or φ(0, x) is unbounded for all x > 0 and bounded otherwise. This applies even if
one of the distributions is known to be uniform.

Proof. The proof is by a reduction from the communication complexity of the Set-Disjointness prob-
lem and is almost identical to the proof of Theorem 7. The only difference is that SA(x) =⋃

i:xi=0{〈q, i〉}, SB(y) =
⋃

i:yi=0{〈q, i〉}, and we assume that p is the uniform distribution. If
φ(1/n, 0) is unbounded then dφ(p, q) is finite if and only if x · y = 0. Otherwise, if φ(0, 1/n) is
unbounded then dφ(q, p) is finite if and only if x · y = 0.

4.1 Additive Approximation for f-divergences

In this section we show that Df (p, q) can be additively approximated up to any additive ε > 0 if
and only if Df is bounded.

Theorem 13. There exists a one-pass, O(ε−2τ(ε) log δ−1(log n + log m))-space, (ε, δ)-additive-
approximation for any bounded f-divergence where,

τ(ε) = O(ε/u0) where u0 = max {u ∈ (0, 1] : f(u)/f(0) ≥ 1− ε, f∗(u)/f∗(0) ≥ 1− ε}
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For example, τ(ε) = O(1) for Triangle and τ(ε) = O(ε−1) for Hellinger. The algorithm does not
need to know m(p) or m(q) in advance.

Proof. We appeal to Theorem 10 and note that,

max
x,y∈[0,1]

(∣∣∣∣ ∂

∂x
φ(x, y)

∣∣∣∣ +
∣∣∣∣ ∂

∂y
φ(x, y)

∣∣∣∣) = max
x,y∈[0,1]

(∣∣f(y/x)− (y/x)f ′(y/x)
∣∣ +

∣∣f ′(y/x)
∣∣)

≤ 2 max
u≥0

(∣∣f∗′(u)
∣∣ +

∣∣f ′(u)
∣∣) .

The result follows by appealing to By Lemma 5, we may bound the derivatives of f and f∗ in terms
of the additive approximation error ε. This gives the required result.

We complement Theorem 13 with the following result which follows from Theorems 11 and 12.

Theorem 14. Any (ε, 1/4)-additive-approximation of an unbounded Df requires Ω(n) bits of
space. This applies even if one of the distributions is known to be uniform. Any (ε, 1/4)-additive-
approximation of a bounded Df requires Ω(ε−2) bits of space.

4.2 Additive Approximation for Bregman divergences

In this section we prove a partial characterization of the Bregman divergences that can be additively
approximated.

Theorem 15. There exists a one-pass, O(ε−2 log δ−1(log n + log m))-space, (ε, δ)-additive-approx.
of a Bregman divergence if F and F ′′ are bounded in the range [0, 1]. The algorithm does not need
to know m(p) or m(q) in advance.

Proof. We appeal to Theorem 10 and note that,

max
x,y∈[0,1]

(∣∣∣∣ ∂

∂x
φ(x, y)

∣∣∣∣ +
∣∣∣∣ ∂

∂y
φ(x, y)

∣∣∣∣) = max
x,y∈[0,1]

(∣∣F ′(x)− F ′(y)
∣∣ + |x− y|F ′′(y)

)
.

We may assume this is constant by convexity of F and the assumptions of the theorem. The result
follows.

The next theorem follows immediately from Theorem 12.

Theorem 16. If F (0) or F ′(0) is unbounded then an (ε, 1/4)-additive-approx. of BF requires Ω(n)
bits of space even if one of the distributions is known to be uniform.

5 Conclusions and Open Questions

We presented a partial characterization of the information divergences that can be multiplicatively
approximated in the data stream model. This characterization was based on a general result that

14



suggests that any distance that is sketchable has certain “norm-like” properties. We then presented
algorithms and lower-bounds for the additive approximation of information divergences.

Our first open question concerns multiplicative approximation of information divergences in
the aggregate data-stream model in which all elements of the form 〈r, i〉 appear consecutively for
each i ∈ [n], r ∈ {p, q}. It is easy to (1 + ε) multiplicatively approximate the Hellinger divergence in
this model using O(ε−2 polylog m) bits of space by exploiting the connection between the Hellinger
divergence and the `2 distance. The Jensen-Shannon divergence is constant factor related to Hellinger
and therefore there exists a constant factor approximation to Jensen-Shannon in O(polylog m) space.
How much space is required to find an (1 + ε)-approximation?

Our second open question concerns additive approximation in the distributed data-stream model.
In this model, the data-stream defining p and q is partitioned into multiple sub-streams and each
sub-stream is observed at a different location. After the sub-streams have been processed, a message
is sent from each location to some central authority who returns an approximation of dφ(p, q). While
the lower-bounds we presented also apply in this model, the additive-approximation algorithms
we presented required the assumption that the entire stream was observed at a single location. Is
additive approximation possible in the distributed model?
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