
PROCESSING DATA STREAMS

Andrew McGregor

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania in Partial

Fulfillment of the Requirements for the Degree of Doctor of Philosophy

2007

Sampath Kannan
Supervisor of Dissertation

Rajeev Alur
Graduate Group Chairperson

COPYRIGHT

Andrew McGregor

2007

Acknowledgements

I am fortunate to have learnt a lot from some great people during my time in graduate

school. First and foremost, I would like to thank Sampath Kannan for being a

fantastic advisor. Talking with Sampath was always a pleasure and I can only

hope that I have picked up some of his great taste in choosing problems. I am

also very grateful to Sasha Barg, Sudipto Guha, and Bruce Shepherd for additional

mentoring over the last five years. Working with Sudipto was a lot of fun, especially

when our opinions diverged and caffeine-fueled hours would be spent in a back-and-

forth of conjectures and counter-examples until a perfectly-formed theorem would

emerge! During four internships at DIMACS and Bell Labs, Sasha convinced me

of the benefits of thinking geometrically about coding theory and Bruce taught me

not to fear case-analysis in combinatorial optimization. All have been a tremendous

source of advice and encouragement.

A big thank you to the wonderful people of the St. Andrew’s Society of the State

of New York for the scholarship that partially funded my first year at Penn.

I would like to thank Sudipto Guha, Piotr Indyk, Michael Kearns, and Sanjeev

Khanna for agreeing to be on my thesis committee. Thanks for your time and

suggestions, and a special thanks to Piotr for waking up at 4 a.m. to make my

defense after a day of travel upsets. Also, no thesis would ever be completed in Penn

C.I.S. without the help of the indomitable Mike Felker, the department’s paper-work

tsar. Thank you for making the administrative side of things run so smoothly.

I am a firm believer that the best way to grow as a researcher is to collaborate

iii

with smart, enthusiastic people. I am fortunate to have had the opportunity to work

with co-authors that fit that bill: Deepak, Stan, Sasha, Tuğkan, Amit, Matthew,

Graham, Joan, Peter, Boulos, Piotr, Sampath, Sanjeev, Keshav, Eduardo, Muthu,

Jeff, Bruce, Sid, Suresh, Jian, and Zhengyuan. Equally important to me has been

the theory students at Penn: Stan, Milan, Yael, Boulos, Niel, Kuku, Sid, Mirko, and

the ill-fated theory fish, Turing. Keep watering the plants and take care of Gollum!

Research has its moments of both frustration and utter elation. It is also addictive

to the point of requiring “interventions” once in a while. For these I’d like to thank

the “normal” people in my life, the people who distinguish between offices and coffee

shops (thanks to Intermezzo and Capriccio) and who remain unconvinced that “Let

ǫ < 0” is the world’s funniest joke. To old friends from the UK who dragged me to

far-flung destinations or came out to visit (including my awesome sister), thanks for

ensuring that America became a second home, rather than just a new home. (For

specific instances of having a roof over my head, I would like to thank Ewan and

Rachel, Simon and Rashmin, the Barg family, the Fraser family, Nick, Helen, David

and Laura, Graham and Valentine, and the inhabitants of the inimitable 19 Frank’s

Lane. Thanks for letting me cover your kitchen tables with papers and I promise to

replenish your coffee jars at the earliest opportunity!) To newer friends in the States

with whom I explored the bizarre world that is graduate school: Stan, Vlad, Monica,

Ilinca, Ryan, Tania, Anne, Kilian, Ameesh, Sasha, Niel, Nikhil (thanks for printing

this thing!), Nick, Hanna, Sloop, and especially Christie, I owe you all a lot. Thank

you.

This thesis is dedicated to my mum and dad, Hilary and Robert. Thank you for

the belief you have in me and for not objecting too much when I decided study in

the States. I never doubted that I would be finishing this thesis and I have you both

to thank for this.

iv

ABSTRACT

PROCESSING DATA STREAMS

Andrew McGregor

Sampath Kannan

Data streams are ubiquitous. Examples include the network traffic flowing past

a router, data generated by an SQL query, readings taken in a sensor network, and

files read from an external memory device. The data-stream model abstracts the

main algorithmic constraints when processing such data: sequential access to data,

limited time to process each data item, and limited working memory. The challenge

of designing efficient algorithms in this model has enjoyed significant attention over

the last ten years.

In this thesis we investigate two new directions of data-streams research: stochas-

tic streams where data-streams are considered through a statistical or learning-

theoretic lens and graph streams where highly-structured data needs to be processed.

Much of the work in this thesis is motivated by the following general questions.

• Stream Ordering : Almost all prior work has considered streams that are as-

sumed to be adversarially ordered. What happens if we relax this assumption?

• Multiple Passes : Previous work has focused on the single-pass model. What

trade-offs arise if algorithms are permitted multiple passes over the stream.

• Space-Efficient Sampling : Rather than approximating functions of the empir-

ical data in the stream, what can be learned about the source of the stream?

• Sketchability : A fundamental problem in the data-stream model is to compare

two streams. What notions of difference can be estimated in small space?

In the process of considering these questions, we present algorithms and lower-

bounds for a range of problems including estimating quantiles, various forms of

entropy, information divergences, graph-diameter and girth; learning histograms and

piecewise-linear probability density functions; and constructing graph-matchings.

v

Contents

Acknowledgements iii

1 Introduction 1

1.1 Background . 1

1.1.1 The Data-Stream Model . 3

1.1.2 Overview of Research in Data Streams 5

1.2 Our Contributions . 8

1.2.1 Questions and Themes . 9

1.2.2 Summary of Results . 13

1.3 Organization . 22

2 Preliminaries 23

2.1 Communication Complexity . 23

2.2 Sampling Methods . 27

2.3 Concentration Bounds . 29

I Oracles and Ordering 30

3 Introduction 31

3.1 Random-Order Streams . 31

3.1.1 Random-Order Streams as Average Case Analysis 32

3.1.2 When are streams randomly ordered? 33

vi

3.1.3 Related Work . 34

3.1.4 Our Results . 35

3.2 Oracle Models . 36

3.2.1 Related Work . 37

3.2.2 Our Results . 37

3.3 Space-Efficient Sampling . 38

3.3.1 Related Work . 40

3.3.2 Our Results . 40

4 Random vs. Adversarial Order 42

4.1 Algorithms for Random-Order Streams 42

4.1.1 Generalizing to Unknown Stream Lengths 45

4.1.2 Multi-Pass Exact Selection . 47

4.1.3 Applications to Equi-Depth Histograms 48

4.2 Notions of Semi-Random Order . 49

4.3 Random-Order Lower-Bound . 51

4.4 Adversarial-Order Lower-Bound . 54

4.4.1 Proof of Theorem 4.21 . 57

5 Oracle vs. Stream Models 60

5.1 Connecting Oracle and Streaming Models 60

6 Sample vs. Space Complexity 64

6.1 Discrete Distributions . 64

6.2 Continuous Distributions . 66

6.3 Importance of Random Order . 73

II Entropy and Information Divergences 75

7 Introduction 76

vii

7.1 Which distances are sketchable? . 76

7.1.1 Related Work . 77

7.1.2 Our Results . 78

7.2 The Information Divergences. 78

7.2.1 Our Results . 81

7.3 Entropy . 82

7.3.1 Related Work . 83

7.3.2 Our Results . 84

8 Information Divergences 86

8.1 Geometric Preliminaries . 86

8.2 Multiplicative Approximations . 89

8.3 Additive Approximations . 92

8.3.1 Additive Approximation for f -divergences 94

8.3.2 Additive Approximation for Bregman divergences 95

8.4 Testing f -Divergences in the Oracle Models 95

8.4.1 f -Divergences Testing (Generative Oracle) 96

8.4.2 f -Divergences Testing (Combined Oracle) 99

9 Entropy 102

9.1 Computing the Entropy of a Stream 102

9.1.1 Variations on the Algorithm 109

9.1.2 Extensions to the Technique 111

9.1.3 Lower Bound . 112

9.2 Higher-Order Entropy . 113

9.3 Entropy of a Random Walk . 116

9.4 Testing Entropy (Combined Oracle) 119

viii

III Graph Streams 121

10 Introduction 122

10.1 Graph Streams . 122

10.1.1 Related Work . 123

10.2 Distances . 124

10.2.1 Related Work . 125

10.2.2 Our Results . 126

10.3 Matchings . 127

10.3.1 Related Work . 128

10.3.2 Our Results . 129

11 Graph Distances 130

11.1 Connectivity and other Balanced Properties 130

11.2 Graph-Distances and Graph-Diameter 131

11.3 Constructing BFS-Trees . 135

11.4 Girth Estimation . 139

12 Graph Matching 141

12.1 Unweighted Matchings . 141

12.2 Weighted Matching . 149

ix

List of Tables

1.1 Summary of Algorithmic Results in the Data-Stream Model 20

1.2 Summary of Learning Results in the Data-Stream Model 21

1.3 Summary of Algorithmic Results in the Oracle Models 21

1.4 Summary of Lower-Bounds in the Data-Stream Model 21

3.1 Comparison of Results for Learning Distributions. 41

4.1 Reduction from Pointer Chasing to Exact Median Finding. 55

7.1 Common f -divergences . 79

7.2 Common Bregman divergences . 81

x

List of Figures

4.1 An Algorithm for Quantile Estimation 43

6.1 An Algorithm for Testing if a Distribution is Linear 66

6.2 An Algorithm for Piecewise-Linear Distributions 67

8.1 Hellinger-Testing (Generative Oracle Model) 97

8.2 Distance-Testing (Combined Oracle Model) 100

9.1 An Algorithm for Approximating Entropy. 105

9.2 Entropy-Testing (Combined Oracle Model) 120

11.1 Diameter Lower-Bound Construction 134

11.2 Girth Lower-Bound Construction . 139

12.1 Finding Augmenting Paths . 143

12.2 An Algorithm for Finding Large Cardinality Matchings. 146

12.3 An Algorithm for Finding Large Weighted Matchings 151

xi

Chapter 1

Introduction

1.1 Background

This thesis we will be concerned with the challenges of processing massive amounts

of data. As the amount of information to be processed grows, we have had to reassess

how we access data. The principal assumption of the standard random access model

is that the data can be accessed in an arbitrary order and that each data access has

unit cost. In many applications these assumptions do not hold. Rather, the data

arrives as a stream of data elements and the order of this stream is predetermined.

We now discuss three such scenarios.

As the internet becomes integral to our daily lives, it is increasingly important

to be able ensure the smooth running of the network. To this end, it is necessary to

carefully monitor network traffic. This includes intrusion detection, identification of

“zombie” machines on the network, as well as computing statistics about the traffic

that can be used to tweak network hardware and software configurations. Typically

IP packets are monitored as they flow through the routers of the network. Clearly, in

such a scenario, it is impossible to read the packets in any order other than the order

in which they arrive. Furthermore, as each router may be responsible for forwarding

up to a billion packets per hour, each packet must be processed quickly and only a

1

vanishingly small fraction of the information presented can be stored.

The need to be able to process streams also arises in the context of databases.

A typical problem is query planning, where a complicated query is made to a large

database. This complicated query may be decomposed in numerous ways into a

sequence of simpler queries but different decompositions may differ in efficiency.

Unfortunately, the efficiency of a query plan is dependent on the data being queried

and determining the most efficient query plan can be more time consuming than

simply following a less efficient query plan! However, statistical summaries of the

data contained in the database can aid this process significantly. The goal of research

in this area is to compute these summaries based on updates to the database and

the output streams of, for example, SQL queries.

In other applications we may have large unstructured data files such as search-

engine log-files or biological data. As these files are too large to reside in the main

memory of a computer, they need to be stored further down the memory-hierarchy,

typically utilizing external devices such as massive hard-drives, optical media, and,

even today, magnetic media. The problem that arises is that access to data on such

devices can be very slow if the data is accessed in an arbitrary order. Specifically,

while such devices have reasonable transfer rates, i.e., data can be transferred sequen-

tially at speed, the seek times of these devices is often prohibitively large. Hence,

being able to process the data in these files as a stream of sequential accesses can

lead to large increases in efficiency.

The need to process data streams arises in many other application areas such as

processing in sensor networks, analyzing scientific data arising in meteorology and

other fields, monitoring financial transactions, etc. The interested reader is directed

to a survey by Muthukrisnan [Mut06]. Further details about database applications

may be found in a survey by Babcock et al. [BBD+02].

While this thesis will concentrate on the theoretical challenges faced in the above

applications, it would be remiss not to mention that there has been considerable

2

effort made in the implementation of systems to process data streams. These are

collectively known as data stream management systems. Examples include Bran-

deis/Brown/MIT’s Aurora system [ACÇ+03], University of Wisconsin’s Niagara sys-

tem [CDTW00], Stanford’s STREAM system [ABB+03], Berkeley’s Telegraph sys-

tem [CCD+03, KCC+03] and AT&T’s Gigascope system [CJSS03].

In the next two sections we will formally define the data-stream model and then

review some of the research that has been done in the area.

1.1.1 The Data-Stream Model

The data-stream model evolved primarily over the course of three papers [HRR99,

AMS99, FKSV02a] although there are numerous older papers that foreshadowed

that work [Mor78, MP80, FM85]. In this section we describe the core characteristics

of the model.

A data stream consists of a long sequence of data items, A = 〈a1, a2, . . . , am〉
where each data item ai comes from some large universe. Depending on the applica-

tion the universe could be numerical values in some range, points in some geometric

space, edges in a graph, etc. The computational challenge is to compute some func-

tion of the data stream subject to the following restrictions:

Sequential Access: Data items may only be accessed in the order a1, a2, . . . , am.

However, the algorithm may be allowed to inspect the stream numerous times,

each time accessing the data items in this sequential manner. Each such in-

spection is called a pass over the stream and there is a limit to the number of

passes that the algorithm may make.

Fast Per-Item Processing: There is a limit on the time that may be spent pro-

cessing each data item.

Small Workspace: The algorithm may only use a limited amount of space. This

will always be sub-linear in the length of the stream and the universe size but

3

will typically be considerably smaller.

In different settings the limits on these three resources vary. Specifically, in

network monitoring applications, any algorithm will be limited to a single pass over

the data, whereas, in external memory applications, multiple passes may be feasible.

Ideally, algorithms would only use space that is poly-logarithmic in the length of

the stream and universe size but for some problems such algorithms provably do not

exist and a less stringent space restriction is applied.

One important facet of the model is how the data items are ordered. Sometimes

the ordering of the data items will be relevant to the function being computed. This

is the case with time-series data where, for example, the t-th element of the stream

may represent a sensor reading taken at time t and the problem could be to fit a

histogram to this data. Alternatively, it may be desirable that the function being

computed is more sensitive to data that has recently appeared in the stream; an

extreme being the sliding-window model in which the function is only evaluated on

the most recent w items in the stream. However, in many situations the function we

are trying to compute is invariant under permutation of the data items. For example,

consider computing the median of a set of integers. Clearly, for any permutation σ,

median(〈a1, a2, . . . , am〉) = median(〈aσ(1), aσ(2), . . . , aσ(m)〉) .

For such functions it is natural to attempt to design algorithms that correctly com-

pute the relevant function even when the ordering is chosen adversarially. However,

this is not always possible. One of the main contributions of this thesis is a study

of the complexity of processing streams that are ordered randomly, i.e., the ordering

of the m data items is chosen uniformly at random from the m! possible ordering.

The idea of random ordering was first proposed by Munro and Paterson [MP80] but

received very limited subsequent treatment [DLOM02] prior to the appearance of

the work presented here [GMV06, GM06, GM07b, GM07c].

Lastly, we mention that there have been models proposed that extend the data-

stream model by allowing the algorithm to write to the stream during each pass

4

[ADRR04, DFR06]. These annotations can then be utilized by the algorithm during

successive passes. The authors of [ADRR04] go further and suggest a model in which

sorting passes are permitted in which the data stream is sorted according to a key

encoded by the annotations. We do not consider these augmentations of the model.

1.1.2 Overview of Research in Data Streams

In recent years, the design of algorithms for the data-stream model has become

an active area of research in numerous communities including theoretical computer

science, databases and networking. In what follows, we give a brief overview of some

of the work that has been done concerning algorithmic issues in processing data

streams. In subsequent sections and chapters, we shall go into further detail about

some of the work that is directly relevant to the results presented in this thesis.

While we will restrict the survey to focus primarily on the theoretical work that has

been done, we do not pretend that what follows is an exhaustive list. In particular,

there is a lot of work on sampling based algorithms that can be used in the data-

stream model. Again, the reader is directed to surveys [Mut06] and [BBD+02] for

further background.

Quantiles and Frequent Items: Many papers have considered estimating rela-

tively “simple” statistics when the data items are numerical values. The problem

of estimating the median of these values, or more generally, the quantiles has en-

joyed significant attention particularly in the database community [MRL98, MRL99,

GK01, GKMS02, SBAS04, GM06, GM07b]. Estimating biased quantiles, e.g., the

99-th or 99.9-th percentile, has also been considered [GZ03, CKMS06, GM06]. We

will discuss this work in more detail in Chapter 3 in the context of studying random-

order streams. Appropriately enough, sorting and selection were the subject of one of

the first streaming papers [MP80]. Another natural problem is to find frequent items

5

or heavy hitters. This is related to finding quantiles since the set of items with rela-

tive frequency at least ǫ is a subset of the set of ǫ-quantiles. There are both classical

algorithms for the problem of finding the frequency of the most frequent element(s),

e.g., [MG82, FS82] as well as more recent results [DLOM02, KSP03, MAA05]. The

Count-Min Sketch [CM05a] and Count Sketch [CCFC02] constructions can be used

for a variety of problems including quantiles and point-queries.

Norms and Distances: Another area that has been extensively studied is the

approximation of ℓp norms, or frequency moments, [AMS99, Woo04, IW05, BGKS06].

In particular, work has been done on estimating F0, the number of distinct items in

a stream [BYJK+02, IW03]. This problem was originally considered by Flajolet and

Martin [FM85] in another of the “classic” streaming papers. Estimation of F1, the

length of the stream, using sub-logarithmic space was considered by Morris [Mor78].

F∞ is the frequency of the most frequent item and is discussed above.

There has also been work done on estimating the ℓp distance between two streams

[Ind00, FS01, FKSV02a, CG07a]. Given the importance of estimating distances be-

tween streams, other distance measures have been considered, including the Ham-

ming distance [CDIM03] and a thorough treatment of the estimation of information-

theoretic distances that arise in machine learning and statistics contexts is given

in [GIM07]. Intrinsically related to these information distances is the entropy of a

distribution. The estimation of entropy has been considered in a sequence of papers

[CDM06, GMV06, LSO+06, BG06, CCM07]. We will discuss this work in more detail

in Chapter 7.

Succinct Representation: The problems considered so far have been of estimat-

ing a function of the data stream. We now turn our attention to problems in which

the algorithm seeks to construct a small-space representation of the data. Exam-

ples include the construction of approximate histograms and wavelet decompositions

6

[GKMS01, GGI+02b, GGI+02a, GIMS02, CGL+05, GKS06, GH06]. A slightly differ-

ent problem is to learn a probability density function from independent samples given

that the probability density function is k-piecewise constant. This was considered in

[CK06, GM07c]. Various clustering problems have also been considered, including

k-center [CCFM04] and k-median [COP03, GMMO00]. Problems related to finding

succinct representation of matrices have been tackled. These are mainly based on

sampling rows and columns, an idea first explored in [FKV04] where the goal was

to compute the best low-rank approximation of a matrix. A multiple-pass algorithm

was given by [DRVW06]. Other papers use similar ideas to compute a singular-value

decomposition of a matrix [DFK+04], approximate matrix multiplication [DKM04a],

succinct representations [DKM04b] and approximate linear programming [DKM04c].

Geometry and Graphs: Geometric problems have been considered where the

stream consists of points in (possibly high-dimensional) Euclidean space. Problems

include finding minimum enclosing balls [AHPV04, ZC06], estimating the diameter of

a set of points [FKZ04, AHPV04, CS06], computing convex hulls [HS03, CC05, CS06,

GM07b], constructing core-sets [FS05, AY07, Cha06], line simplification [AdBHZ07],

and finding areas of high discrepancy [AMP+06].

There have also been attempts to solve graph problems in the data-stream model.

Here, the elements of the stream are the edges of the graph. Typically these edges

may arrive in an arbitrary order but sometimes it is assumed that all the edges

adjacent to the same node arrive together. Problems studied have included count-

ing triangles [BYKS02, JG05, BFL+06], distance estimation [FKM+05b, FKM+05a,

EZ06], constructing large matchings [FKM+05b, McG05], estimating connectivity

[FKM+05b, Zel06], and computing the frequency and entropy moments of the de-

grees in a multi-graph [CM05b, CCM07]. A couple of papers considering an extension

of the streaming model also consider graph problems [ADRR04, DFR06]. We will

discuss the work on graph problems in further detail in Chapter 10.

7

Sequences: Rather than considering only the set of data items in a stream, in

some settings the stream naturally defines a string or list, i.e., the i-th element of

the stream is the i-th element of the string. In these cases, interesting problems in-

clude counting inversions [GZ03, AJKS02], computing edit-distance [CMS01] and es-

timating the length of the longest increasing subsequence [LNVZ06, SW07, GJKK07,

GM07a, GG07]. Recent work on checking the correctness of priority queues [CKM07]

is very related to these string problems.

Probabilistic Data: Very recently, researchers have considered the probabilistic-

stream model where the stream elements encode distributions over a universe [n] ∪
{⊥} where ⊥ represents a null element [JKV07]. Such a stream naturally defines a

distribution over “deterministic” streams with elements from [n]. The existing re-

search has focused on designing algorithms that estimate the expected value of var-

ious aggregate functions such as mean, median, and frequency moments [JMMV07,

CG07b].

1.2 Our Contributions

The primary goal of this thesis is to investigate general issues in the data-stream

model. While it is hoped that the specific problems addressed are of some inherent

interest, the primary motivation behind the problems considered is to elucidate more

fundamental aspects of the data-stream model. Such issues include the role played

by the ordering of a stream and whether there is a substantial difference between

average-case ordering and worst-case ordering; what trade-offs arise in the context

of multi-pass algorithms; characterizing the notions of “stream-difference” that can

be approximated in small space; and identifying the issues that arise when trying

to make inferences about the source of the stream rather than the empirical data

contained in the stream. We expand on these issues in Section 1.2.1.

The work contained in this thesis also formed the basis for two new directions of

8

data-streams research: stochastic streams and graph streams.

• Stochastic Streams: This involves looking at data-stream problems through a

statistical or learning-theoretic lens. For example, consider a stream formed by

taking a sequence of independent sample from an unknown distribution. While

previous algorithms for ℓp distances and frequency moments etc. are applica-

ble in such a scenario, taking a more statistical view of the data motivates us

to look at other problems such as comparing distributions using information

divergences and estimating the entropy of a distribution. In addition, the ques-

tion of stream-order naturally arises because of the exchangeability property

of a sequence of independent samples. Another example of a stochastic stream

could be a stream generated by an evolving k-th order Markov chain. This

might be an appropriate model when the stream consists of text.

• Graph Streams: In this case the data items in the stream are edges, possibly

weighted or directed, and we wish to compute properties of the graph defined

by the set of all edges. Such a graph could be the web-graph where edges

represent hyper-links between web-pages. Alternatively it could be a call-graph

where edges represent telephone calls made between different phone numbers.

In contrast to the majority of previous research that has considered estimating

aggregate properties of a stream of numerical values, consideration of graph

streams gives rise to a rich set of problems with which to explore some of the

model-theoretic questions outlined above.

In Section 1.2.2 we give an overview of our results in both areas.

1.2.1 Questions and Themes

Does it matter how streams are ordered? Many functions that we wish to

compute on a stream are invariant under permutation of the stream. Therefore,

the ordering of the stream is only important in that it may have a bearing on the

9

resources required to compute the function. In the literature to date, it is usually

assumed that the stream is ordered by an adversary who may know the algorithm

being used but is unaware of the coin tosses made by the algorithm. A natural

complexity question is to quantify the powerful of such an adversary, i.e., how much

more resources are required to process a stream that is adversarially ordered rather

than one that is randomly ordered? Alternatively, if we impose certain computational

constraints on the adversary, a popular idea in cryptography, how does this affect

the resources required to compute in the model?

However, our motivation for investigating the effect of order is not purely theo-

retical. It is impossible to solve many important problems in small space when the

stream is ordered adversarially. However, it is useful to know if a problem can be

solved under certain conditions, or, in particular, if it is solvable “on average.” The

assumption that all possible orderings of the data stream are equiprobable gives rise

to a natural notion of average that does not require any assumptions about actual

set of data items in the stream.

There are also numerous situations in which it is reasonable to assume the stream

is not ordered adversarially. The semantics of the data may lead us to believe that

the stream is randomly ordered. Alternatively, there are situations in which the order

of the stream can be explicitly randomized. We discuss some of these scenarios in

the context of database streams in Chapter 3.

The random-order model was first considered by Munro and Paterson [MP80]

but, prior to our work, has received little attention. Demaine, López-Ortiz, and

Munro [DLOM02] considered the frequency estimation of internet packet streams

assuming that the packets arrived in random order. Kannan [Kan01] conjectured

that any problem that could be solved in P/2 passes of a randomly ordered stream

could be solved in at most P passes of an adversarially ordered stream.

10

What can we learn about the source of a stream? As mentioned earlier, a

natural setting in which a data stream would be ordered randomly is if each element

of the stream is a sample drawn independently from some unknown distribution.

Clearly, no matter what the source distribution, given the m samples taken, each

of the m! permutations of the sequence of samples were equally likely. However, if

the stream is generated in this way, another important question arises: can we learn

something about the source of the samples?

Trying to make such inferences is the problem that underlies much of statistics

and machine learning. A fundamental quantity of interest is the sample complexity

of the property being inferred, i.e., the number of samples that are necessary to learn

the property with high probability. Sample complexity is inherently interesting from

a statistical point of view. From a computational view point it is also clearly rele-

vant since it is a trivial lower bound on the time-complexity of any algorithm that

can make a certain inference. However, there is another component of the computa-

tional complexity, that of space-complexity, i.e., how much memory is required by the

learning algorithm. In many applications space complexity may be more important

than time complexity. For example, embedded devices, sensor networks or network

routers may be required to modify their behavior on the basis of what is learned

about the underlying distribution of the data being processed.

Unlike the time complexity, space complexity is not necessarily as large as sample

complexity. In particular, if we are presented with a stream of samples, sometimes

we make the desired inference without storing all the samples. This is clearly the

case when trying to estimate the mean of a distribution. But what about estimating

more complicated properties? In particular, could we learn the probability density

function of a distribution? Techniques developed for processing data streams could

be of great use when solving these types of problems.

To date, almost of all of the streaming algorithms proposed have considered

computing empirical quantities determined by the data items rather than trying

11

to make some inference about the source of the stream. One notable exception is

the recent work by Chang and Kannan [CK06] that seeks to learn the piecewise-

linear probability density function of a stream of samples. An issue that arises in

that work is that the number of samples required was substantially larger than the

sample-complexity of the problem. Is this generally the case or is it possible to design

algorithms that have small space-complexity and sample-complexity?

The problem of learning from independent samples can be generalized to a situa-

tion where an algorithm has access to an oracle that supports various queries about

a distribution. Such models were introduced by Kearns et al. [KMR+94]. In the

generative model a sample(p) query returns i with probability pi. In the evaluative

model, a probe(p, i) query returns the value pi. A natural third model, the combined

model was introduced by Batu et al. [BDKR05]. In this model both the sample

and probe operations are permissible. In all three models, the complexity of an

algorithm is measured by the number of queries to the oracle.

Is it possible to relate these oracle models to the stream model? Accessing the

data sequentially limits how adaptive any sampling procedure may be but the sever-

ity of this restriction may be ameliorated by permitting an algorithm multiple passes.

We discuss this question further in Chapter 3 along with some relevant prior work

by Feigenbaum et al. [FKSV02b].

How valuable is an extra pass? How does resource-use trade-off with the num-

ber of passes an algorithm may make over the stream? In particular, can we design

algorithms that use significantly less space if they are permitted more than a single

pass over the data stream?

We just mentioned that relaxing the restriction on the number of passes, allows

sampling-based algorithms to be more adaptive. More generally, the number of

passes permitted can be viewed as establishing a spectrum between the single-pass

12

data-stream model and the traditional random-access model. Does the computa-

tional power grow smoothly along this spectrum or is it ever the case that, given the

same space restriction, allowing P + 1 passes rather than P passes makes a problem

tractable that would otherwise be intractable. We consider this question through-out

this thesis but primarily in Chapter 3 and Chapter 10.

What distances can be sketched? There has been considerable success in de-

signing algorithms that quantify the “difference” between two streams. In this thesis

we will be interested in characterizing the notions of difference that can be estimated

in small space?

We primarily consider “update” streams where each data item is a value in [n].

A stream defines a frequency vector (f1, f2, . . . , fn) where fi is the number of times

i occurs in the stream. This model is essentially a generalization of the aggregate

model, in which all updates to a given i are grouped together in the ordering of the

stream. We are interested in comparing the frequency vectors defined by different

streams. Previous work has demonstrated algorithms that approximate distances

based on ℓp norms [FKSV02a, Ind00, FS01, CDIM03] (note that the Hamming dis-

tances is closely related to the ℓ0 norm.) Are there algorithms for other commonly

used distance measures? Can we characterize the set of distances that can be ap-

proximated? Are there distances that can be approximated in the aggregate-model

that can not be approximated in the update-model? We consider these questions in

Chapter 7.

1.2.2 Summary of Results

In this section we give a brief overview of the specific results in this thesis. The

algorithmic results in this thesis are summarized in Tables 1.1, 1.2, and 1.3. Lower-

bounds are summarized in Table 1.4. We also comment on the relevance of these

results to the broader questions outlined in the previous section. Further discussion

13

along with detailed summaries of previous work can be found in Chapters 3, 7, and

10. The full technical details and proofs of the results can be found in the remaining

chapters.

Random-Order Streams: We first explore issues of random-order streams using

the computation of quantiles as an example. In addition to considering the prob-

lem of exact selection we also consider computing approximate quantiles using the

following notion of approximation.

Definition 1.1 (Rank and Approximate Selection). The rank of an item x in a set

S is defined as, RankS(x) = |{x′ ∈ S|x′ < x}| + 1. We say x is an Υ-approximate

rank k element in S if, RankS(x) = k ±Υ.

We present a single pass algorithm using O(1) words of space that, given any

k, returns an O(k1/2 log3 k)-approximate k-rank element (with high probability) if

the stream is in random-order. Our algorithm does not require prior knowledge

of the length of the stream. In comparison, we show that an algorithm achieving

similar precision when the stream is ordered adversarially would require polynomial

space. This immediately demonstrates a separation between the random-order and

adversarial-order stream models. Using new techniques we also show that any algo-

rithm that returns an mδ-approximate median of a randomly ordered stream with

probability at least 3/4 requires Ω(
√

m1−3δ/ log n) space.

We then address the conjecture of Kannan [Kan01] that stated that any problem

that could be solved in P/2 passes of a randomly ordered stream could be solved in

at most P passes of an adversarially ordered stream. We present an algorithm using

O(polylog m) space that returns the exact median of a data stream in O(log log m)

passes. This was conjectured by Munro and Paterson [MP80] and has been un-

resolved since 1978. On the other hand we show that any algorithm that returns

an mδ-approximate median in P passes of an adversarially ordered stream requires

Ω(m(1−δ)/P P−6) space. In particular, this shows that the conjecture is false.

14

Lastly, we explore connections between query complexity of problems in the oracle

models. We show that, for a wide range of functions f , any combined oracle algorithm

making k queries can be transformed into a two-pass algorithm in the adversarial-

order streaming model that uses Õ(k) space. If the stream is in random-order the

resulting algorithm only requires one pass.

Space-Efficient Sampling: We initiate the study of space-efficient sampling and

demonstrate how techniques for processing data streams can be used to design algo-

rithms with small space complexity.

Our main algorithmic result is for learning the probability density function of

one-dimensional distributions. We suppose we have access to independent samples

from some distribution on the real line with probability density function D that has

at most k piece-wise linear segments. We wish to find a probability density function

D̂ such that
∫

R
|D(x)− D̂(x)| ≤ ǫ. An almost identical problem was considered by

Chang and Kannan [CK06]. The important difference is that Chang and Kannan

were interested in designing algorithms that could process the samples in any order.

Given that we are assuming the stream of samples are independent draws from

the source distribution, it is natural to consider this problem in the random-order

stream model. Furthermore, while Chang and Kannan assumed that the samples are

stored locally and hence the samples can be read numerous times, we are primarily

interested in the scenario in which samples are not stored. We present an algorithm

for learning D up to ǫ-variational error. The algorithm uses Õ(k2ǫ−4) samples and

Õ(k) space. The algorithm capitalizes on the fact that a sequence of independent

samples will be in random-order. We also present an algorithm directly comparable

to that in [CK06], i.e., the algorithm must process the samples in an arbitrary order

but is permitted multiple passes over the stream of samples. Our algorithm takes

P (assumed constant) passes over Õ(k2ǫ−4) samples and uses Õ(kǫ−2/P) space. In

comparison, the algorithm of [CK06] takes P passes over Õ(k6ǫ−6) samples and uses

15

Õ(k3ǫ−4/P) space.

We also explore the problem of estimating frequency moments in this model. We

show that it is possible to (ǫ, δ)-approximate Fk in a randomly ordered stream with

Õǫ((n/t)1−2/k) space when the stream length is m = Ω(ntǫ−3/k log n). Varying the

value of t establishes a trade-off between sample-complexity and space-complexity.

In particular, if m = Ω(n2ǫ−3/k log n) then the space only depends on n poly-

logarithmically. This provides another demonstration of importance of a stream

being in random-order: if the stream were ordered adversarially, the same estima-

tion would require Ω(n1−2/k) space.

Information Divergences and Entropy: As we mentioned above, previous work

has demonstrated algorithms that approximate distances based on ℓp-norms [Ind00,

FS01, FKSV02a, CDIM03]. Experience leads us to conjecture that the only distances

that can be approximated in small space are those that are essentially based on

norms. We present a partial result that we call the Shift Invariant Theorem. This

result provides a very general set of conditions under which a distance measure

cannot be approximated in small space.

Next we focus on a specific set of distance measures called information diver-

gences. These quantify the difference between two distributions in such a way that

captures aspects of dissimilarity that are important in statistics and machine learn-

ing applications. We consider two main families of information divergences called

the f -Divergences and Bregman Divergences.

Definition 1.2 (f -Divergences and Bregman Divergences). Let p and q be two n-

point distributions. A convex function f : (0,∞)→ R such that f(1) = 0 gives rise

to an f -divergence,

Df(p, q) =
∑

pif(qi/pi) .

Similarly, a strictly convex function F : (0, 1) → R gives rise to (decomposable)

16

Bregman Divergence,

BF (p, q) =
∑

i

[F (pi)− F (qi)− (pi − qi)F
′(q)] ,

where F ′ denotes the first derivative of F .

Commonly used f -divergences include the ℓ1 distance, the Hellinger divergence,

the Jensen-Shannon divergence and the Kullback-Liebler divergence. The family of

Bregman divergences also includes the Kullback-Liebler divergence along with the

ℓ2
2 distance and the Itakura-Saito divergence.

We use the Shift Invariant Theorem to characterize a large set of f -divergences

and Bregman divergences that can not be multiplicatively approximated in small

space. This characterization is successful in the sense that the only f -divergences

and Bregman divergences that are not included are ℓ1 and ℓ2
2. These are exactly the

f -divergences and Bregman divergences for which small-space multiplicative approx-

imation algorithms are known.

Given the lower bounds on multiplicative approximation, we next consider finding

additive approximations. We show that any bounded Df can be (ǫ, δ)-additive-

approximated using O(ǫ−2 log δ−1) space. For an unbounded Df we show that any

(ǫ, 1/4)-additive-approximation requires Ω(n) space for any ǫ. For an bounded Df

we show that any (ǫ, 1/4)-additive-approximation requires Ω(ǫ−2) space. Similarly, a

Bregman divergence BF can be (ǫ, δ)-additive-approximated in O(ǫ−2 log δ−1) space

if F and F ′′ are bounded. On the other hand if F (0) or F ′(0) is unbounded, then

any (ǫ, 1/4)-additive-approximation of BF requires Ω(n) space for any constant ǫ.

A fundamental quantity that is closely related to the information divergences is

the entropy of a distribution. This quantity arises in coding and information theory,

learning and statistics literature. It is defined as follows:

Definition 1.3 (Entropy). The entropy of distribution p is H(p) =
∑

i−pi lg pi.

The first attempt to approximate the entropy of a data stream appeared in

[GMV06]. This result was improved upon by a sequence of papers [CDM06, LSO+06,

17

BG06]. In this thesis we present a single-pass, O(ǫ−2 log(δ−1) log m)-space, (ǫ, δ)-

approximation algorithm for entropy. This improves upon the previous work. The al-

gorithm uses a novel extension of a method introduced by Alon, Matias, and Szegedy

[AMS99] that may have other applications. We show that our algorithm is essen-

tially optimal by proving that any (ǫ, 1/4)-approximation requires Ω(ǫ−2/ log2(1/ǫ))

space. We then show that any (ǫ, 1/4)-approximation of the k-th order entropy

(k > 0) of a streams requires Ω(n/ log n) space where the k-th order entropy of a

stream is a generalization of the entropy that quantifies how easy it is to predict

a character of the stream given the previous k characters. However, we present

an (ǫ, δ)-addtive-approximation using O(k2ǫ−2 log(δ−1) log2 n log2 m) space. We also

present an (ǫ, δ)-approximation algorithm for estimating the unbiased random walk

entropy, a natural quantity related to the first order entropy of an unbiased walk on

an undirected graph. Our algorithm uses O(ǫ−4 log n log δ−1) space. This algorithm

can also be implemented in the graph streaming model to be discussed shortly.

Lastly, we present testing algorithms for entropy and information divergences in

the oracle models. These include an (ǫ, ǫ/2, δ)-tester for all bounded f -Divergences

in the combined-oracle model. We prove a matching lower bound thereby show-

ing optimality. We also present a sub-linear tester in the generative model for

a range of f -divergences including Hellinger and Jensen-Shannon. The algorithm

makes Õ(ǫ−4n2/3) queries. This answers an open question posed in [BFR+00]. Fi-

nally, we present an (ǫ, ǫ/2, δ)-tester for entropy in the combined oracle model using

O(ǫ−2 log n log δ−1) queries. This matches the lower bound in [BDKR05].

Graph Streaming: We now consider streams that define graphs. This will prove

an ideal context to explore trade-offs that arise in multiple-pass streaming. This is

also the first comprehensive treatment of solving problems on graph streams.

Definition 1.4 (Graph Stream). For a data stream A = 〈a1, a2, . . . , am〉, with each

data item aj ∈ [n] × [n], we define a graph G on n vertices V = {v1, . . . , vn} with

18

edges E = {(vi, vk) : aj = (i, k) for some j ∈ [m]}.

Note that n is no longer the universe size of the data items. We normally assume

that each aj is distinct although this assumption is often not necessary. When the

data items are not distinct, the model can naturally be extended to consider multi-

graphs, i.e., an edge (vi, vk) has multiplicity equal to |{j : aj = (i, k)}|. Similarly,

we mainly consider undirected graphs but the definition can be generalized to define

directed graphs. Sometimes we will consider weighted graphs and in this case aj ∈
[n]×[n]×N where the third component of the data item indicates a weight associated

with the edge. Note that some authors have also considered a special case of the

model, the adjacency-list model, in which all incident edges are grouped together in

the stream [BYKS02]; we will be primarily interested in the fully general model.

We start with some negative results that exhibit various trade-offs between space,

the number of passes, and accuracy of estimation. The lower-bounds we present

complement the algorithms presented in [FKM+05a, Zha05].

We first show that many graph algorithms are inherently unsuitable when com-

puting in the streaming model. In particular, for γ ∈ (0, 1) and l ∈ [⌊1/γ⌋], com-

puting the first l layers of a breadth-first-search (BFS) tree from a prescribed node

requires either ⌊(l − 1)/2⌋ passes or Ω(n1+γ) space. On the other hand it will be triv-

ial to construct the first l layers of a BFS tree with l passes even in space O(n logn).

Constructing BFS trees is a very common sub-routine in many graph algorithms and

this result shows that as we restrict the space, any algorithm for constructing a BFS

essentially requires random access to the data.

We next show a trade-off between space and accuracy: any single pass algo-

rithm that approximates the weighted graph distance between two given nodes up

to a factor γ−1 with constant probability requires Ω(n1+γ) space. Furthermore, this

bound also applies to estimating the diameter of the graph. Any P -pass algorithm

that ascertains whether the length of the shortest cycle is longer than g, requires

Ω
(
P−1(n/g)1+1/(g−5)

)
space. This trade-off between space and passes, in contrast

19

Space Passes Order

Entropy:

0-th order (ǫ, δ)-approx. O(ǫ−2) 1 Adversarial

k-th order (ǫ, δ)-additive-approx. O(k2ǫ−2) 1 Adversarial

Random Walk (ǫ, δ)-approx. O(ǫ−4) 1 Adversarial

Information Distances:

Bounded Df (ǫ, δ)-additive-approx. O(ǫ−2) 1 Adversarial

Certain BF (ǫ, δ)-additive-approx. O(ǫ−2) 1 Adversarial

Quantile Estimation:

O(
√

m log2 m log δ−1)-approx O(1) 1 Random

Exact Selection O(1) O(log log m) Random

Graph Matchings:

Unweighted 1/2-approx O(n) 1 Adversarial

Unweighted (1− ǫ)-approx O(n) Oǫ(1) Adversarial

Weighted 0.17-approx O(n) 1 Adversarial

Weighted (1/2− ǫ)-approx O(n) O(ǫ−1) Adversarial

Table 1.1: Streaming Algorithms. Log terms are omitted in the space column.

to some of the problems discussed above, is smooth and indicates that the only way

to get away with using half the amount of space is essentially to make half as much

progress in each pass. Lastly we show that testing any of a large class of graph

properties, which we refer to as balanced properties, in one pass requires Ω(n) space.

This class includes properties such as connectivity and bipartiteness.

We also present multiple pass algorithms for computing weighted and unweighted

graph matchings. All these algorithms take linear time and use O(n polylog n) space.

First we present a single pass, 1/2-approximation for maximum cardinality match-

ings. With successive passes it is possible to “grow” this matching such that, for

any ǫ > 0, with Oǫ(1) passes it is possible to find a (1 − ǫ)-approximation for the

maximum cardinality matching. For weighted matching we present a single pass,

1/(3 + 2
√

2)-approximation. Again, for any ǫ > 0, using Oǫ(1) passes this can be

grown into a (1/2− ǫ)-approximation algorithm.

20

Sample Space Passes Order

k-piecewise linear pdf O(k2ǫ−4) O(k) 1 Random

k-piecewise linear pdf O((1.25)P/2ℓk2ǫ−4) O(kǫ−2/P) P Adversarial

k-th frequency moment O(ntǫ−3/k) Oǫ((n/t)1−2/k) 1 Random

Table 1.2: Learning Algorithms in the Data-Stream Model. Log terms are omitted.

Samples Probes

(ǫ, ǫ/2, δ)-tester for Shannon Entropy O(ǫ−1) O(ǫ−1)

(ǫ, ǫ2n−1/3/32, δ)-tester for Hellinger, JS, and △ O(ǫ−4n2/3) 0

(ǫ, ǫ/2, δ)-tester for Bounded Df O(ǫ−1) O(ǫ−1)

Table 1.3: Oracle Algorithms. Log terms are omitted.

Space Passes Order

Entropy:

0-th order (Shannon) Ω(ǫ−2/ log2 ǫ−1) 1 Adversarial

k-th order Ω(n/ log n) 1 Adversarial

Information Distances:

Unbounded Df Ω(n/P) P Adversarial

Bounded Df (Additive) Ω(ǫ−2) 1 Adversarial

Certain BF Ω(n/P) P Adversarial

Quantile Estimation:

mγ-approx Ω(
√

m1−3γ/ log m) 1 Random

mγ-approx Ω(m(1−γ)/P P−6) P Adversarial

Graphs Streaming:

Depth 2(P + 1)-th BSF Tree Ω(n1+1/(2P+2)) P Adversarial

1/γ approx. of Diameter Ω(n1+γ) 1 Adversarial

Testing if Girth is at most g Ω((n/g)1+4/(3g−7)/P) P Adversarial

Testing Balanced Properties Ω(n) 1 Adversarial

Table 1.4: Lower-Bounds in the Data-Stream Model. Results are (ǫ, 99/100)-
approximations except when noted.

21

1.3 Organization

The main body of this thesis is split into three parts. The first contains the results

pertaining to questions about stream-ordering and oracles. Chapter 4 contains the

results on quantiles and random-order streams. Parts of this work appeared in Guha

and McGregor [GM06, GM07b]. This is followed by a short model-theoretic result

relating the oracle and stream models in Chapter 5. This work first appeared in

Guha, McGregor, and Venkatasubramanian [GMV06]. The work on space-efficient

sampling, in Chapter 6, first appeared in Guha and McGregor [GM07c].

The second part of the thesis looks at estimating entropy and information diver-

gences in the stream model. More generally we ask which distances are sketchable.

Chapter 8 concerns estimating Information Distances in the streaming model and

first appeared in Guha, Indyk, and McGregor [GIM07]. In Chapter 9, we present the

results on approximating entropy in the streaming model. This work first appeared

in Chakrabarti, Cormode, and McGregor [CCM07]. Also included in Chapters 8 and

9 are oracle algorithms for estimating information distances and entropy and these

originally appeared in Guha, McGregor, and Venkatasubramanian [GMV06]

In the third part of this thesis we address graph streams. The work in Chapters

11 and 12 are based on Feigenbaum et al. [FKM+05b, FKM+05a] and McGregor

[McG05].

22

Chapter 2

Preliminaries

Chapter Outline: In this chapter we discuss some of the techniques that will be

used throughout this thesis. This will include a discussion about various sampling

methods and the relationship between communication complexity and computation

in the stream model.

2.1 Communication Complexity

The study of communication complexity was initiated by Yao in 1979 [Yao79]. We

first consider the basic model in which two separated parties, Alice and Bob, are

trying to evaluate a function f : X × Y → Z on the input (x, y). Unfortunately

Alice only knows x and Bob only knows y. Consequently, if either party is to learn

the value of f(x, y), Alice and Bob may need to send messages to one another. The

main goal of communication complexity is to quantify how “long” these messages

must be if f(x, y) is to be computed correctly. It is usually assumed that these

messages are transmitted as binary strings and the length of the communication is

simply the length of the string formed by concatenating all the messages.

There are many different natural variants of the basic model. The number of

23

rounds of communication may be limited, i.e., we assume that each party commu-

nicates in turn and limit the number of times the parties alternate. A special case

would be when Alice sends a single message to Bob upon which Bob is expected to

be able to output the correct value of the function. Often we permit the protocol for

communication to be randomized and tolerate some small probability that the recip-

ient of the final message does not correctly evaluate function. Further variants and

a comprehensive treatment of communication complexity can be found in [KN97].

We will be primarily interested in the r-round randomized communication com-

plexity of a function. Formally, we consider a communication protocol Π which de-

termines the content of each message given the messages already sent, random coin

tosses, and the private information of the party whose turn it is to send the message.

Note that at any stage, the set of messages that can be transmitted by a player must

be prefix-free or otherwise there is a potential ambiguity over when a player has

finished communicating. We define the cost of a protocol, |Π|, to be the maximum

(over all coin tosses and inputs (x, y) ∈ X×Y) number of bits communicated by the

protocol. We say Π has δ probability of failure if the probability (over the random

coin tosses) that the recipient of the final message cannot correctly compute f(x, y)

is at most 1 − δ. Then the r-round randomized communication complexity of f ,

denoted Rr
δ(f), is the minimum cost of a protocol with δ probability of failure. If we

place no restriction on the number of rounds we write Rδ(f).

We will also be interested in the r-round distributed communication complexity

of a function, Dr
µ,δ(f). This is defined similarly to Rr

δ(f) except that we insist that

the protocols are deterministic and the input for f is chosen from a distribution µ.

Intuitively it makes sense that communication complexity should be related to

the stream model. For example, consider reading through a long sequence of values

and trying to compute some function of these values. At any point, we have a certain

memory of the values we have already read. This memory can be thought of as a

communication from your former self to your future self. We formalize this intuition

24

in the next section.

Reductions from Communication Complexity: Many lower-bound proofs in

the literature proceed along the lines of the following template. Let (x, y) be an in-

stance of some communication problem f . We suppose that there exists a streaming

algorithm A making P passes over a stream and using W working memory whose

output satisfies certain guarantees with probability at least 1 − δ. If we can show

that A gives rise to a (2P − 1)-round communication protocol with cost O(PW)

then we deduce that W = Ω(R2P−1
δ (f)/P).

To construct such a reduction we would show how Alice and Bob can construct

a set of stream elements SA(x) and SB(y) such that the “correct” value of A on the

stream containing SA(x)∪SB(y) determines the value of f(x, y). Alice and Bob can

then emulate A: Alice runs A on SA(x), communicates the memory state of A, Bob

runs A initiated with this memory state on SB(x) and communicates the memory

state of A to Alice and so on. The resulting protocol has (2P − 1)-rounds and has

cost O(PW) as required.

This general methodology has been used extensively and was first used by Alon,

Matias, and Szegedy [AMS99] and Henzinger, Raghavan, and Rajagopalan [HRR99].

It will be used throughout this thesis. Sometimes the reduction will be straightfor-

ward but more often than not, constructing suitable SA(x) and SB(x) will be dis-

tinctly non-trivial. In the next section we summarize some of the communication

complexity results that we will use in this thesis.

Two-Party Communication Results:

• Set-Disjointness: Let Alice have x ∈ F
n
2 and Bob have y ∈ F

n
2 where

‖x‖1 = ‖y‖1 = ⌊n/4⌋. Then define,

Set-Disjointness(x, y) =







1 if x.y = 0

0 if x.y ≥ 1
.

25

It was shown by Kalyanasundaram and Schnitger [KS92] and Raz [Raz92] that,

R1/4(Set-Disjointness) = Ω(n) .

• Index: Let Alice have x ∈ F
n
2 and Bob have j ∈ [n]. Then define,

Index(x, j) = xj .

It can be shown that (e.g., [KN97]),

R1
1/4(Index) = Ω(n) .

• Gap-Hamdist: Let Alice have x ∈ F
n
2 and Bob have y ∈ F

n
2 such that either

‖x− y‖1 ≤ n/2 or ‖x− y‖1 ≥ n/2 +
√

n. Then define,

Gap-Hamdist(x, y) =







1 if ‖x− y‖1 ≤ n/2

0 if ‖x− y‖1 ≥ n/2 +
√

n
.

It was shown by Indyk and Woodruff [IW03, Woo04]) that,

R1
1/4(Gap-Hamdist) = Ω(n) .

• Prefix: Let Alice have x ∈ F
n
2 and Bob have y ∈ F

n
2 and j ∈ [n]. Then define,

Prefix(x, y, j) =







1 if ∀i ∈ [j], xi = yi

0 otherwise
.

It was shown by Chakrabatri et al. [CCM07] (see Chapter 9) that,

R1
1/4(Prefix) = Ω(n/ log n) .

• Let Alice have fA ∈ Fm and Bob have fB ∈ Fm where Fm be the set of

all functions from [m] to [m]. Define k-pointer : Fm × Fm → [m] by

k-pointer(fA, fB) = gk(fA, fB) where g0(fA, fB) = 1 and,

gi(fA, fB) =







fA(gi−1(fA, fB)) if i even

fB(gi−1(fA, fB)) if i odd
.

26

It was shown by Nisan and Wigderson [NW93] that,

Rk−1
1/4 (k-pointer) = Ω(m/k2 − k log m) .

In Chapter 11 we generalize this result to consider multi-valued functions. In

Chapter 4 we prove a related result in which there are k-players and player i

has a function fi ∈ Fm. The goal is to compute fk(fk−1(. . . f1(1) . . .)).

2.2 Sampling Methods

Reservoir Sampling: Reservoir sampling, due to Vitter [Vit85], is a simple tech-

nique that maintains a uniform random sample S of size s from a data stream. At

the beginning we add the first s elements of the stream to S. When the j-th data

element, aj, arrives with probability s/j we remove a random element from S and

add aj to S. It is straight-forward to show that, at each step j, S is a uniform ran-

dom sample from {ai : i ∈ [j]}. As described the algorithm seems to require O(log t)

random coin tosses at each step. However, this can be substantially reduced. See

[Vit85] for details.

AMS Sampling: Another important sampling technique that we will use in Chap-

ters 8 and 9 is a method introduced by Alon, Matias and Szegedy [AMS99]. The

procedure is designed for processing stream A = 〈a1, . . . , am〉 where ai ∈ [n]. Sup-

pose we wish to estimate f(A) := 1
m

∑n
i=1 f(mi) where f is some function and

mi = |{aj : aj = i, j ∈ [m]}| for all i ∈ [n]. Examples of a such a quantity include

frequency moments and entropy.

The basic idea is to space-efficiently generate a random variable R defined thus:

Pick J ∈ [m] uniformly at random and let R = |{j : aj = aJ , J ≤ j ≤ m}|. Then

we define X = f(R)− f(R− 1). It can easily be shown that E[X] = f(A).

To ensure that E[X] is “close” to f(A) with high probability we can generate

many independent copies of X and average them appropriately. We now describe

27

one way to achieve this. For integers c1 and c2, we define the random variable

Estf(R, c1, c2) := median
1≤j≤c2

(

1

c1

c1∑

i=1

Xij

)

. (2.1)

where the random variables {Xij} are independent and each distributed identically

to X = (f(R)− f(R−1)). Then, an appropriate combination of Chernoff-Hoeffding

and Chebychev bounds yields the following lemma.

Lemma 2.1. Let X := f(R) − f(R − 1), c1 ≥ (8/ǫ2)(Var[X]/ E[X]2) and c2 ≥
4 lg δ−1. Then E[X] = f(A) and the estimator Estf (R, c1, c2) gives an (ǫ, δ)-approx.

for f(A) using space c1c2 times the space required to maintain R.

However, in some applications it is more convenient to use a slightly different

approach in which we simply take the mean of c instantiations of X. Suppose that

X is bounded in the range [−a, b] where a, b ≤ 0. For an integer c, define the random

variable

Estf(R, c) :=
1

c

c∑

i=1

Xi , (2.2)

where the random variables {Xi} are independent and each distributed identically

to (f(R) − f(R − 1)). Appealing to Chernoff-Hoeffding bounds one can show the

following lemma.

Lemma 2.2. Let X := f(R)− f(R− 1), a, b ≥ 0 such that −a ≤ X ≤ b, and

c ≥ 3(1 + a/ E[X])2ǫ−2 ln(2δ−1)(a + b)/(a + E[X]) .

Then E[X] = f(A) and, if E[X] ≥ 0, the estimator Estf (R, c) gives an (ǫ, δ)-

approximation to f(A) using space c times the space required to maintain R.

This new technique will improve over the previous technique when a = 0 and the

best bound for Var[X] is b2. This alone will sometimes be enough to improve upon

previous results. However, in Chapter 9, we will describe a more involved variation of

the AMS-sampling technique that we will use to approximate the entropy of a stream.

In Chapter 8, we show how to extend the technique to approximating functions of

two arguments.

28

2.3 Concentration Bounds

Given the importance of sampling and other randomized algorithms in this thesis

will finish this chapter by summarizing some of the concentration bounds we will

use. These concentration bounds include the Chernoff-Hoeffding bound.

Lemma 2.3 (Chernoff-Hoeffding). Let {Xt}1≤t≤m be independently distributed ran-

dom variables with (continuous) range [0, u]. Let X =
∑

1≤t≤m Xt. Then for γ > 0,

Pr [|X −E [X] | ≥ γE [X]] ≤ 2 exp

(−γ2E [X]

3u

)

.

While Chernoff-Hoeffding bounds are used frequently, at various points we will

need to use less common variants of these bounds. In particular we will be interested

in sampling without replacement.

Consider a population C consisting of N values c = {c1, . . . , cN}. Let the mean

value of the population be denoted µ = N−1
∑N

i=1 ci and let c∗ = max1≤i≤N ci −
min1≤i≤N ci. Let X1, . . . , Xn denote a random sample without replacement from C

and X̄ = n−1
∑n

i=1 Xi.

Theorem 2.4 (Hoeffding).

Pr
[
X̄ 6∈ (µ− a, µ + b)

]
≤ exp

(
−2na2/c∗2

)
+ exp

(
−2nb2/c∗2

)
.

The following corollary will also be useful.

Corollary 2.5. Assume that c1 = c2 = . . . = ck = 1 and ck+1 = ck+2 = . . . = cN = 0.

Pr
[
X̄ 6∈ (µ− a, µ + b)

]
≤ exp

(
−2n2a2/k

)
+ exp

(
−2n2b2/k

)
.

29

Part I

Oracles and Ordering

30

Chapter 3

Introduction

3.1 Random-Order Streams

Many functions that we may wish to compute are invariant under permutation of the

data items. For such functions it is natural to attempt to design algorithms that cor-

rectly compute the relevant function even when the ordering is chosen adversarially.

However this is not always possible. Perhaps the situation would be ameliorated if

the stream was in random order.

Definition 3.1. Consider a set of elements a1, . . . , am ∈ U . Then this set and

π ∈ Symm defines a stream 〈xπ(1), . . . , xπ(m)〉. If π is chosen uniformly from Symm

then we say the stream is in random-order.

Of course, an algorithm for processing a stream in random-order may have a

probability of failure even if it is deterministic. However, as with randomized algo-

rithms, we could hope to design algorithms with arbitrarily small failure probabilities.

For a randomized algorithm, reducing the failure probability normally comes at the

price of tossing more random coins and incurring a penalty in terms of space and

time complexity. When processing a random-order stream there is not the option

of “adding more randomness” to reduce the failure probability that is due to the

31

ordering of the stream. But we shall see that it is sometimes possible to reduce this

failure probability at the expense of increasing approximation factors.

There are numerous reasons to study random-order streams. In the literature to

date, it is usually assumed that the stream is ordered by an adversary that, while

it may know the algorithm being used, is unaware of the coin tosses made by the

algorithm. A natural complexity question is how powerful is such an adversary,

i.e., how much more resources are required to process a stream that is adversarially

ordered rather than one that is randomly ordered? Alternatively if we impose certain

computational constraints on the adversary, a popular idea in cryptography, how

does this affect the resources required to compute in the model?

Another reason is because random-order streams gives rise to a natural notion

of average-case analysis. We expand on this in the next section. Lastly, there are

numerous scenarios when it is reasonable to assume that the stream is randomly

ordered. We detail some such scenarios in Section 3.1.2.

3.1.1 Random-Order Streams as Average Case Analysis

As mentioned above, it is impossible to solve many important problems in small

space when the stream is ordered adversarially. However, it is desirable to know

under what circumstances these problems can be solved. There is a natural choice

regarding how to go about doing this.

When evaluating a permutation invariant function f of a stream, there are two

orthogonal components to an instance. Firstly, there is the object O described by

a set of data items {aj : i ∈ [m]}. Since f is permutation invariant, O determines

the value of f . Secondly, there is the permutation of the stream σ that determines

the ordering of the stream. One approach when designing algorithms is to make an

assumption about O, e.g., to assume that {aj : i ∈ [m]} are a set of values that are

distributed according to, say a Gaussian distribution. Unfortunately it often hard

to know the distribution of typical instances. We avoid this pitfall by, rather than

32

making assumptions about O, considering which problems can be solved, with high

probability, when the data items are ordered randomly. This approach is an average

case analysis where σ is chosen uniformly from all possible permutations but O is

chosen worst case.

3.1.2 When are streams randomly ordered?

There are also many scenarios in which it is reasonable to assume the stream is not

ordered adversarily. These include scenarios where the stream order is random either

because of the semantics of data, by design, or by definition.

Random by Definition: A natural setting in which a data stream would be or-

dered randomly is if each element of the stream is a sample drawn indepen-

dently from some unknown distribution. Clearly, no matter what the source

distribution, given the m samples taken, each of the m! permutations of the

sequence of samples were equally likely. We will discuss this scenario in further

detail in Sections 3.2 and 3.3.

Random by Semantics: In other situations, the semantics of the data in the

stream may imply that the stream is randomly ordered. For example, consider

a database of employee records in which the records are sorted by “surname.”

We wish to estimate some property of the salaries of the employees given a

stream of 〈surname, salary〉 tuples. If we assume there is no correlation be-

tween the lexicographic ordering of the surnames and the numerical ordering

of salaries then the values in salary field of the tuple are indeed in a random

order. We note that several query optimizers make such assumptions.

Random by Design: Lastly, there are some scenarios in which we dictate the order

of the stream. Naturally, we can therefore ensure it is non-adversarial! An

example is the “backing sample” architecture proposed by Gibbons, Matias,

and Poosala [GMP02, GM99] for maintaining accurate estimates of aggregate

33

properties of a database. A large sample is stored in the disk and this sample

is used to periodically correct estimates of the relevant properties.

3.1.3 Related Work

The random-order model was first considered by Munro and Paterson [MP80] but,

prior to our work, has received little attention. Demaine, López-Ortiz, and Munro

[DLOM02] considered the frequency estimation of internet packet streams assuming

that the packets arrived in random order. Kannan [Kan01] conjectured that any

problem that could be solved in P/2 passes of a randomly ordered stream could be

solved in at most P passes of an adversarially ordered stream.

We will investigate random-order streams in the context of quantile estimation.

To review the previous work we need to formally define what it means to estimate

an Υ-approximate k-rank element in a set. The definition is a generalization of the

standard definition to deal with multi-sets.

Definition 3.2 (Rank and Approximate Selection). The rank of an item x in a

set S is defined as, RankS(x) = |{x′ ∈ S|x′ < x}| + 1. Assuming there are no

duplicate elements in S, we say x is an Υ-approximate k-rank element in S if,

RankS(x) = k ± Υ. If there are duplicate elements in S then we say x is an Υ-

approximate k-rank element if there exists some way of ordering identical elements

such that x is an Υ-approximate k-rank element.

Munro and Paterson considered finding exact quantiles with limited storage in

one of the earliest papers on the data stream model [MP80]. They considered the

problem in the adversarial-order model and in the random-order model. They show

that exact selection in an adversarially-ordered stream of length m is possible with

P passes and O(m1/P) space. In particular, this show that exact selection is possible

in poly-logarithmic space if the algorithm may have O(logm) passes over the data

[MP80]. They also conjectured O(log log m) passes would suffice if the stream was

in random-order but only showed that with P passes, O(m1/(2P)) space is sufficient.

34

The problem has received a lot of attention in recent years starting from the

work of Manku, Rajagopalan, and Lindsay [MRL98, MRL99]. The authors of

[MRL98, MRL99] showed that it is possible to find an ǫm-approximate median

O(ǫ−1 log2 ǫm) space. This was improved to a deterministic O(ǫ−1 log ǫm) space

algorithm by Greenwald and Khanna [GK01]. This was extended to a model sup-

porting deletions by Gilbert et al. [GKMS02]. Gupta and Zane [GZ03] and Cormode

et al. [CKMS06] presented algorithms for finding an ǫk-approximate k-rank element.

3.1.4 Our Results

We present the following results for single pass algorithms.

• A single-pass algorithm using O(1) words of space that, given any k, returns

an element of rank k ± O(k1/2 log2 k) if the stream is randomly ordered. Our

algorithm does not require prior knowledge of the length of the stream. In

comparison, we show that an algorithm achieving similar precision when the

stream is ordered adversarially would require polynomial space.

• We introduce two notions of the order of the stream being semi-random: t-

bounded-adversary random (t-BAR) and ǫ-generation random (ǫ-GR). As the

names suggest the first is related to the computational power of an adversary

ordering the stream and the second is related to the random process that

determines the order. We show how the performance of our algorithm degrades

as the “randomness” of the decreases according to either notion. The notion

of ǫ-GR will also be important for proving lower bounds in the random-order

stream model.

• Any algorithm that returns an mδ-approximate median of a randomly ordered

stream with probability at least 3/4 requires Ω(
√

m1−3δ/ log(n)) space.

We present the following results for multiple pass algorithms.

35

• There exists a O(log log m)-pass, O(polylog(m, 1/δ))-space, algorithm that re-

turns the exact median with probability 1− δ. This resolves the conjecture of

Munro and Paterson [MP80].

• Any algorithm that returns an mδ-approximate median in P passes of an ad-

versarially ordered stream requires Ω(m(1−δ)/P P−6) space. This disproves the

conjecture of Kannan [Kan01].

3.2 Oracle Models

In this section we return to the idea that we may want to process a stream of

samples. In particular, we will be interested in computing something about the

empirical distribution defined by the relative frequency of the values in the stream.

Two main oracle models have been used in the property testing literature for

testing properties of distributions. These are the generative and evaluative models

introduced by Kearns et al. [KMR+94]. The generative model of a distribution

permits only one operation: taking a sample from the distribution. In other words,

given a distribution p = {p1, . . . pn}, sample(p) returns i with probability pi. In

the evaluative model, a probe operation is permitted and probe(p, i) returns pi. A

natural third model, the combined model was introduced by Batu et al. [BDKR05].

In this model both the sample and probe operations are permissible. In all three

models, the complexity of an algorithm is measured by the number of operations.

In the streaming model, the algorithm will “see” all the data but will only have

sub-linear space to remember what has been seen. In the oracle models, only a

fraction of the data will be revealed but there is greater flexibility about how this

data is accessed and there is no space restriction. It is natural to ask how these

models relate to each other.

36

3.2.1 Related Work

Feigenbaum et al. [FKSV02b] initiated the study of a related problem. They con-

sidered testing properties of a length m list of values. They consider processing the

list in the data-stream model and in an oracle model in which queries can be made

to the value contained in each position of the list. They showed that there exist

functions that are easy in their oracle model but hard to test in streams and vice

versa. In particular, they show that testing Sorted-Superset, the property that

the elements in the first half of the list (which are promised to be sorted) are a per-

mutation of the elements in the second half, requires Ω(m) space in the streaming

model but only requires O(log m) queries in the oracle model. Conversely, testing

Groupedness, the property that all identical values in the list appear consecutively,

requires Ω(
√

m) queries in the oracle while it only requires O(log m) space in the

streaming model.

Given such a result it may appear that the problem of relating oracle models

to streaming models is resolved. However, most of the properties considered by

[FKSV02b] are dependent on the ordering of the data stream. When considering

properties of the empirical distribution defined by a stream, the ordering of the

stream is irrelevant. Furthermore, for many properties, the actual values of the data

items in the stream are not important in the sense the property is invariant under

re-labeling the values in the stream. Such properties include the entropy of the data

stream or the ℓ1 difference between two empirical distributions.

3.2.2 Our Results

We consider estimating symmetric properties of a distribution, i.e., properties that

are invariant under a relabeling of the data items. For such properties we relate the

computational power of the combined oracle model to the data-stream model. In

particular, we consider an combined-oracle that “knows” the empirical distribution

defined by a stream A. We show that any algorithm A that makes O(k) queries

37

to the oracle can be transformed into an algorithm A′ for processing A using O(k)

space. If A is adversarially ordered then A′ requires two passes over A but if A is

randomly ordered then the algorithm only requires a single pass.

3.3 Space-Efficient Sampling

In this section, we continue with the theme of processing a stream of samples. How-

ever, unlike the previous section, we will not be interested in computing something

about the empirical distribution defined by the stream. Rather, we will be interested

in using these samples to make some inference about the source of these samples on

the assumption that each sample is drawn independently from the source. This is in

stark contrast to almost all the streaming research to date.

This introduces various new issues. Sample-complexity is a fundamental measure

of complexity in many learning problems. A very general set-up in statistics and

machine-learning is that an algorithm may request a sequence of independent sam-

ples from some source for the purposes of making some inference about the source.

Sample complexity is simply the number of samples that must be requested be-

fore the algorithm can make the desired inference with sufficiently high probability.

Unfortunately, when we are trying to reason about complicated systems, Vapnik-

Chervonenkis arguments, for example, can be used to show that many samples are

required. Processing these samples can become expensive in terms of the length of

time taken to process these samples and the space necessary to store these samples.

While the time-complexity is necessarily at least as large as the sample-complexity,

can the space-complexity can be significantly less?

The question we are posing is essentially a computational generalization of the

notion of sufficient statistics: do we need to retain all the samples that are generated,

or can we maintain small summaries and still make the desired inferences? In other

words, can we separate the space and sample complexities of a learning problem.

38

This is particularly important when we have a fast data source. For example, sup-

pose we are sampling traffic at a router in an attempt to monitor network traffic

patterns. We can very quickly gather a large sample; but to store this sample cre-

ates a significant problem as a typical monitoring system is only permitted a small

memory footprint and writing to disk would slow the system down considerably.

Even if we were permitted a reasonably sized footprint, we may be able to make

more accurate inferences and predictions if we use the space more efficiently than

just storing samples.

Another important issue that arises is the potential trade-off between sample com-

plexity and space complexity. Because we may not be able to store all the samples in

the allotted space, our algorithms potentially incur a loss of accuracy. Consequently,

we may need to investigate a slightly larger set of samples and thereby offset the loss

of accuracy. The aforementioned problem of estimating medias illustrates some of

these ideas.

Example 3.3. We say y is an ǫ-approximate median of a one dimensional distribu-

tion with probability density function D if,
∫ y

−∞

D(x)dx ∈ 1/2± ǫ .

It can be shown that the sample complexity of finding an ǫ-approximate median is

Θ(ǫ−2). However, it can also be shown that there exists a constant c(δ) such that,

with probability at least 1 − δ, any element whose rank is in the range m/2± ǫm/2

in a set of m = c/ǫ2 samples is an ǫ-approximate median. But there exist algorithms

[GK01] using only O(ǫ−1 log ǫm) space that, when presented with a stream of m

values will return an element whose rank is in the range m/2 ± ǫm/2. Hence the

space complexity of learning an ǫ-approximate median is only O(ǫ−1 log ǫ−1).

Furthermore, since the samples are in random order, we know that with O(1)

words of space we can return an element with rank m/2±O(
√

m ln2 m ln δ−1). Hence,

by increasing the number of samples to O(ǫ−2 ln4 ǫ−1) we may decrease the space

complexity to O(1) words.

39

3.3.1 Related Work

The main piece of related work is by Chang and Kannan [CK06]. They consider

processing a stream of samples that are drawn from a distribution on the real line

with probability generating function D that has at most k piecewise-linear segments.

They design an algorithm that finds a probability density function D̂ such that
∫

R
|D(x)− D̂(x)| ≤ ǫ. However, this algorithm makes multiple passes over the data

stream which necessitates that the samples are stored somewhere. Also the algorithm

does not take advantage of the fact that the samples will be in a random-order and

therefore the algorithm works even if the stream is reordered. We will discuss the

details of the algorithm in relation to our results in the next section.

More generally, the idea of processing a stream of samples is related to on-line

algorithms (see, e.g., [BEY98]) and on-line learning (see, e.g., [Blu98]). However

in the on-line model, space issues have not been considered widely. Furthermore,

there is a notion of an irrevocable decision or guess being made at each step. This

does not have a direct analogue in the data stream model, where we are primarily

concerned with the accuracy of an estimate of some function after all the data has

been seen. However, because of the space restriction, the algorithm is forced to

make an irrevocable decision about what information to “remember” (explicitly or

implicitly) about the new item and what information currently encoded in the current

memory state can be “forgotten.”

3.3.2 Our Results

For discrete distributions, over a domain [n], Batu et al. [BFR+00] provide algo-

rithms with sublinear (in n) sample complexity. These algorithms test whether two

distributions are almost identical in variational distance or at least ǫ-far apart. We

show that the space complexity of their algorithm can be improved with a small

blowup in sample complexity. Furthermore, we consider approximating the distance

between two distributions.

40

Chang and Kannan [CK06] This Work

Length O(k6ǫ−6) O(k2ǫ−4) O(k2ǫ−4)

Space O(k3ǫ−4/P) O(kǫ−2/P) O(k)

Passes P P 1

Order Adversarial Adversarial Random

Table 3.1: Comparison of Results for Learning Distributions. Log terms are omitted
and P is even and assumed constant.

Next we consider the problem of learning piecewise-linear probability density

function as considered by Chang and Kannan [CK06]. We present an single-pass

algorithm using Õ(k2ǫ−4) samples and Õ(k) space. Our algorithm capitalizes on

the fact that a sequence of independent samples will be in random-order. We also

present an algorithm directly comparable to that in [CK06], i.e., the algorithm must

process the samples in an arbitrary order but is permitted multiple passes over the

stream of samples. Our algorithm takes P (assumed constant) passes over Õ(k2ǫ−4)

samples and uses Õ(kǫ−2/P) space. In comparison, the algorithm of [CK06] takes P

passes over Õ(k6ǫ−6) samples and uses Õ(k3ǫ−4/P) space. See Table 3.1.

We conclude with a section about the importance of the assumption that the

samples in the stream are ordered randomly rather than adversarially. We discuss our

ideas in the context of estimating the frequency moments of a discrete distribution.

41

Chapter 4

Random vs. Adversarial Order

Chapter Outline: We present a single-pass algorithm for computing an ap-

proximate quantile of a randomly ordered stream. We present generalizations for

semi-randomly ordered streams and show how to compute an exact quantile in mul-

tiple passes. Finally, we present lower-bounds for both random-order streams and

adversarial-order streams thereby refuting a conjecture of Kannan [Kan01]. For

background see Chapter 3.

4.1 Algorithms for Random-Order Streams

In this section we show how to perform approximate selection of the k-th smallest

element in a single pass over a randomly-ordered stream S. We will present the

algorithm assuming the exact value of the length of the stream, m, is known in

advance. In a subsequent section, we will show that this assumption is not necessary.

In what follows we will assume that the stream contains distinct values. This can

easily be achieved with probability at least 1 − δ by attaching a secondary value

yi ∈R [m2δ−1] to each item xi in the stream. We say (xi, yi) < (xj , yj) iff xi < xj

or (xi = xj and yi < yj). Note that breaking the ties arbitrarily results in a stream

whose order is not random. We also may assume that k ≤ m/2 by symmetry.

42

Selection Algorithm:

1. Let Υ = 10 ln2(m) ln(δ−1)
√

k and p = 2(lg(m/Υ) +
√

ln(3/δ) lg(m/Υ))

2. Let a = −∞ and b = +∞

3. Let l1 = mΥ−1 ln(3m2p/δ) and l2 = 2(m− 1)Υ−1
√

(k + Υ) ln(6mp/δ)

4. Partition the stream as S = 〈S1, E1, . . . Sp, Ep〉 where |Si| = l1, |Ei| = l2

5. Phase i:

(a) Sample sub-phase: If Si∩(a, b) = ∅ return a, else let u ∈R Si∩(a, b)

(b) Estimate sub-phase: Let r = RankEi
(u) and r̃ = (m−1)(r−1)

l2
+ 1

(c) Update sub-phase: If r̃ < k −Υ/2, a← u, r̃ > k + Υ/2, b← u else
return u

Figure 4.1: An Algorithm for Quantile Estimation

Algorithm Overview: Our algorithm proceeds in phases and each phase is com-

posed of three distinct sub-phases; the Sample sub-phase, the Estimate sub-phase,

and the Update sub-phase. At all points we maintain an open interval (a, b) such

that we believe that the value of the element with rank k is between a and b In

each phase we aim to narrow the interval (a, b). The Sample sub-phase finds a value

u ∈ (a, b). The Estimate sub-phase estimates the rank of u. The Update sub-phase

replaces a or b by u depending on whether the rank of u is believed to be less or

greater than u. See Fig. 4.1 for the algorithm.

Algorithm Analysis: For the analysis we define the following quantity,

Γ(a, b) = |S ∩ (a, b)| = |{v ∈ S : a < v < b}| .

Lemma 4.1. With high probability, for all phases, if Γ(a, b) ≥ Υ then there exists

an element u in each sample sub-phase, i.e.,

Pr [∀ i ∈ [p], a, b ∈ S such that Γ(a, b) ≥ Υ; Si ∩ (a, b) 6= ∅] ≥ 1− δ/3 .

43

Proof. Fix i ∈ [p] and a, b ∈ S such that Γ(a, b) ≥ Υ. Then,

Pr [Si ∩ (a, b) 6= ∅] ≥ 1−
(

1− Γ(a, b)

m

)l1

≥ 1− exp(−Υl1/m) = 1− δ

3m2p
.

The result follows by applying the union bound over all choices of i, a and b.

Lemma 4.2. With high probability, for all phases, we determine the rank of u with

sufficient accuracy, i.e.,

Pr



∀i ∈ [p], u ∈ S;
r̃ = RankS(u)±Υ/2 if RankS(u) < k + Υ + 1

r̃ > k ±Υ/2 if RankS(u) ≥ k + Υ + 1



 ≥ 1−δ/3 ,

where r̃ = (m− 1)(RankEi
(u)− 1)/l2 + 1.

Proof. Fix i ∈ [p] and u ∈ S. First we consider u such that RankS(u) < k + Υ + 1.

Let X = RankEi
(u)− 1 and note that E [X] = l2(RankS(u)− 1)/(m− 1).

Pr [r̃ 6= RankS(u)±Υ/2] = Pr

[

|X −E [X] | ≥ l2Υ

2(m− 1)

]

≤ 2 exp

(−2(l2Υ/(2(m− 1)))2

RankS(u)− 1

)

≤ δ

3mp
.

Now assume that RankS(u) ≥ k + Υ + 1 and note that Pr [r̃ ≥ k + Υ/2] is

minimized for RankS(u) = k + Υ + 1. Hence,

Pr [r̃ > k + Υ/2] = 1− Pr

[

E [X]−X ≥ l2Υ

2(m− 1)

]

≥ 1− exp

(

− (l2Υ)2

4(k + Υ)(m− 1)2

)

= 1− δ

6mp
.

The result follows by applying the union bound over all choices of i and u.

We now give the main theorem of this section.

Theorem 4.3. For k ∈ [m], there exists a single-pass, O(1)-space algorithm in the

random-order model that returns u such that RankS(u) = k ± 10 ln2(m) ln(δ−1)
√

k

with probability at least 1− δ.

44

Proof. Consider Gap = |{v ∈ S : a < v < b}| in each phase of the algorithm. By

Lemma 4.1 and Lemma 4.2, with probability at least 1− 2δ/3, in every phase Gap

decreases (unless Gap is already less than Υ) and RankS(a) ≤ k ≤ RankS(b). In

particular, with probability 1/2, Gap decreases by at least a factor 2 between each

phase. Let X be the number of phases in which Gap halves. If the algorithm does

not terminate then X < lg(m/Υ) since Gap is initially m and the algorithm will

terminate if Gap < Υ. But,

Pr [X < lg(m/Υ)] = Pr
[

X − E [X] <
√

ln(3/δ) lg(m/Υ)
]

≥ 1− δ/3 .

Hence with probability at least 1− δ the algorithm returns a value with rank k±Υ.

The space bound immediately from the fact that the algorithm only stores a

constant number of polynomially sized values and maintains a count over O(m)

elements. Finally, for sufficiently large m,

p(l1 + l2) = O

((

lg
m

Υ
+

√

ln(δ−1) lg
m

Υ

)(

m ln
mp

δ
+ m

√

(k + Υ) ln
mp

δ

)

Υ−1

)

= O(ln2(m) ln(δ−1)mΥ−1
√

k)

= O(m) .

4.1.1 Generalizing to Unknown Stream Lengths

The algorithm in the previous section assumed prior knowledge of n, the length of

the stream. We now discuss a simple way to remove this assumption. First we argue

that, for our purposes, it is sufficient to only look at half the stream!

Lemma 4.4. Given a randomly ordered stream S of length m, let S ′ be a contiguous

sub-stream of length m̃ ≥ m/2. Then, with probability at least 1− δ, if u is the k̃-th

smallest element of S ′, then,

RankS(u) = k̃m/m̃± 2(8k̃ ln δ−1)0.5 .

45

Proof. Let a = k̃/m̃. Let the elements in the stream be x1 ≤ . . . ≤ xm. Let

X = |{x1, . . . , xam+b}∩S ′| and Y = |{x1, . . . , xam−b−1}∩S ′| where b = 2(8k̃ ln δ−1)0.5.

The probability that the element of rank k̃ = am̃ in S ′ has rank in S outside the

range [am− b, am + b] is less than,

Pr [X < am̃ or Y > am̃] ≤ Pr [X < E [X]− b/2 or Y > E [Y] + b/2]

≤ 2 exp

(−(b/2)2

3(am̃ + b)

)

≤ δ .

The lemma follows.

To remove the assumption that we know m, we make multiple instantiations

of the algorithm. Each instantiation corresponds to a guess of m. Let β = 1.5.

Instantiation i guesses a length of ⌈4βi⌉−⌊βi⌋+1 and is run on the stream starting

with the ⌊βi⌋-th data item and ending with the ⌈4βi⌉-th data item. We remember

the result of the algorithm until the 2(⌈4βi⌉ − ⌊βi⌋+ 1)-th element arrives. We say

the instantiation has been canceled at this point.

Lemma 4.5. At any time there are only a constant number of instantiations. Fur-

thermore, when the stream terminates, at least one instantiation has run on a sub-

stream of at least m/2.

Proof. Consider the t-th element of the data stream. By this point there have been

O(logβ t) instantiations made. However, Ω(logβ t/6) instantiations have been can-

celed. Hence, O(logβ t− logβ t/6) = O(1) instantiations are running. We now show

that there always exists an instantiation that has been running on at least half

the stream. The i-th instantiation gives a useful result if the length of the stream

m ∈ Ui = {⌊4βi⌋+ 1, . . . , 2(⌈4βi⌉ − ⌊βi⌋+ 1)}. But
⋃

i≥0 Ui = N \ {0, 1, 2, 3, 4} since

for all i > 1, ⌊4βi + 1⌋ ≤ 2(⌈4βi−1⌉ − ⌊βi−1⌋+ 1).

We can therefore generalize Theorem 4.3 as follows,

46

Theorem 4.6. For k ∈ [m], there exists a single-pass, O(1)-space algorithm in the

random-order model that returns u such that RankS(u) = k ± 11 ln2(m) ln(δ−1)
√

k

with probability at least 1− δ. The algorithm need not know m in advance.

4.1.2 Multi-Pass Exact Selection

In this section we consider the problem of exact selection of an element of rank

k = Ω(m). We will later show that this requires Ω(
√

m)-space if an algorithm is

permitted only one pass over a stream in random-order. However, if O(log log m)

passes are permitted we now show that O(polylog m) space is sufficient.

We use a slight variant of the single-pass algorithm in Section 4.1 as a building

block. Rather than returning a single candidate, we output the pair a and b. Using

the analysis in Section 4.1, it can be shown that, with probability 1−δ, RankS(a) ≤
k ≤ RankS(b) and that

|RankS(a)−RankS(b)| ≤ O(
√

m log2 m log δ−1) .

In one additional pass, RankS(a) and RankS(b) can be computed exactly.

Hence, after two passes, by ignoring all elements less than a or greater than b,

we have reduced the problem to that of finding an element of rank k−RankS(a)+1

in a stream of length O(
√

m log3 m)1. If we repeat this process O(log log m) times

and then select the desired element by explicitly storing the remaining O(polylog m)-

length stream, it would appear that we can perform exact selection in O(polylog m)-

space and O(log log m)-passes. However, there is one crucial detail that needs ad-

dressed. In the first pass, by assumption we are processing a data stream whose

order is chosen uniformly from Symm. However, because the stream-order is not

re-randomized between each pass, it is possible that the previous analysis does not

apply because of dependences that may arise between different passes. Fortunately,

the following straight-forward, but crucial, observation demonstrates that this is not

1We will assume that δ
−1 = poly(m) in this section.

47

the case.

Lemma 4.7. Consider the set {x1, . . . , xm} and π ∈ Symm. Let a and b be the

bounds returned after a pass of the algorithm on the stream 〈xπ(1), . . . , xπ(m)〉. Let

π′ ∈ Symm satisfy π(i) = π′(i) for all i ∈ [m] such that xi 6∈ [a, b]. Then the algorithm

also would return the same bounds after processing the stream 〈xπ′(1), . . . , xπ′(m)〉.

Therefore, conditioned on the algorithm returning a and b, the sub-stream of

elements in the range [a, b] are ordered uniformly at random. This leads to the

following theorem.

Theorem 4.8. For k ∈ [m], there exists an O(polylog m)-space, O(log log m)-pass

algorithm in the random-order model that returns the k-th smallest value of a stream

with probability 1− 1/ poly(m).

4.1.3 Applications to Equi-Depth Histograms

In this section, we overview an application to constructing B-bucket equi-depth

histograms. Here, the histogram is defined by B buckets whose boundaries are

defined by the items of rank im/(B + 1) for i ∈ [B]. Gibbons, Matias, and Poosala

[GMP02] consider the problem of constructing an approximate B-bucket equi-depth

histogram of data stored in a backing sample. The measure of “goodness-of-fit” they

consider is

µ = m−1

√

B−1
∑

i∈B

ǫ2
i ,

where ǫi is the error in the rank of the boundary of the i-th bucket. They show that

µ can be made smaller than any ǫ > 0 where the space used depends on ǫ. However,

in their model it is possible to ensure that the data is stored in random order. As a

consequence of the algorithm in Section 4.1, we get the following theorem.

Theorem 4.9. In a single pass over a backing sample of size m stored in random

order we can compute the B-quantiles of the samples using O(B log m) memory with

error Õ(m−1/2).

48

Since the error goes to zero as the sample size increases, we have the first consis-

tent estimator for this problem.

4.2 Notions of Semi-Random Order

In this section we consider two natural notions of “semi-random” ordering and ex-

plain how our algorithm can be adjusted to process streams whose order is semi-

random under either definition. The first notion is stochastic in nature: we consider

the distribution over orders which are “close” to the random order in an ℓ1 sense.

This will play a critical role when proving lower bounds.

Definition 4.10 (ǫ-Generated-Random Order). Given set {x1, . . . , xm}, π ∈ Symm

defines a stream 〈xπ(1), . . . , xπ(m)〉. We say the order is ǫ-Generated Random (ǫ-GR)

if π is chosen according to a distribution ν such that ‖µ − ν‖1 ≤ ǫ where µ is the

uniform distribution on Symm.

The importance of this definition is captured in the following simple lemma.

Lemma 4.11. Let A be a randomized algorithm that succeeds (i.e., returns an esti-

mate of some property with some accuracy guarantee) with probability at least 1− δ

in the random-order model. Then A succeeds with probability at least 1− δ− ǫ when

the stream order is ǫ-GR.

Proof. Let Prµ,coin (·) denote the probability of an event over the internal coin tosses

of A and the ordering of the stream when the stream-order is chosen according to

the uniform distribution µ. Similarly, define Prν,coin (·) where ν is any distribution

satisfying ‖µ− ν‖1 ≤ ǫ.

Pr
µ,coin

(A succeeds) =
∑

π∈Symm

Pr
µ

(π) Pr
coin

(A succeeds|π) ≤ Pr
ν,coin

(A succeeds) + ǫ .

The lemma follows since Prµ,coin (A succeeds) ≥ 1− δ by assumption.

49

The next theorem follows immediately from Theorem 4.3 and Lemma 4.11.

Theorem 4.12. For k ∈ [m], there exists a single-pass, O(log m)-space algorithm in

the ǫ-GR-order model that returns u such that RankS(u) = k±11 ln2(m) ln(δ−1)
√

k

with probability at least 1− δ − ǫ.

The second definition is computational in nature. We consider an adversary

upstream of our algorithm that can re-order the elements subject to having limited

memory to do this reordering.

Definition 4.13 (t-Bounded-Adversary-Random Order). A t-bounded adversary is

an adversary that can only delay at most t elements at a time, i.e., when presented

with a stream 〈x1, . . . , xm〉 it can ensure that the received stream is 〈xπ(1), . . . xπ(m)〉
if π ∈ Symm satisfies,

∀i ∈ [m] , |{j ∈ [m] : j < i and π(i) < π(j)}| ≤ t . (4.1)

The order of a stream is t-bounded-adversary-random (t-BAR) if it is generated by

a t-bounded adversary acting on a stream whose order is random.

For example, with t = 2, 〈1, 2, 3, 4, 5, 6, 7, 8, 9〉 can become 〈3, 2, 1, 6, 5, 4, 9, 8, 7〉 or

〈3, 4, 5, 6, 7, 8, 9, 1, 2〉 but not 〈9, 8, 7, 6, 5, 4, 3, 2, 1〉. In particular, in the adversarial-

order model the stream order is (n− 1)-BAR while in the random-order model the

order is 0-BAR.

Lemma 4.14. Consider streams S = 〈x1, . . . , xm〉 and S ′ = 〈xπ(1), . . . , xπ(m)〉 where

π satisfies Eq. 4.1. Let Sa,b = 〈xi1 , xi2 , . . .〉 and S ′
a,b = 〈xπ(i1), xπ(i2), . . .〉 be the sub-

streams of elements in the range (a, b). Then for any j, w ∈ [m], |{xij , . . . , xij+w
} ∩

{xπ(ij), . . . , xπ(ij+w)}| ≥ w − t.

We assume that t ≤
√

k. Given the above lemma is quite straight-forward to

transform the algorithm of the previous section into one that is correct (with pre-

scribed probability) when processing a stream in t-BAR order. In particular, it is

50

sufficient to set l1 = O(mΥ−1 ln(3m2p/δ) + tδ−1) and to choose a random u among

Si∩(a, b) in each sample-phase. Note that l1 < l2 for t ≤
√

k. In each estimate-phase

a t-bounded adversary can introduce an extra mt/l2 ≤ tΥ/
√

k ≤ Υ error. Hence,

the total error is at most 2Υ.

Theorem 4.15. For k ∈ [m], there exists a single-pass, O(1)-space algorithm in the

t-BAR-order model that returns u such that RankS(u) = k ± 20 ln2(m) ln(δ−1)
√

k

with probability at least 1− δ.

4.3 Random-Order Lower-Bound

In this section we will prove a lower bound on the space required to mδ-approximate

the median in the single-pass random-order model. Our lower-bound will be based

on a reduction from the communication complexity of indexing [KN97]. However,

the reduction is significantly more involved then typical reductions because different

segments of a stream can not be determined independently by different players if the

stream is in random order.

Consider two players Alice and Bob where Alice has a binary string σ of length s

and Bob has an index r ∈ [s] where s will be determined later. It is known that for

Bob to determine Index(σ, r) = σr after a single message from Alice with probability

at least 4/5, then this message must consist of Ω(s) bits. More precisely,

Theorem 4.16 (e.g., [KN97]). R1
1/5(Index) ≥ c∗s for some constant c∗ > 0.

We start by assuming that there exists an algorithm A that computes an mδ-

approximate median in the single-pass, random-order model with probability at least

9/10. We then use this to construct a one-way communication protocol that will

allow Alice and Bob to solve their Index problem. They do this by simulating A
on a stream of length m where Alice determines the prefix of the stream and Bob

determines the remaining prefix. The stream they determine consists of the union

of the following sets of elements:

51

X: A size x set consisting of m/2 + mδ − 2mδr copies of 0.

Y : A size y set consisting of n/2−mδ − 2mδ(s− r) copies of 2s + 2.

Z: A size z = 2mδs set consisting of 2mδ copies of {2i + σi : i ∈ [s]}.

Note that any mδ-approximate median of U = S ∪X ∪ Y is 2r + σr. The difficulty

we face is that we may only assume A returns an mδ-approximate median of U

if U is ordered randomly. Ensuring this seems to require a significant amount of

communication between Alice and Bob. How else can Alice determine the balance

of elements from X and Y in the prefix of the stream or Bob know the elements of

Z that should appear in the suffix of the stream?

In what follows we will argue that by carefully choosing the length of the prefix,

suffix, and s, it is possible for Alice and Bob to ensure that the ordering of the

stream is 1/20-generated-random while Alice and Bob need only communicate a

sufficiently small number of bits with probability at least 19/20. Then, by appealing

to Lemma 4.11, we may assume that the protocol is correct with probability at least

4/5.

Generating a Stream in Semi-Random Order: Let A be the set of elements

in the part of the stream determined by Alice. Let B = U \A be the set of elements

in the part of the stream determined by Bob. Let p = c∗/(8mδ log m) and consider

the following protocol:

1. Alice determines A ∩ Z and B ∩ Z by placing an element from Z into B

with probability p and placing it in A otherwise. Alice picks t0 according to

T0 ∼ Bin(m/2 − z, 1 − p) and t1 according to T1 ∼ Bin(m/2 − z, 1 − p). She

places t0 copies of 0 and t1 copies of 1 into A. She sends a message encoding

B ∩ Z, t0, t1 and the memory state of A ran on a random permutation of A.

2. Bob instantiates A with memory state sent by Alice and continues running

it on a random permutation of B = (B ∩ Z) ∪ {x − t0 copies of 0} ∪ {(y −

52

t1 copies of 1}. Finally, Bob returns 1 if the output of the algorithm is odd

and 0 otherwise.

Let ν be the distribution over stream-orders generated by the above protocol.

The next lemma establishes that ν is almost uniform. This will be required to prove

the correctness of the algorithm.

Lemma 4.17. If z = 10−6√pm then ‖µ − ν‖1 ≤ 1/20 where µ is the uniform

distribution on Symm.

Proof. Define the random variables T ′
0 ∼ Bin(x, 1 − p) and T ′

1 ∼ Bin(y, 1− p) and

let a0 = x −m/2 + z and a1 = y −m/2 + z. Note that a0, a1 ≥ 0 and a0 + a1 = z.

We upper-bound ‖µ− ν‖1 as follows,

‖µ− ν‖1 =
∑

t0,t1

|Pr [T0 = t0, T1 = t1]− Pr [T ′
0 = t0, T

′
1 = t1]|

≤ max
t0∈(1−p)x±b∗

t1∈(1−p)y±b∗

∣
∣
∣
∣

Pr [T0 = t0, T1 = t1]

Pr [T ′
0 = t0, T ′

1 = t1]
− 1

∣
∣
∣
∣
+ Pr [A ≥ b∗ − pz] + Pr [B ≥ b∗]

where A = max{|T0 −E [T0] |, |T1 −E [T1] |}, B = max{|T ′
0 −E [T ′

0] |, |T ′
1 −E [T ′

1] |},
and b∗ = 10

√

pm/2 + pz. By the Chernoff bound,

Pr [A ≥ b∗ − pz] + Pr [B ≥ b∗] ≤ 8 exp
(
−2(b∗ − pz)2/(3pm)

)

and hence the last two terms are upper-bounded by 1/40 for sufficiently large m.

Let t0 = (1−p)x+b0 and t1 = (1−p)x+b1 and assume that |b0|, |b1| ≤ b∗. Then,

Pr [T0 = t0, T1 = t1] / Pr [T ′
0 = t0, T

′
1 = t1] equals,

(
m/2−z

t0

)(
m/2−z

t1

)

(
x
t0

)(
y
t1

)
pz

=




∏

i∈[a0]

xp− i + 1− b0

(x− i + 1)p








∏

i∈[a1]

yp− i + 1− b1

(y − i + 1)p



 ,

and therefore,

exp

(−zb∗

p(x− z)
+
−zb∗

p(y − z)

)

≤ Pr [T0 = t0, T1 = t1]

Pr [T ′
0 = t0, T

′
1 = t1]

≤ exp

(
2z2 + zb∗

p(x− z)
+

2z2 + zb∗

p(y − z)

)

.

Substituting z establishes that |Pr [T0 = t0, T1 = t1] / Pr [T ′
0 = t0, T

′
1 = t1]−1| ≤ 1/40

for sufficiently large m. The lemma follows.

53

The next lemma will be necessary to bound the communication of the protocol.

Lemma 4.18. Pr [|Z ∩B| ≥ c∗s/(2 log m)] ≤ 1/20.

Proof. Note that E [|Z ∩ B|] = pz. Then, by an application of the Chernoff bound,

Pr [|Z ∩B| ≥ c∗s/(2 log m)] = Pr [|Z ∩ B| ≥ 2E [|Z ∩B|]] = exp(−c∗s/(12 log m)) .

Theorem 4.19. Computing an mδ-approximate median in the random-order model

with probability at least 9/10 requires Ω(
√

m1−3δ/ log m) space.

Proof. Let Alice and Bob follow the above protocol to solve their instance of Index.

Assume A use M bits of space. By Lemma 4.11 and Lemma 4.17, the protocol is

correct with probability at least 9/10−1/20 = 17/20. Furthermore, by Lemma 4.18,

with probability at least 19/20 the protocol requires at most 3c∗s/4 + M bits of

communication (for sufficiently large m): c∗s/2 bits to transmit Z ∩B, 2 log m bits

to transmit t0 and t1, and M bits for the memory state of A. Therefore, there exists

a protocol transmitting 3c∗s/4 + M bits that is correct with probability at least

17/20− 1/20 = 4/5. Hence, by Theorem 4.16, M = Ω(s) = Ω(
√

m1−3δ/ log m).

4.4 Adversarial-Order Lower-Bound

In this section we prove that any P -pass algorithm that returns an mδ-approximate

median in the adversarial-order model requires Ω(m(1−δ)/P P−6) space. The proof

will use a reduction from the communication complexity of a generalized form of

pointer-chasing that we now describe.

Definition 4.20 (Generalized Pointer Chasing). For i ∈ [p], let fi : [V] → [V] be

an arbitrary function. Then gp is defined by

gp(f1, f2, . . . , fp) = fp(fp−1(. . . f1(1)) . . .)) .

54

S1 S2 S3

(0, 0, 0)× 5(3− fA(1))
(1, 0, 0)× (3− fB(1))

(1, 1, fC(1))
(1, 2, fC(2))
(1, 3, fC(3))

(1, 4, 0)× (fB(1)− 1)
(2, 0, 0)× (3− fB(2))

(2, 1, fC(1))
(2, 2, fC(2))
(2, 3, fC(3))

(2, 4, 0)× (fB(2)− 1)
(3, 0, 0)× (3− fB(3))

(3, 1, fC(1))
(3, 2, fC(2))
(3, 3, fC(3))

(4, 4, 0)× (fB(3)− 1)
(4, 0, 0)× 5(fA(1)− 1)

Table 4.1: Reduction from Pointer Chasing to Exact Median Finding. A triple of
the form (x2, x1, x0) corresponds to the numerical value x2 ·52 +x1 ·51 +x0 ·50. Note
that median(S1 ∪ S2 ∪ S3) = fA(1) · 52 + fB(fA(1)) · 51 + fC(fB(fA(1))) · 50

Let the i-th player, Pi, have function fi and consider a protocol in which the players

must speak in the reverse order, i.e., Pp, Pp−1, . . . , P1, Pp, We say the protocol

has r rounds if Pp communicates r times. Let Rr
δ(gp) be the total number of bits that

must be communicated in an r round (randomized) protocol for P1 to learn gp with

probability at least 1− δ.

Note that Rp
0(gp) = O(p logV). We will be looking at (p − 1)-round protocols.

The proof of the next result will be deferred to the next section.

Theorem 4.21. Rp−1
1/10(gp) = Ω(V/p4 − p2 log V).

The next theorem is proven by reducing from generalized pointer-chasing to ap-

proximate selection.

55

Theorem 4.22. Finding an mδ-approximate median in p passes with probability at

least 9/10 in the adversarial-order model requires Ω(m(1−δ)/pp−6) space.

Proof. We will show how a p-pass algorithm A that computes a t-approximate me-

dian of a length m stream gives rise to a p-round protocol for computing gp+1

when V =
(
m
/
((p + 1)(2t + 1))

)1/p
/2. If A uses M bits of space then the pro-

tocol uses at most (p(p + 1)− 1)M bits. Hence, by Theorem 4.21, this implies that

M = Ω(V/p6) = Ω((m/t)1/pp−6).

The intuition behind the proof is that any t-approximate median will correspond

to a number g1g2g3 . . . gp+1 written in base V +2. The input of P1 will first determine

the highest order ‘bit’, i.e., g1. Then the input of P2 will determine the g2 and so

on. Specifically, each player Pi will determine a segment of the stream Si: Pp+1

determines the first mp+1 = |Sp+1| elements, Pp determines the next mp = |Sp|, etc.

These segments are defined as follows,

S1 =
{

0, , 0
︸ ︷︷ ︸

(V −f1(1))(2t+1)(2V −1)p−1

, (V + 1)bp, . . . , (V + 1)bp

︸ ︷︷ ︸

(f1(1)−1)(2t+1)(2V −1)p−1

}

and for j ∈ {2, . . . , p},

Sj =
⋃

xp+2−j ,...,xp∈[V]

{
p
∑

i=p+2−j

xib
i, . . . ,

p
∑

i=p+2−j

xib
i

︸ ︷︷ ︸

(V −fj(xp+2−j))(2t+1)(2V −1)p−j

,

(V + 1)bp+1−j +

p
∑

i=p+2−j

xib
i, . . . , (V + 1)bp+2−j +

p
∑

i=p+2−j

xib
i

︸ ︷︷ ︸

(fj(xp+2−j)−1)(2t+1)(2V −1)p−j

}
,

and finally,

Sp+1 =
⋃

x1,...,xp∈[V]

{
fp+1(x1) +

p
∑

i=1

xib
i, . . . , fp+1(x1) +

p
∑

i=1

xib
i

︸ ︷︷ ︸

2t+1

}
,

where b = V +2. See Table 4.1 for the case when p = 2, t = 0, and V = 3. Note that

mp+1 = (2t+1)V p and for j ≤ p, mj = (2t+1)(V −1)(2V −1)p−jV j−1 < (2t+1)V p.

56

Hence,
p+1
∑

j=1

mj ≤ (2t + 1)(p + 1)(2V)p = m ,

and that the largest value in the stream is (V + 1)bp = O(m). Any t-approximate

median equals
∑p+1

i=1 gib
p+1−i and, therefore, if P1 returns a t-approximate median

modulo b then this equals gp+1. This can easily be computed by a protocol in which

each player transmits the memory state of the algorithm at the appropriate juncture.

This concludes the proof.

4.4.1 Proof of Theorem 4.21

The proof is a generalization of a proof by Nisan and Widgerson [NW93]. We present

the entire argument for completeness. In the proof we lower bound the (p−1)-round

distributional complexity, Dp−1
1/20(gp), i.e., we will consider a deterministic protocol

and an input chosen from some distribution. The theorem will then follow by Yao’s

Lemma [Yao80] since

Dp−1
1/20(gp) ≤ 2Rp−1

1/10(gp) .

Let T be the protocol tree of a deterministic p-round protocol. We consider

the input distribution where each fi is chosen uniformly from F , the set of all V V

functions from [V] to [V]. Note that this distribution over inputs gives rise to

distribution over paths from the root of T to the leaves. We will assume that in

round j, Pi’s message include gj−1 if i > j and gj if i ≤ j. E.g., for p = 4 the

appended information is shown in the following table where g0 = 1.

Round 1 Round 2 Round 3

Player 4 3 2 1 4 3 2 1 4 3 2 1

Appended g0 g0 g0 g1 g1 g1 g2 g2 g2 g3 g3 -

This is possible with only O(p2 log V) extra communication. Consequently we

may assume that at each node at least lg V bits are transmitted. We will assume

57

that protocol T requires at most ǫV/2 bits of communication where ǫ = 10−4(p+1)−4

and derive a contradiction.

Consider a node z in the protocol tree of T corresponding to the jth round of

the protocol when it is Pi’s turn to speak. Let gt−1 be the appended information in

the last transmission. Note that g0, g1, . . . , gt−1 are specified by the messages so far.

Denote the set of functions f1 × . . . × fp that are consistent with the messages

already sent be F z
1 × . . . × F z

p . Note that the probability of arriving at node z is

|F |−p
∏

1≤j≤p |F z
j |. Also note that, conditioned on arriving at node z, f1× . . .× fp is

uniformly distributed over F z
1 × . . .× F z

p .

Definition 4.23. Let cz be the total communication until z is reached. We say a

node z in the protocol tree is nice if, for δ = max{4√ǫ, 400ǫ}, it satisfies the following

two conditions:

|F z
j | ≥ 2−2cz |F | for j ∈ [p] and H(f z

t (gt−1)) ≥ lg V − δ .

Claim 4.24. Given the protocol reaches node z and z is nice then,

Pr [next node visited is nice] ≥ 1− 4
√

ǫ− 1/V .

Proof. Let w be a child of z and let cw = cz + aw. For l 6= i note that |F w
l | = |F z

l |
since Pl did not communicate at node z. Hence, the probability that we reach node

w given we have reached z is
∏

1≤j≤p |F w
j |
/
|F z

j | = |F w
i |
/
|F z

i |. Furthermore, since z

is nice,

Pr
[
|F w

i | < 2−2cw |F |
]
≤ Pr

[|F w
i |
|F z

i |
< 2−2aw

]

≤
∑

w

2−2aw ≤ 1

V

∑

w

2−aw ≤ 1

V
.

where the second last inequality follows from aw ≥ lg V and the last inequality follows

by Kraft’s inequality (the messages sent must be prefix free because the receiving

player needs to know when they are supposed to send the next message.) Hence,

with probability at least 1−1/V , the next node in the protocol tree satisfies the first

condition for being nice.

58

Proving the second condition is satisfied with high probability is more compli-

cated. Consider two different cases, i 6= t and i = t, corresponding to whether or not

player i appended gt. In the first case, since Pt did not communicate, F z
t = F w

t and

hence H(fw
t (gt−1)) = H(f z

t (gt−1)) ≥ lg V − δ.

We now consider the second case. In this case we need to show that H(fw
t+1(gt)) ≥

lg V − δ. Note that we can express fw
t+1 as the following vector of random variables,

(fw
t+1(1), . . . , fw

t+1(V)) where each fw
t+1(v) is a random variables in universe [V]. Note

there is no reason to believe that components of this vector are independent. By the

sub-additivity of entropy,

∑

v∈[V]

H(fw
t+1(v)) ≥ H(fw

t+1) ≥ lg(2−2cw |F |) = lg(|F |)− 2cw ≥ V lg V − ǫV

using the fact that fw
t+1 is uniformly distribution over F w

t+1, |F w
t+1| ≥ 2−2cw |F | and

cw ≤ ǫV/2. Hence if v were chosen uniformly at random from [V],

Pr
[
H(fw

t+1(v)) ≤ log V − δ
]
≤ ǫ/δ ,

by Markov’s inequality. However, we are not interested in a v chosen uniformly at

random but rather v = gt = f z
t (gt−1). However since the entropy of f z

t (gt−1) is large

it is almost distributed uniformly. Specifically, since H(f z
t (gt−1)) ≥ lg V − δ and it

follows along the same lines as in [NW93], that for our choice of δ,

Pr
[
H(fw

t+1(gt)) ≤ log V − δ
]
≤ ǫ

δ

(

1 +

√

4δ

ǫ/δ

)

≤ 4
√

ǫ .

Hence with probability at least 1− 4
√

ǫ the next node satisfies the second condition

of being nice. The claim follows by the union bound.

Note that the height of the protocol tree is p(p − 1) and that the root of the

protocol tree is nice. Hence the probability of ending at a leaf that is not nice is at

most p(p−1)(1/V +4
√

ǫ) ≤ 1/25. If the final leaf node is nice then H(gt) is at least

lg b− δ and hence the probability that gt is guessed correctly is at most (δ +1)/ lg V

using Fano’s inequality. This is less than 1/100 for sufficiently large V and hence

the total probability of P1 guessing gp correctly is at most 1− 1/20.

59

Chapter 5

Oracle vs. Stream Models

Chapter Outline: In this chapter, we prove a short result that relates the random-

order and adversarial-order stream models with the combined oracle model. For

background, see Chapter 3.

5.1 Connecting Oracle and Streaming Models

We say that a function f : R
n → R is symmetric, if for all p1, . . . , pn ∈ R, i, j ∈ [n],

f(p1, . . . , pi−1, pi, pi+1, . . . , pj−1, pj, pj+1, . . . , pn)

= f(p1, . . . , pi−1, pj, pi+1, . . . , pj−1, pi, pj+1, . . . , pn) .

Symmetry is a desirable and often-assumed property of functions on distributions,

and is a special case of invariance under coordinate re-parameterizations [Č81]. We

will show that we can always express an algorithm for the combined oracle model in a

canonical form where the algorithm first samples and then probes the samples along

with a few other elements. The idea would be to view the original algorithm, after

the sampling stages and probing of the samples, as a randomized decision tree that

we rewrite as an oblivious decision tree using a result of Bar-Yossef et al. [BYKS01].

Then we could simulate this new decision tree in the random order model. We start

with the necessary definitions.

60

Definition 5.1 (Decision Tree). A randomized decision tree for a function f is a

decision tree having three types of nodes; a query node that asks for the value of an

input parameter and maps the resulting value to a choice of child node to visit, a

random choice node, where the child node is chosen at random, and output nodes,

where an answer expressed as a function of all queries thus far is returned.

An oblivious decision tree is one where the queries are made independent of the

input, or the random choices in the algorithm. Formally, suppose we have a tree T

with worst-case query complexity u. Then an I-relabeling of T by I = {i1, . . . iu}
relabels all query nodes of depth j by the query to ij, yielding the tree T I . An

oblivious decision tree is then a pair T, ∆u, where T is a decision tree with worst-

case complexity q and ∆u is a distribution on [n]u. A computation on an oblivious

decision tree consists of two steps: (1) sample u elements I from ∆q, (2) Relabel T

to T I and run it on input x.

An important step in our argument will be transition between using a randomized

decision tree and an oblivious decision tree. We will do this using the following result

due to Bar-Yossef [BY02].

Lemma 5.2 (Bar-Yossef [BY02] Lemma 4.17). Let T be a randomized decision tree

that computes an approximation to a symmetric function f with u queries in the

worst case and uE queries in the expected case with the expectation taken over the

random choices used by T . Then there is an oblivious decision tree (T, Wu) where

Wu is the uniform-without-replacement distribution of worst-case query complexity u

and expected query complexity uE that computes an (equally good) approximation of

f .

The first lemma shows how any combined oracle algorithm can be transformed

to one of a canonical form.

Lemma 5.3 (Canonical Form Algorithm). Let A be an approximation algorithm

for a symmetric function f using (worst-case) t oracle calls. Then there exists a

61

canonical algorithm A′ that uses (worst-case) 3t oracle calls and achieves an equally

good approximation.

Proof. Note that sample does not take a parameter and therefore only the number

of samples we make can depend on the outcome of probes we may do. However,

we know that there can be at most t samples taken. Hence if we request t samples

initially we can assume that we do not need to do any further sampling. Note that

we have at most doubled the oracle calls. Let S be the set of i’s seen as samples.

Obviously taking more samples than were taken by A can not be detrimental when

it comes to correctness. Then, for each value i ∈ S we perform probe(p, i). This

only adds t queries to the complexity.

We now have a randomized algorithm that takes as input the outcome from our

t samples and the value pi for all i ∈ S and performs a series of further probes. Note

that since all samples have already been made, this phase of the computation can

be viewed as a randomized decision tree. But now we can appeal to Lemma 5.2 and

argue that this randomized decision can be rewritten as an oblivious decision tree.

In such a tree, all queries can be decided in advance and we now have an algorithm

of the desired canonical form.

We are now ready to prove the main structural result of this section. The central

idea for simulating in two pass regular stream model is to sample in the first pass

and then do exact counting in the second pass. For the random order stream result

we are able to do both the sampling and exact counting in the same pass by using

the prefix of the random order stream as a source for sample oracle queries.

Theorem 5.4. Let A be an approximation algorithm for a symmetric function f in

the combined oracle model. Then, there exist a single pass random stream algorithm

and a two pass regular stream algorithm that use O(t) space that returns a (equally

good) approximation for f .

Proof. We first consider a stream in random order. Consider the following streaming

62

algorithm that uses O(t) space. We store the first t items in the data stream,

〈〈p, i1〉, 〈p, i2〉, . . . 〈p, it〉〉. Now for each i ∈ Sw = {i1, i2, . . . it} we set up a counter

that will be used to maintain as exact count of the frequency of i. We now chose t

values, S ′
w from k ∈ [n]\Sw uniformly at random (without replacement) and set up a

counter for each of these t values. We also maintain a counter to estimate the length

of the stream m. At the end of the data stream we claim that we can simulate the

oracles calls made by any canonical algorithm. The only difficulty in establishing

this claim is showing that we can use the stored prefix to simulate the generative

oracle. Ideally we would like to claim that we can just return ij on the jth query to

the generative oracle. This is however not the case. We get around this dependence

in the random stream model by doing the following: on the jth generative oracle

call we output ij with probability (m− j +1)/m and otherwise output ij′ where j′ is

chosen uniformly at random from [j−1]. We thus can emulate the generative oracle

calls made by A. The probes performed by A, can also be emulated because for each

ij we have maintained counters that give us pij and for each k ∈ S ′
w we know pk.

For stream in adversarial order things are simpler. In the first pass we generate

our random sample (with replacement) using standard techniques. In the second

pass we count the exact frequencies of the relevant i.

The proof can be generalized to the case of computing a function of two dis-

tributions. We say that such a function f : R
n × R

n → R is symmetric, if for all

p1, . . . , pn, q1, . . . , qn ∈ R, i, j ∈ [n],

f(p1, . . . , pi, . . . , pj, . . . , pn, q1, . . . , qi, . . . , qj , . . . , qn)

= f(p1, . . . , pj, . . . , pi, . . . , pn, q1, . . . , qj , . . . , qi, . . . , qn) .

The only caveat is that we need m(p) = Θ(m(q)) in order that, with high probability,

there are t elements of the form 〈p, ·〉 and t elements of the form 〈q, ·〉 in the first

O(t) data items.

63

Chapter 6

Sample vs. Space Complexity

Chapter Outline: In this chapter, we consider the problem of learning properties

of a distribution given independent samples but with only limited space. We start

with a simple algorithmic result for learning discrete distributions. In the next

section, we give our main result: a space-efficient learning algorithm for determining

the probability density function of a piecewise-linear distribution. We conclude with

a brief discussion about learning frequency moments and the important of random

order when trading-off sample and space complexity. For background see Chapter 3.

6.1 Discrete Distributions

There exists an algorithm that test whether the ℓ1 distance between two discrete

distributions on n points, is greater than ǫ or less than ǫ/(4
√

n) using O(ǫ−4n2/3)

samples [BFR+00]. Here we describe a method that takes more samples but only

uses O(ǫ−2 log n) space. Furthermore, our algorithm will actually ǫ-additively ap-

proximate the distance. It will be an integral part of an algorithm in the next

section.

We start by quoting a result by Indyk [Ind00] that will be used in this section.

Theorem 6.1 (Indyk [Ind00]). Let A be a stream defining two n-point empirical

64

distributions p and q.There exists a one-pass, O(ǫ−2 log(n) log(δ−1))-space, (ǫ, δ)-

approximation of |p− q|. We call this algorithm ℓ1-Sketch.

Theorem 6.2. Consider two discrete distributions p and q on n points. Given a

stream containing m ≥ 12n log(2n/δ)/ǫ2 samples from each distribution it is possible

to find an estimate T , of |p− q| such that, with probability at least 1− δ,

(1 + γ)−1(|p− q| − 2ǫ) ≤ T ≤ (1 + γ)(|p− q|+ 2ǫ) ,

using O(γ−2 log(n log(1/δ)/ǫ2) log(1/δ)) space.

Proof. After taking m samples define fi to be the number of samples equal to i. This

define the empirical distribution p̂i = fi/m. First we show that |p̂−p| is small. Note

that E [fi] = mpi and

Pr
[

|p̂i − pi| ≤ max
{ǫpi

2
,

ǫ

2n

}]

= Pr
[

|fi −E [fi] | ≤ m max
{ǫpi

2
,

ǫ

2n

}]

≤ δ

n
.

Hence with probability at least 1− δ, for all i ∈ [n], |p̂i − pi| ≤ max{ǫ/(2n), ǫpi/2}.
Therefore |p̂− p| ≤ ǫ.

We can prove |q̂−q| is small in an identical way. Hence
∣
∣|p̂− q̂|−|p−q|

∣
∣ ≤ 2ǫ. We

can approximate |p̂−q̂| upto a multiplicative factor of 1+γ in O(γ−2 log(nǫ−2 log δ−1))

space using the result in Theorem 6.1.

One interesting corollary of this result is as follows.

Corollary 6.3. Let D be a member of a finite family F of hypothesis distributions

on [n]. There exists a one-pass, O(log(n log(|F|δ−1)/ǫ2) log(|F|δ−1))-space algorithm

that finds F ∈ F such that Pr [|D − F | ≤ ǫ] ≥ 1 − δ given O(n log(n|F|δ−1)/ǫ2)

samples.

This follows by setting γ = 1 and making the error probability sufficiently small

that the ℓ1 difference between the stream and each hypothesis distribution is accu-

rately estimated.

65

Algorithm Linear(J, X, β, δ)
1. η ← β/8k
2. Partition range [l, u) into [l + (i− 1)(u− l)η, l + i(u− l)η), i ∈ [1/η]
3. Using the algorithm ℓ1-Sketch, let T be a 2-approximation to

∑

1≤i≤1/η

|d̃i − li|

where

d̃i =
|X ∩ [l + (i− 1)(u− l)η, l + i(u− l)η)|

|X| and li = (a(2i− 1)/2 + b)η

where a and b satisfying l1 = d̃1 and a/2 + b = 1
4. If T ≤ β/4 then accept otherwise reject

Figure 6.1: An Algorithm for Testing if a Distribution is Linear

6.2 Continuous Distributions

Consider a distribution on the real line with probability generating function D that

has at most k piece-wise linear segments. Alternatively D can be viewed as a mixture

of O(k) linear distributions. We wish to find a k-linear probability density function

D̂ such that
∫

R

|D(x)− D̂(x)|dx ≤ ǫ .

Let us assume we know the range of the distribution. Note that this can be

learned with error at most ǫ by taking the maximum and minimum values of the first

O(ǫ−1 log(1/δ)) samples. By scaling we will assume that the range of the distribution

is [0, 1).

The Linear Algorithm: An important sub-routine in our algorithm will be an

algorithm that tests whether a stream of samples from a k-piecewise linear distribu-

tion on the range [l, u) is linear. The algorithm is presented in Fig. 6.1. The intuition

behind the algorithm is to quantize the samples to 1/η equally spaced values between

66

Algorithm Learning-Piecewise-Linear-Distributions(X, ǫ, δ)
1. Define the following set of values,

t1 ← k, t2 ← 2 and α← 1/42

dl
p ← (1− 2α)−pt1t

p−1
2 and du

p ← (1 + 2α)−pt1t
p−1
2 for p ∈ [ℓ]

ℓ←
⌈
log(2kt2ǫ

−1/t1)/log(t2/(1 + 2α))
⌉

and δ1 ← δ/(6ℓk)

2. Partition the stream: X = X1,1, X1,2, X2,1, X2,2, . . . , Xℓ,1, Xℓ,2 where

|X1,1| = mqua(t1, α, δ1)

|Xp,1| = 3mqua(t2, α, δ1)d
l
p log(δ−1

1) for p ∈ [ℓ]

|Xp,2| = 3mlin(k, ǫdu
p/(ℓk), δ1)d

l
p log(δ−1

1) for p ∈ [ℓ]

where mqua(·, ·, ·) and mlin(·, ·, ·) are defined in Eq. 6.1 and Eq. 6.3.
3. J0 ← {[0, 1)}
4. for p ∈ [ℓ], J = [a0, at) ∈ Jp−1:
5. do if p = 1 then t = t1 else t = t2
6. Using Quantiles , find (ai)i∈[t−1] with RankXp,1

(ai) = i
t
± α

2t
.

7. Let partit(J) = {[a0, a1), . . . , [at−1, at)}.
8. for J ′ ∈ partit(J):

9. do if Linear(J ′, J ′∩Xp,2,
ǫdu

p

2ℓk
, δ1) rejects then Jp ← {J ′}∪Jp

Figure 6.2: An Algorithm for Piecewise-Linear Distributions

l and u. The algorithm computes a linear distribution that, if the k-piecewise linear

distribution is linear, is close to the distribution. This distance is computed with

the algorithm ℓ1-Sketch.

Theorem 6.4 (The Linear Algorithm). Let X be a stream consisting of

mlin(k, β, δ) := ckβ−3 log(ckβ−1δ−1) (6.1)

(for some sufficiently large constant c) samples drawn from the distribution DJ , the

distribution formed by conditioning D on the interval J . Then, with probability

1 − δ, it will accept if DJ is linear on J and will reject if DJ is not within ℓ1

67

distance β of a linear distribution on J . Furthermore, if DJ is linear then the

algorithm determines a linear distribution at most β from DJ . The algorithm uses

O((log(1/β) + log k) log(1/δ)) space.

Proof. Without loss of generality, we may assume that the range of J is [l, u) = [0, 1).

Let L be a linear probability density function on the range [0, 1) of the form ay + b

where a and b will be determined later.

Let η = β/(8k). Let di =
∫ iη

(i−1)η
DJ(y)dy and li =

∫ iη

(i−1)η
L(y)dy = (a(2i−1)/2+

b)η where a and b are determined by l1 = d̃1 and a/2 + b = 1 (recall from Fig. 6.1

that d̃i is the probability mass observed in the interval [(i−1)η, iη)). First note that

li ≤ 2η for i ∈ [1/η]. Then,

∫ iη

(i−1)η

|DJ(y)− L(y)|dy ≤ li + di ≤ 2li + |di − li| ≤ 4η + |di − li| ,

and
∫ iη

(i−1)η
|DJ(y)− L(y)|dy ≥ |di − li|. Because DJ has at most k linear segments

there are at most k values of i such that
∫ iη

(i−1)η
|DJ(y)−L(y)|dy 6= |li−di|. Therefore,

∫ 1

0

|DJ(y)− L(y)|dy ≤ β/2 +
∑

i∈[1/η]

|di − li| . (6.2)

At this point we consider the discrete distributions (d1, . . . , d1/η) and (l1, . . . , l1/η).

Appealing to Theorem 6.2, it is possible to approximate
∑

i∈[1/η] |di − li| up to an

additive term of ǫ = β/10 and multiplicative term of γ = 11/10 with probability

at least 1 − δ/10 using O(log(1/δ) log(β−2η−1)) space. Therefore, the estimate T

satisfies,

10

11

∑

|di − li| −
β

11
≤ T ≤ 11

10

∑

|di − li|+
11β

100
.

Combining this with Eq. 6.2, we get that,

10

11

∫ 1

0

|DJ(y)− L(y)|dy − 6β

11
≤ T ≤ 11

10

∫ 1

0

|DJ(y)− L(y)|dy +
66β

100
.

Hence, if DJ is β-far from all linear density functions then, DJ is β-far from L. Hence

T ≥ 4β/11. Now suppose DJ is linear. By an application of the Chernoff-Hoeffding

68

bounds we know that with probability at least 1 − δ/10, |d̃1 − d1| < βη/10 and

therefore
∫ 1

0
|DJ(y) − L(y)|dy ≤ β/10. In this case T ≤ 22β/100. Hence Linear

accepts DJ if it is linear.

The Learning Algorithm: Our algorithm uses the same template as an algorithm

of Chang and Kannan [CK06]. The algorithm operates in ℓ phases. Each phase p

generates a set of intervals Jp. Intuitively these intervals are those on which D

does not appear to be close to linear. The union of these intervals is a subset of

the union of intervals in Jp−1 where J0 contains only one interval, the range of the

distribution [0, 1). Consequently the algorithm can be viewed as if “zooming” in on

the sub-intervals of [0, 1) on which D is not linear. In the first phase of the algorithm

the range is partitions [0, 1) into t1 intervals of roughly equal probability mass using

the algorithm Quantiles . Each of these intervals are tested in parallel to see if the

distribution is linear when restricted to that interval. This step uses the algorithm

Linear , given earlier. In subsequent phases, intervals that do not appear to be linear

are further subdivided into t2 intervals of roughly equal probability mass. Each of

the sub-intervals are tested and, if they are not linear, are further sub-divided. This

process continues for ℓ phases. At the end of the ℓ-th phase there will be at most k

sub-intervals that remain and appear not to be linear. However these sub-intervals

will contain so little mass that approximating then by the uniform distribution will

not contribute significantly to the error.

The algorithm is given in Fig. 6.2. In the streaming model each iteration of

Lines 4 and 8 are performed in parallel. Note that the algorithm potentially finds

2ℓk intervals upon which the distribution is linear. Given these, a good k-piecewise-

linear representation D̂, can be found by dynamic programming.

We will first prove an important lemma that establishes how well we can sub-

divide intervals.

69

Lemma 6.5. Let X be set of

mqua(1/γ, α, δ) := cγ−2α−2 log(cδ−1γ−1) (6.3)

(for some sufficiently large constant c) samples from a distribution D and, for i ∈
[1/γ], let xi ∈ X be an element whose relative rank (with respect to X) is in the

range [γ(i− α/2), γ(i + α/2)]. Then with probability at least 1− δ, for all i ∈ [1/γ],

xi has relative rank (with respect to D) in the range [iγ − γα, iγ + γα].

Proof. Let a and b be such that
∫ a

−∞
D(x)dx = γ−γα and

∫∞

b
D(x)dx = (1−γ)−γα.

Consider the set X of n samples. Let Ya (Yb) be the number of elements in X that

are less (greater) than a (b). Then the probability that an element whose relative

rank (with respect to X) is in the range [γ − αγ/2, γ + αγ/2] does not have relative

rank (with respect to D) in the range [γ − γα, γ + γα] is bounded above by,

Pr
[

Ya > (γ − αγ

2
)m
]

+ Pr
[

Yb > (1− γ − αγ

2
)m
]

= Pr

[

Ya >

(

1 +
αγ

2(γ − αγ)

)

E [Ya]

]

+ Pr

[

Yb >

(

1 +
αγ

2(1− γ − αγ)

)

E [Yb]

]

≤ exp

(−α2γ2m

12(γ − αγ)

)

+ exp

(−α2γ2m

12(1− γ − αγ)

)

≤ 2 exp(−mα2γ2/12) .

Setting m = 12γ−2α−2 log(δ/(2γ)) ensures that this probability is less than δγ. The

lemma follows by the union bound.

Our algorithm will use an algorithm of Greenwald and Khanna [GK01] that finds

elements of approximate relative rank where the relative rank of x in a set X is

defined as,

RankX(x) := |X|−1|{y ∈ X, y ≤ x}| .

Theorem 6.6 (Greenwald and Khanna [GK01]). Consider a stream X of length

m. There exists a single-pass algorithm Quantiles using O(ǫ−1 log ǫm) space that

constructs a synopsis of the data such that, for any k ∈ [m] this synopsis can return

an x with RankX(x) = k/m± ǫ.

70

We now prove the main properties of the algorithm.

Lemma 6.7. With probability at least 1− δ, for all p ∈ [ℓ],

1. |{Jp}| ≤ k and for each J ∈ Jp,
1
dl

p
≤ D(J) ≤ 1

du
p
.

2. For each J ∈ Jp, J
′ ∈ partit(J), in Line 8 the call to Linear “succeeds”, i.e.,

accepts if D is linear on Xp,2 ∩ J ′ and rejects if the distribution formed by

conditioning D on J ′ is ǫdu
p/(2ℓk)-far from linear.

Proof. The proof is by induction on p. Clearly |{J1}| ≤ k. Since |X1,1 ∩ J | =

mqua(t1, α, δ1) for all J ∈ {J0}, by Lemma 6.5,

∀J ∈ J1,
1− 2α

t1
≤ D(J) ≤ 1 + 2α

t1

with probability at least 1 − δ1. Appealing to the Chernoff bound and the union

bound, with probability at least 1− δ1k,

∀J ∈ J0, J
′ ∈ partit(J), |X1,2 ∩ J ′| ≥ mlin

(

k,
ǫdu

1

2ℓk
, δ1

)

.

Hence, by Theorem 6.4, with probability 1 − δ1k, each call to Linear in the first

phase succeeds.

Assume the conditions hold for phase p − 1. Appealing to the Chernoff bound

and union bound, with probability at least 1 − δ1k, |Xp,1 ∩ J | ≥ mqua(t2, α, δ1) for

all J ∈ Jp−1. Hence by Lemma 6.5, ∀J ∈ Jp−1, J
′ ∈ partit(J),

1− 2α

t2
D(J) ≤ D(J ′) ≤ 1 + 2α

t2
D(J)

with probability at least 1− kδ1. Similarly, with probability at least 1− 2δ1k,

∀J ∈ Jp−1, J
′ ∈ partit(J), |X1,2 ∩ J ′| ≥ mlin

(

k,
ǫdu

p

2ℓk
, δ1

)

.

Hence, by Theorem 6.4, with probability 1 − 2δ1k, each call to Linear in the p-th

phase succeeds.

Hence, with probability at least 1 − 6kℓδ1 = 1 − δ the conditions hold for all

p ∈ [ℓ].

71

Theorem 6.8. With probability at least 1− δ, it is possible to compute an approx-

imation to D within ℓ1 distances ǫ using a single pass over m = O(k2ǫ−4) samples

with Õ(k) space.

Proof. Assume that the conditions in Lemma 6.7 hold. When Linear determines

that an interval is close enough to linear in level p there is the potential of incurring

(ǫdu
p/(2ℓk))/du

p = ǫ/(2ℓk) error. This can happen to at most kℓ intervals and hence

contributes at most ǫ/2 error.

The only other source of errors is the fact that there might be some intervals

remaining at the last phase when p = ℓ. However the probability mass in each

interval is at most ǫ/(2k). There will be at most k of these intervals and hence the

error incurred in this way is at most ǫ/2.

The space complexity of the algorithm is Õ(k) because at most t2|{Jp}| ≤ 2k

instances of Linear are run in parallel. The sample complexity is (see Eq. 6.1, Eq. 6.3,

and Fig. 6.2 for the definitions),

∑

p∈[ℓ]

(|Xp,1|+ |Xp,2|) ≤ Õ

(

dl
ℓ + max

p∈[ℓ]

dl
pk

(ǫdu
p/k)3

)

≤ Õ

(
k

ǫ
+

k2

ǫ3

)(
1 + 2α

1− 2α

)ℓ

≤ Õ

(
k2

ǫ4

)

.

Remark: The above algorithm can be made to work in the case where the stream of

samples is stored and is ordered adversarially, but with the proviso that the algorithm

may make P = 2ℓ passes over the samples. This is easy to observe; reconsider the

algorithm in Figure 6.2. Assume P = 2ℓ and set t1 = 10kǫ−1/ℓ and t2 = 10ǫ−1/ℓ.

Each phase can be simulated in two passes. Thus P = 2ℓ passes is sufficient. This

yields the following theorem.

Theorem 6.9. With probability at least 1− δ, it is possible to compute an approx-

imation to D within ℓ1 distances ǫ using a single pass over m = Õ((1.25)ℓℓk2ǫ−4)

samples with Õ(kǫ−1/ℓ) space.

72

As such, it is a strict improvement over the result in [CK06]. The basis for this

improvement is primarily a tighter analysis (particularly in Theorem 6.4) and the

use of the quantile estimation algorithm of [GK01]. Note that the authors of [CK06]

show that O(k2/ǫ2) samples (and space) is sufficient for one pass, but there is a

significant increase in the sample complexity in extending the algorithm to multiple

passes. In our analysis this increase is much smaller, as well as the space complexity

is better, which is a central point.

6.3 Importance of Random Order

One of the most important aspects of processing a stream of samples is that, as

opposed to the usual streaming model, the data elements arrive in a random order.

Many properties of a stream are provably hard to estimate in small space when

the order of the stream is chosen adversarially. This begs the question whether

some problems are not amenable to solutions in the data stream model because such

streaming algorithms are necessarily forgetful or because they have to be resilient

to an adversary that is potentially out to thwart them. While we have no definitive

answer to this question, it does seem that relaxing the assumption that there exists

an adversary ordering the data does significantly increase the range of problems that

can be tackled in small space. Estimating Frequency Moments [AMS99, IW05], a

classic problem from the literature in the streaming model, illustrates this point.

The k-th frequency moment of a discrete distribution on n points is the k-th power

of ℓk norm of the probability vector, i.e., Fk =
∑

i∈[n] p
k
i . The following theorem

demonstrates the enormous power achieved by streaming points in a random order

rather than an adversarial order.

Theorem 6.10. It is possible to (ǫ, δ)-approximate Fk in a randomly ordered stream

with Õ((n/t)1−2/k) space when the stream length is m = Ω(ntk2ǫ−2−1/k log(nδ−1)).

In particular, if m = Ω(n2k2ǫ−2−1/k log(nδ−1)) then the space only depends on n

73

poly-logarithmically. If the stream was ordered adversarially, the same estimation

requires Ω(n1−2/k) space.

Proof. The lower bound is a generalization of the results in [CKS03]. The algorithm

is simple “serialization” of [IW05] as follows. For i = 1 to t, let p̂j be the fraction of

occurrences of j among the items occurring between position 1 + (i− 1)m′ and im′

where

m′ = Θ(nk2(ln(1 + ǫ/10))−2ǫ−1/k log(2nδ−1)) .

Use [IW05] to compute Bi, a (1+ǫ/3) multiplicative estimate to Ai =
∑in/t

j=1+(i−1)n/t p̂
k
j

with probability at least 1 − δ/2. Return
∑

i∈[t] Bi. Note that this sum can be

computed incrementally rather than by storing Bi for i ∈ [t].

We now analyze this algorithm. We will show that
∑

i∈[t] Ai is a (1+ǫ/3) approx-

imation to Fk with probability at least 1 − δ/2. Subsequently it will be clear that
∑

i∈[t] Bi is a (1+ ǫ/3)2 ≤ (1+ ǫ) approximation (assuming ǫ < 1/4) with probability

at least 1−δ. By the Chernoff bound and the union bound, with probability at least

1− δ/2,

∀j ∈ [n], |pj − p̂j| ≤ ln
(

1 +
ǫ

10

)

k−1 max

(

pj,
(ǫ/10)1/k

n

)

.

Therefore, with probability at least 1− δ/2,

Fk − n1−kǫ/10

(1 + ǫ/10)
≤
∑

i∈[t]

Ai ≤ (1 + ǫ/10) (Fk + n1−kǫ/10) .

By convexity, Fk ≥
∑

i∈[n](1/n)k = n1−k and therefore,

Fk(1 + ǫ/10)−2 ≤
∑

i∈[t]

Ai ≤ Fk(1 + ǫ/10)2 .

Hence
∑

i∈[t] Ai is a (1 + ǫ/3) approximation.

We remark that [BYKS01] showed that any streaming algorithm that only sam-

ples (possibly adaptively) from the stream and returns an (ǫ, δ)-approx. of Fk, must

take at least O(n1−1/kǫ−1/k log δ−1) samples.

74

Part II

Entropy and Information

Divergences

75

Chapter 7

Introduction

7.1 Which distances are sketchable?

One of the most basic and well studied problems in the data-stream model is the

estimation of distances between two objects that are specified by the stream. A

typical application would be trying to estimate the difference between the network

traffic observed at two different routers. We primarily consider update streams where

each data item is a value in the range [n]. A stream defines a frequency vector

(m1, m2, . . . , mn) where mi is the number of times i occurs in the stream. Note that

this model essentially captures the model in which a single data item can encode

multiple copies of a value. This model is a generalization of the aggregate model, in

which all updates to a given i are grouped together in the ordering of the stream.

We are interested in comparing the frequency vectors defined by different streams.

We can also think of these frequency vectors defining empirical probability distribu-

tions.

Definition 7.1 (Empirical Distributions). For a data stream S = 〈a1, . . . , am〉 where

ai ∈ {p, q} × [n] we define empirical distributions p and q as follows. Let m(p)i =

|{j : aj = 〈p, i〉}|, m(p) = |{j : aj = 〈p, ·〉}| and pi = m(p)i/m(p). Similarly for q.

Estimation of distances also allows us to construct approximate representations

76

such as histograms, wavelet decompositions, and Fourier summaries. This is because

these problems can often be reduced to finding the “closest” representation in a

suitable class.

7.1.1 Related Work

One of the cornerstone results in this context has been the result of Alon, Matias, and

Szegedy [AMS99] that showed that it is possible to compute an (ǫ, δ)-approximation

of the second frequency moment over a data stream, with insertion and deletions,

defined over a domain [n] using a poly(ǫ, log n) size space. This update-able summary

has come to be referred to as a “sketch” of the data. This result of estimating the ℓ2

norm under insertion and deletion immediately allows us to estimate the ℓ2 distance

between streams. Feigenbaum et al. [FKSV02b] presented an algorithm to estimate

ℓ1 distances in the aggregate model when all updates to each pi or qi are grouped

together. Indyk [Ind00] extended the result all ℓp-measures with 0 < p ≤ 2 using

stable distributions. Over a sequence of papers [SS02, BYJKS02, CKS03, IW05,

BGKS06], frequency moments and the associated ℓp distances have become well

understood. Cormode et al. [CDIM03] presented algorithms for estimating Hamming

distances. This work again uses stable distributions and relies on the fact that the

Hamming norm is related to the ℓp norm for sufficiently small p. Unfortunately the

stable-distribution technique and the hashing approach of Feigenbaum et al. seem

to be inherently unsuited for distances that are not of the form g(
∑

i∈[n] f(pi − qi))

for some functions f and g.

Experience leads us to conjecture that the only distances that can be approxi-

mated in small space are those that are essentially based on norms. Several methods

of creating summary representations of streams have been proposed for a variety of

applications [BCFM00, CCFC02, CM05a]; in terms of distances they can be adapted

to compute the Jaccard coefficient (symmetric difference over union) for two sets.

77

However, these methods do not usually lead to (ǫ, δ)-approximations. Are there al-

gorithms for other commonly used distance measures? Can we characterize the set of

distances that can be approximated? Are there distances that can be approximated

in the aggregate-model which can not be approximated in the update-model?

7.1.2 Our Results

In this paper we take several steps towards a characterization of the distances that

can be sketched. We consider “decomposable” distances, i.e., distances d : R
n×R

n →
R

+ for which there exists a φ : R×R→ R
+ such that d(x, y) =

∑

i∈[n] φ(xi, yi). We

prove the Shift Invariant Theorem for non-estimability of arbitrary decomposable

distances over multiple passes. This shows that there is a fundamental difficulty in

approximating any difference measure which is not “flat” in the dense that d(x, y)

can be very different for d(x + v, y + v). That condition does not apply to distances

induced by norms, where the distance is a function of the difference of the two

vectors; hence the positive results for the ℓ1 and ℓ2 norms.

7.2 The Information Divergences.

Applications in pattern matching, image analysis, statistical learning, etc., use dis-

tances which are not ℓp norms. Several distances1 such as the Kullback-Leibler and

Hellinger divergences are widely used to estimate the distances between distributions,

and have a long history of study in statistics and information theory literature. We

will discuss two very broad classes of distance measures (1) f -divergences, which are

central to statistical tests and, (2) Bregman Divergences, which are used for finding

optimal models using mathematical programming.

We first discuss the Ali-Silvey distances or f -divergences, discovered indepen-

dently by Csiszár [Csi91], and Ali and Silvey [AS66]. These are defined as follows.

1Several of the “distances” used are not metric and, consequently, are usually referred to as
divergences.

78

ℓ1 distance: f(u) = |1− u|
Kullback-Liebler (KL) divergence: f(u) = u lnu

Jensen-Shannon (JS) divergence: f(u) = ln(2/(1 + u)) + u ln(2u/(1 + u))

Hellinger divergence: f(u) = (
√

u− 1)2

χ2 divergence: f(u) = (u− 1)2

Triangle divergence: f(u) = (u− 1)2/(u + 1).

Table 7.1: Common f -divergences

Definition 7.2 (f -Divergences or Ali-Silvey-Csiszár divergences). A convex function

f : (0,∞)→ R such that f(1) = 0 gives rise to an f -divergence,

Df(p, q) =
∑

pif(qi/pi)

where f(0) = limt→0 f(t), 0f(0/0) = 0, and 0f(a/0) = a limu→∞ f(u)/u.

The family of f -divergences include many commonly used information theoretic

distances, e.g., the Kullback-Liebler (KL) divergence and its symmetrization, the

Jensen-Shannon (JS) divergence; Matsusita’s divergence or the squared Hellinger

divergence; theχ2 divergence and its symmetrization, the Triangle divergence. See

Table 7.1.

The quantity qi/pi is called the “likelihood ratio” and a fundamental aspect of

these measures is that these divergences are tied to “ratio tests” in Neyman-Pearson

style hypothesis testing [CT91]. Several of these divergences appear as exponents of

error probabilities for optimal classifiers, e.g., in Stein’s Lemma. Results of Csiszár

[Csi91], Liese and Vajda [LV87], and Amari [Ama85, AN00], show that f -divergences

are the unique class of distances on distributions that arise from a fairly simple set of

axioms, e.g., permutation invariance, non-decreasing local projections, certain direct-

sum theorems etc. In many ways these divergences are “natural” to distributions

and statistics, much the same way that ℓ2 is a natural measure for points in R
n.

Moreover, all of these distances are related to each other (via the Fisher information

79

matrix) [Č81] in a way that other plausible measures (most notably ℓ2) are not.

A major reason for investigating these f -divergences lies in loss functions used in

statistical learning. The ℓ1 distance captures the “hinge loss” and the other diver-

gences are geared towards non-linear losses. To understand the connection better,

we need to also discuss the connections between f -divergences and Bregman diver-

gences. The general family of “arcing” [Bre99] and “AnyBoost” [MBBF99] family of

algorithms fall into a constrained convex programming framework introduced earlier

by Bregman [Bre67]. Friedman, Hastie and Tibshirani [FHT00] established the con-

nection between boosting algorithms and logistic loss, and subsequently over a series

of papers [LPP97, Laf99, KW99, CSS02], the study of Bregman divergences and in-

formation geometry has become the method of choice for studying exponential loss

functions. The connection between loss functions and f -divergences are investigated

have been recently by Nguyen, Wainright, and Jordan [NWJ05].

Definition 7.3 (Bregman Divergences). A strictly convex function F : (0, 1] → R

gives rise to (decomposable) Bregman Divergence,

BF (p, q) =
∑

i

[F (pi)− F (qi)− (pi − qi)F
′(q)] ,

where F ′ denotes the first derivative of F .

Note that Bregman divergences are typically extended to the positive cone of

R
n, beyond the probability simplex. The most well-known Bregman divergence is

ℓ2
2. The Kullback–Leibler divergence is also a Bregman divergence, as well as the

Itakura–Saito divergence. See Table 7.2.

The main use of Bregman divergences is in finding optimal models. Given a

distribution q we are interested in finding a p that best matches the data, and this

is posed as a convex optimization problem minp BF (p, q). It is easy to verify that

a linear combination of Bregman divergences is a Bregman divergence and that

the Bregman balls are convex in the first argument (but often not in the second).

Furthermore there is a natural convex duality between the optimum representation

80

Kullback-Liebler (KL) divergence: F (z) = z log z

ℓ2
2 divergence: F (z) = z2

Itakura–Saito divergence: F (z) = − log z

Table 7.2: Common Bregman divergences

p∗ under BF , and the divergence BF . This connection to convex optimization is one

of the many reasons for the increasing use of Bregman divergences in the learning

literature.

Giving the important of both these information divergences, it is natural to ask

whether they can be approximated in the data stream model.

7.2.1 Our Results

Unfortunately, our first results are negative but they help us understand why the ℓ1

and ℓ2 distances are special among the f - and Bregman-divergences in the context

of streaming.

• For all f -divergences with f twice-differentiable and f ′′ strictly positive, no

polynomial factor approximation of Df(p, q) is possible in sub-linear space.

Note that for ℓ1, which can be sketched, is realized by the function f(u) =

|u− 1|. Hence, the lower-bound does not apply to since f ′′ is not defined at 1.

• For all Bregman divergences BF where F is twice differentiable and there exists

ρ, z0 > 0 such that,

∀ 0 ≤ z2 ≤ z1 ≤ z0,
F ′′(z1)

F ′′(z2)
≥
(

z1

z2

)ρ

or ∀ 0 ≤ z2 ≤ z1 ≤ z0,
F ′′(z1)

F ′′(z2)
≤
(

z2

z1

)ρ

.

then no polynomial factor approximation of BF is possible in sub-linear space.

This condition effectively states that F ′′(z) vanishes or diverges monotonically,

and polynomially fast, as z → 0. Note that for ℓ2
2, which can be sketched, the

function F (z) = z2 and F ′′ is constant.

81

An interesting specific case of the above results is that the f -divergence Hellinger

can not be approximated up to any polynomial factor. However, if the stream had

been an aggregate stream in which identical data items are grouped together than

an (ǫ, δ)-approximation is possible in poly-logarithmic space via an algorithm for

estimating ℓ2 [AMS99].

We next consider additive approximations.

• There exists an (ǫ, δ)-additive-approx. for Df in O(ǫ−2 log δ−1) space if Df is

bounded. Furthermore, Ω(ǫ−2) space can be shown to be necessary. Alter-

natively, if Df is unbounded then any (ǫ, 1/4)-additive-approx. requires Ω(n)

space for any constant ǫ > 0.

• There exists an (ǫ, δ)-additive-approx. for BF in O(ǫ−2 log δ−1) space if F and

F ′′ are bounded in the range (0, 1]. If F (0) or F ′(0) is unbounded, then any

(ǫ, 1/4)-additive-approx. requires Ω(n) space for any constant ǫ.

Lastly we present testing algorithms information divergences in the oracle models

introduced in Chapter 1.

• There exists an (ǫ, ǫ/2, δ)-tester for estimating any bounded f -divergence in the

combined-oracle model. We prove a matching lower bound thereby showing

optimality.

• We also present a sub-linear tester in the generative model for a range of f -

divergences including Hellinger and Jensen-Shannon. The algorithm makes

Õ(ǫ−4n2/3) queries. This answers an open question posed in [BFR+00].

7.3 Entropy

Closely related to the information divergences is the entropy of a distribution.

82

Definition 7.4 (Entropy). The entropy of a distribution is defined as

H(p) =
∑

i

−pi lg pi .

For example, it is related to the Jensen-Shannon and Kullback-Liebler diver-

gences;

JS(p, q) = ln 2

(

2H

(
p + q

2

)

−H(p)−H(q)

)

KL(p, u) = ln 2 (lg n−H(p))

where u is the uniform distribution and (p + q)/2 is the distribution whose i-th

component is (pi + qi)/2.

Entropy is quantity that was originally introduced by Shannon [Sha48]. It cap-

tures the “information content” of a random event. For example, it can be used

to lower-bound the compressibility of data and plays a fundamental role in the

coding and information theory. Recently, it has been used in networking applica-

tions [GMT05, WP05, XZB05] where it can be useful when trying to detect anoma-

lous behavior.

7.3.1 Related Work

Guha, McGregor and Venkatasubramanian [GMV06] gave a constant factor approx-

imation for constant H as well as (ǫ, δ)-approximations for H , using space that

depends on the value of H . Chakrabarti, Do Ba and Muthukrishnan [CDM06] gave

a one pass algorithm for approximating H with sublinear but polynomial in m space,

as well as a two-pass algorithm requiring only poly-logarithmic space.

In the networking world, the problem of approximating the entropy of a stream

was considered in Lall et al. [LSO+06]. They focused on estimating the entropy

norm,

FH :=
n∑

i=1

mi lg mi .

83

Clearly FH and H are closely related and we can write FH = m lg m−mH . However,

[LSO+06] made certain assumptions about the distribution defined by the stream and

these ensured that computing H based on their estimate of FH would give accurate

results. Both this paper and [CDM06], use the AMS-sampling procedure described

in Chapter 2.

Most recently, Bhuvanagiri and Ganguly [BG06] described an algorithm that can

approximate H in poly-logarithmic space in a single pass. The algorithm is based

on the same ideas and techniques as recent algorithms for optimally approximating

frequency moments [IW05, BGKS06], and can tolerate streams in which previously

observed items are removed. The exact space bound is

O

(

ǫ−3(log4 m)(log δ−1)
log m + log n + log ǫ−1

log ǫ−1 + log log m

)

,

which is suboptimal in its dependency on ǫ, and has high cost in terms of log m.

7.3.2 Our Results

Our results include the following results for processing adversarially ordered streams.

• There exists a single-pass, O(ǫ−2 log(δ−1) log m)-space, (ǫ, δ)-approximation for

entropy. This improves over previous work on this problem [CDM06, GMV06,

LSO+06, BG06]. The algorithm uses a novel extension of a method introduced

by Alon, Matias, and Szegedy [AMS99]. In effect, this extension allows us

to transform the two-pass algorithm of Chakrabarti, Do Ba and Muthukrish-

nan [CDM06] into a single pass algorithm. We believe that this technique may

have other applications. We show that our algorithm is essentially optimal by

proving that any (ǫ, 1/4)-approximation requires Ω(ǫ−2/ log2 ǫ−1) space.

• Any (ǫ, 1/4)-approximation of the k-th order entropy (k > 0) of a streams

requires Ω(n/ log n) space where the k-th order entropy of a stream is a gen-

eralization of the entropy that quantifies how easy it is to predict a character

84

of the stream given the previous k characters. However, we present an (ǫ, δ)-

addtive-approximation using O(k2ǫ−2 log(δ−1) log2 n log2 m) space.

• There exists an (ǫ, δ)-approximation algorithm for estimating the unbiased ran-

dom walk entropy, a natural quantity related to the first order entropy of an

unbiased walk on an undirected graph. Our algorithm uses O(ǫ−4 log n) space.

This algorithm can also be implemented in the graph streaming model.

Lastly, we present the following result for testing entropy in the combined-oracle

model.

• There exists an (ǫ, ǫ/2, δ)-tester for entropy in the combined oracle model us-

ing O(ǫ−1 log n) queries. This matches the lower bound in [BDKR05] and is

therefore optimal.

85

Chapter 8

Information Divergences

Chapter Outline: In this chapter, we present the technical details behind the

results related to approximating the information divergence between two empirical

distributions defined by a stream. We start by establishing some preliminary results

about the geometry of the relevant divergences. We then consider multiplicative

approximation and prove the “Shift-Invariant Theorem” which characterizes a set

of distance measures that can not be approximated in the streaming model with

small space. In the next section, we present algorithms and lower-bounds for ad-

ditive approximation. Finally, we present algorithms and lower-bounds for testing

f -divergences in various oracle models. For background see Chapter 7.

8.1 Geometric Preliminaries

In this section, we present some simple geometric results that will allow us to make

certain useful assumptions about the f or F defining an f -divergence or Bregman

divergence.

We start by defining a conjugate f ∗(u) = uf(1/u) and note that we can write

86

any f -divergence as,

Df(p, q) =
∑

i:pi>qi

pif(qi/pi) +
∑

i:qi>pi

qif
∗(pi/qi) .

The following lemma that demonstrates that we may assume that f(u) ∈ [0, f(0)]

and f ∗(u) ∈ [0, f ∗(0)] for u ∈ [0, 1] where both f(0) = limu→0 f(u) and f ∗(0) =

limu→0 f ∗(u) exist if f is bounded.

Lemma 8.1. Let f be a real-valued function that is convex on (0,∞) and satisfies

f(1) = 0. Then there exists a real-valued function g that is convex on (0,∞) and

satisfies g(1) = 0 such that

1. Df(p, q) = Dg(p, q) for all distributions p and q.

2. g is decreasing in the range (0, 1] and increasing in the range [1,∞). In par-

ticular, if f is differentiable at 1 then g′(1) = 0.

3. g(0) = limu→0 g(u) and g∗(0) = limu→0 g∗(u) exist if Df was bounded.

Proof. Note that Df bounded implies that f(0) = limu→0 f(u) exists. Otherwise the

Df ((1/2, 1/2), (0, 1)) = 1/2(f(0) + f(2))

would not be finite. Similarly f ∗(0) = limu→0 f ∗(u) = limu→0 uf(1/u) exists because

otherwise

Df ((0, 1), (1/2, 1/2)) = 0.5 lim
u→∞

f(u)/u + f(1/2) = 0.5 lim
u→0

uf(1/u)/u + f(1/2)

would not be finite. Let c = − limu→1− f(u)/(1 − u). This limit exists because f

is convex and defined on (0,∞).Then g(u) = f(u)− c(u− 1) satisfies the necessary

conditions.

For example, the Hellinger divergence can be realized by either f(u) = (
√

u−1)2

or f(u) = 2 − 2
√

u. The next lemma shows that if we are willing to tolerate an

additive approximation we may make certain assumptions about the derivative of f .

87

Lemma 8.2. Given a bounded Df and ǫ ∈ (0, 1), let u0 satisfy

min (f(u0)/f(0), f ∗(u0)/f
∗(0)) ≥ 1− ǫ ,

and define g as follows:

g(u) =







f(u) for u ∈ (u0, 1/u0)

f(0)− u(f(0)− f(u0))/u0 for u ∈ [0, u0]

uf ∗(0)− (f ∗(0)− f ∗(u0))/u0 for u ∈ [1/u0,∞)

Then,

1. Dg(P, Q)(1− ǫ) ≤ Df(P, Q) ≤ Dg(P, Q).

2. maxu |g′(u)| ≤ max
(

f(0)−f(u0)
u0

, f ∗(0)
)

.

3. maxu |g∗′(u)| ≤ max
(

f∗(0)−f∗(u0)
u0

, f(0)
)

.

Proof. Because f, g, f ∗, and g∗ are decreasing in the range [0, 1], 1 ≤ g(u)/f(u) ≤
f(0)/f(u0) and 1 ≤ g∗(u)/f ∗(u) ≤ f ∗(0)/f ∗(u0) for u ∈ [0, 1]. The first claim follows

by the assumption on u0. To bound the derivatives, note that g(u) and g∗(u) are

convex and hence the absolute value of the derivative in maximized at u = 0 or

u→∞. The remaining claims follow by taking the derivative at these points.

Note that limu→0 |g′(u)| is bounded whereas limu→0 |f ′(u)| need not be bounded.

For the Hellinger divergence, f(u) = (
√

u − 1)2 and f ′(u) = (
√

u − 1)/
√

u. Similar

to Lemma 8.1, the following lemma demonstrates that, without loss of generality,

we may make various assumptions about the F that defines a Bregman divergence.

Lemma 8.3. Let F be a differentiable, real valued function that is strictly convex

on (0, 1] such that limu→0+ F (u) and limu→0+ F ′(u) exist. Then, there exists a dif-

ferentiable, real valued function G that is strictly convex on (0, 1] and,

1. BF (p, q) = BG(p, q) for all distributions p and q.

2. G(z) ≥ 0 for x ∈ (0, 1] and G is increasing in the range (0, 1].

88

3. limu→0+ G′(u) = 0 and limu→0+ G(u) = 0.

Proof. The function G(z) = F (z)− F ′(0)z − F ′(0) satisfies the conditions.

8.2 Multiplicative Approximations

We start with the central theorem of this section, the Shift Invariance Theorem.

This theorem characterizes a large class of divergences that are not sketchable.

Theorem 8.4 (Shift Invariance Theorem). Let φ : [0, 1]2 → R
+ satisfy φ(x, x) = 0

for all x ∈ [0, 1] and there exists n0, a, b, c ∈ N such that for all n ≥ n0,

max

(

φ

(
a

m
,
a + c

m

)

, φ

(
a + c

m
,

a

m

))

>
α2n

4

(

φ

(
b + c

m
,

b

m

)

+ φ

(
b

m
,
b + c

m

))

where m = an/4 + bn + cn/2. Then any algorithm that returns an α approximation

of d(p, q) =
∑

i∈[5n/4] φ(pi, qi) with probability at least 3/4 where p and q are defined

by a stream of length O((a + b + c)n) over [5n/4] requires Ω(n) space.

Proof. We refer the reader to the lower bounds template given in Chapter 2. As-

sume that n is divisible by 4 and n > n0. Let (x, y) ∈ F
n
2 × F

n
2 be an instance

of Set-Disjointness where
∑

i xi =
∑

i yi = n/4. Alice and Bob determine the

prefix of a stream SA(x) and the suffix SB(y) respectively. We first assume that

φ(a/m, (a + c)/m) ≥ φ((a + c)/m, a/m).

SA(x) =
⋃

i∈[n]

{axi + b(1− xi) copies of 〈p, i〉 and 〈q, i〉}

∪
⋃

i∈[n
4
]

{b copies of 〈p, i + n〉 and 〈q, i + n〉}

SB(y) =
⋃

i∈[n]

{cyi copies of 〈q, i〉} ∪
⋃

i∈[n
4
]

{c copies of 〈p, i + n〉}

Observe that m(p) = m(q) = an/4 + bn + cn/2 and

Df(p, q) = (x.y)φ

(
a

m
,
a + c

m

)

+ (n/4− x.y)φ

(
b

m
,
b + c

m

)

+ (n/4)φ

(
b + c

m
,

b

m

)

.

89

Therefore,

x.y = 0 ⇔ Df (p, q) = (n/4)(φ(b/m, (b + c)/m) + φ((b + c)/m, b/m))

x.y = 1 ⇔ Df (p, q) ≥ α2(n/4)(φ(b/m, (b + c)/m) + φ((b + c)/m, b/m))

Therefore any α-approximation would determine the value of x.y and hence an α-

approximation requires Ω(n) space [Raz92]. If φ(a/m, (a+c)/m) ≤ φ((a+c)/m, a/m)

then the proof follows by reversing the roles of p and q.

The above theorem suggests that unless φ(xi, yi) is some function of xi− yi then

the distance is not sketchable. The result holds even if the algorithm may take a

constant number of passes over the data. We also mention a simpler result that can

be proved using similar ideas to those employed above. This states that if there exist

a, b, c ∈ N such that

max

(
φ(a + c, a)

φ(b + c, b)
,
φ(a, a + c)

φ(b, b + c)

)

> α2 ,

then any single-pass α-approximation of
∑

i∈[n] φ(m(p)i, m(q)i) requires Ω(n) space.

We next present two corollaries of Theorem 8.4. These characterize the f -

divergences and Bregman divergences that can be not be sketched. Note that ℓ1

and ℓ2
2, which can be sketched, are the only commonly used divergences that do not

satisfy the relevant conditions.

Corollary 8.5 (f -Divergences). Given an f -divergence Df , if f is twice differen-

tiable and f ′′ is strictly positive, then no polynomial factor approximation of Df is

possible in sub-linear space.

Proof. We first note that by Lemma 8.1 we may assume f(1) = f ′(1) = 0. Let

a = c = 1 and b = α2n(f ′′(1) + 1)/(8f(2)) where α is an arbitrary polynomial in n.

Note that f(2) > 0 because f is strictly convex.

We start by observing that,

φ(b/m, (b + c)/m) = (b/m)f(1 + 1/b) = (b/m)

[

f(1) +
1

b
f ′(1) +

1

2!b2
f ′′(1 + γ)

]

90

for some γ ∈ [0, 1/b] by Taylor’s Theorem. Since f(1) = f ′(1) = 0 and f ′′(t) is

continuous at t = 1 this implies that for sufficiently large n, f ′′(1 + γ) ≤ f ′′(1) + 1

and so,

φ(b/m, (b + c)/m) ≤ f ′′(1) + 1

2mb
=

f ′′(1) + 1

2f(2)b
m−1f(2) ≤ 8

α2n
φ(a/m, (a + c)/m) .

Similarly we can show that for sufficiently large n,

φ((b + c)/m, b/m) ≤ 8

α2n
φ(a/m, (a + c)/m) .

Then appealing to Theorem 8.4 we get the required result.

Corollary 8.6 (Bregman Divergences). Given a Bregman divergences BF , if F is

twice differentiable and there exists ρ, z0 > 0 such that,

∀ 0 ≤ z2 ≤ z1 ≤ z0,
F ′′(z1)

F ′′(z2)
≥
(

z1

z2

)ρ

or ∀ 0 ≤ z2 ≤ z1 ≤ z0,
F ′′(z1)

F ′′(z2)
≤
(

z2

z1

)ρ

then no polynomial factor approximation of BF is possible in sub-linear space.

This condition effectively states that F ′′(z) vanishes or diverges monotonically,

and polynomially fast, as z → 0.

Proof. By the Mean-Value Theorem, for any m, r ∈ N, there exists γ(r) ∈ [0, 1] such

that, φ(r/m, (r + 1)/m) + φ((r + 1)/m, r/m) = m−2F ′′((r + γ(r))/m). Therefore,

for any a, b ∈ N, c = 1 and m = an/4 + bn + n/2,

max
(
φ
(

a
m

, a+c
m

)
, φ
(

a+c
m

, a
m

))

φ
(

b+c
m

, b
m

)
+ φ

(
b
m

, b+c
m

) ≥ 1

2

F ′′((a + γ(a))/m)

F ′′((b + γ(b))/m)
.

If ∀ 0 ≤ z2 ≤ z1 ≤ z0, F ′′(z1)/F
′′(z2) ≥ (z1/z2)

ρ then set a = (α2n)1/ρ and b = 1

where α is an arbitrary polynomial in n. If ∀ 0 ≤ z2 ≤ z1 ≤ z0, F ′′(z1)/F
′′(z2) ≥

(z2/z1)
ρ then set a = 1 and b = (αn)1/ρ. In both cases we deduce that the RHS

of Eqn. 8.1 is greater than α2n/4. Hence, appealing to Theorem 8.4, we get the

required result.

91

8.3 Additive Approximations

In this section we focus on additive approximations. As mentioned earlier, the

probability of misclassification using ratio tests is often bounded by 2−Df , for certain

Df . Hence, an additive ǫ approximation translates to a multiplicative 2ǫ factor for

computing the error probability.

Our goal is the characterization of divergences that can be approximated ad-

ditively. We first present a general algorithmic result and then prove two general

lower-bounds. In the subsequent sections, we consider f -divergences and Bregman

divergences in particular.

Theorem 8.7. There exists an (ǫ, δ)-additive-approximation for

dφ(p, q) =
∑

i∈[n]

φ(pi, qi)

(we assume that φ(0, 0) = 0) using O(τǫ−2 log δ−1) space where

τ = 4 max
x,y∈[0,1]

(∣
∣
∣
∣

∂

∂x
φ(x, y)

∣
∣
∣
∣
+

∣
∣
∣
∣

∂

∂y
φ(x, y)

∣
∣
∣
∣

)

.

The algorithm does not need to know m(p) or m(q) in advance.

Proof. We will describe a basic estimator that can be computed in small space with-

out prior knowledge of m(p) or m(q). We will then argue that the estimator is correct

in estimation. Finally, we show that, by averaging a small number of independent

basic estimators, we may return a sufficiently accurate estimator with the necessary

probability.

Let d ∈R {p, q} and jd ∈R [m(d)]. Let aj = 〈d, k〉 be the jd-th element in the

stream of the form 〈d, ·〉 and compute

r = I[d = p] · r0 + |{ℓ > j : ak = 〈p, k〉}| ·m(q)

s = I[d = q] · s0 + |{ℓ > j : ak = 〈q, k〉}| ·m(p)

92

where r0 ∈R [m(q)] and s0 ∈R [m(p)]. We are now ready to define the basic estimator

X(r, s) = 2m∗







φ(r/m∗, s/m∗)− φ(r/m∗ − 1/m∗, s/m∗) if d = p

φ(r/m∗, s/m∗)− φ(r/m∗, s/m∗ − 1/m∗) if d = q

where m∗ = m(p)m(q).

Note that Pr [k = i] = (pi + qi)/2 and that

E [X(r, s)|k = i] = 2

(
m∗φ(m(p)im(q)/m∗, m(q)im(p)/m∗

m(p)m(q)i + m(q)m(p)i

)

=
2φ(pi, qi)

pi + qi

therefore E [X(r, s)] =
∑

i φ(pi, qi) as required.

|X(r, s)| ≤ 2 max

{

max
x∈[r−1

m∗ , r
m∗]

∣
∣
∣
∣

∂

∂x
φ(x, s/m∗)

∣
∣
∣
∣
, max
y∈[s−1

m∗ , s
m∗]

∣
∣
∣
∣

∂

∂y
φ(r/m∗, y)

∣
∣
∣
∣

}

≤ τ

Hence, averaging O(τǫ−2 log δ−1) independent basic estimators results in an (ǫ, δ)-

additive-approx.

Theorem 8.8. Any (ǫ, 1/4)-additive approx.

dφ(p, q) =
∑

i∈[n]

φ(pi, qi)

requires Ω(ǫ−2) space if,

∃a, b > 0, ∀x, φ(x, 0) = ax, φ(0, x) = bx, and φ(x, x) = 0.

Proof. We refer the reader to the lower bounds template given in Chapter 2. Let

(x, y) ∈ F
n
2 × F

n
2 be an instance of Gap-Hamdist where n = ⌊ǫ−2⌋ and the weight

of x and y is cn. Then define p and q by the following stream elements.

SA(x) = {xi copies of 〈p, i〉 for i ∈ [n]}

SB(y) = {yi copies of 〈q, i〉 for i ∈ [n]}

Then

dφ(p, q) =
a|{i : xi = 1, yi = 0}|

cn
+

b|{i : xi = 0, yi = 1}|
cn

= dH(x, y)
a + b

cn
,

where dH(x, y) is the Hamming distance between x and y. Therefore a (a+b)ǫ
2c

-additive

approximate determines whether dH(x, y) ≤ n/2 or dH(x, y) ≥ n/2 +
√

n.

93

Theorem 8.9. Any (ǫ, 1/4)-additive approx. of dφ(p, q) =
∑

i∈[n] φ(pi, qi) requires

Ω(n) space if either φ(x, 0) or φ(0, x) is unbounded for all x > 0. This applies even

if one of the distributions is known to be uniform.

Proof. We refer the reader to the lower bounds template given in Chapter 2. Let

(x, y) ∈ F
n
2×F

n
2 be an instance of Set-Disjointness. Then define q by the following

stream elements.

SA(x) = {1− xi copies of 〈q, i〉 for i ∈ [n]}

SB(y) = {1− yi copies of 〈q, i〉 for i ∈ [n]}

Let p be the uniform distribution. If φ(1/n, 0) is unbounded then dφ(p, q) is finite iff

x.y = 0. If φ(1/n, 0) is unbounded then dφ(p, q) is finite iff x.y = 0.

8.3.1 Additive Approximation for f-divergences

In this section we show that Df(p, q) can be additively approximated up to any

additive ǫ > 0 if and only if Df is bounded.

Theorem 8.10. There exists a one-pass, O(ǫ−2 log δ−1)-space, (ǫ, δ)-additive-approx.

for any bounded f -divergence. The algorithm does not need to know m(p) or m(q)

in advance.

Proof. We appeal to Theorem 8.7 and note that,

max
x,y∈[0,1]

(∣
∣
∣
∣

∂

∂x
φ(x, y)

∣
∣
∣
∣
+

∣
∣
∣
∣

∂

∂y
φ(x, y)

∣
∣
∣
∣

)

= max
x,y∈[0,1]

(|f(y/x)− (y/x)f ′(y/x)|+ |f ′(y/x)|)

= max
u∈[0,1]

(∣
∣f ∗′(u)

∣
∣+ |f ′(u)|

)

By Lemma 8.2 we may assume this is independent of m and n. The result follows.

We complement the above theorem with the following lower-bound that follows

from Theorem 8.9 and Theorem 8.8.

94

Theorem 8.11. Any (ǫ, 1/4)-additive-approximation of an unbounded Df requires

Ω(n) space. This applies even if one of the distributions is known to be uniform.

Any (ǫ, 1/4)-additive-approximation of a bounded Df requires Ω(ǫ−2) space.

8.3.2 Additive Approximation for Bregman divergences

In this section we proof a partial characterization of the Bregman divergences that

can be additively approximated.

Theorem 8.12. There exists a one-pass, O(ǫ−2 log δ−1)-space, (ǫ, δ)-additive-approx.

of a Bregman divergence if F and F ′′ are bounded in the range [0, 1]. The algorithm

does not need to know m(p) or m(q) in advance.

Proof. We appeal to Theorem 8.7 and note that,

max
x,y∈[0,1]

(∣
∣
∣
∣

∂

∂x
φ(x, y)

∣
∣
∣
∣
+

∣
∣
∣
∣

∂

∂y
φ(x, y)

∣
∣
∣
∣

)

= max
x,y∈[0,1]

(|F ′(x)− F ′(y)|+ |x− y|F ′′(y)) .

We may assume this is constant by convexity of F and the assumptions of the

theorem. The result follows.

The next theorem follows immediately from Theorem 8.9.

Theorem 8.13. If F (0) or F ′(0) is unbounded then an (ǫ, 1/4)-additive-approx. of

BF requires Ω(n) space even if one of the distributions is known to be uniform.

8.4 Testing f-Divergences in the Oracle Models

In this section, we consider approximation and testing of the f -divergence between

two distributions in the oracle models introduced in Chapter 1. Recall that the

generative model supports a sample(p) query that returns i with probability pi. In

the evaluative model, a probe(p, i) query returns the value pi. Lastly, the combined

model supports both the sample and probe operations. In all three models, the

complexity of an algorithm is measured by the number of oracle queries.

95

8.4.1 f-Divergences Testing (Generative Oracle)

In this section we consider testing in the generative model for various f -divergences.

We will present the results for the Hellinger distance. However, the Jensen-Shannon

and triangle divergences are constant factor related to the Hellinger distance:

Hellinger(p, q)/2 ≤ ∆(p, q)/2 ≤ JS(p, q) ≤ ln(2) ∆(p, q) ≤ 2 ln(2) Hellinger(p, q) .

(8.1)

Parts of Eqn. 8.1 are proved in [Top00] and the other inequalities follow from the AM-

GM inequality. Therefore a result for Hellinger naturally implies analogous results

forJensen-Shannon and triangle. Our algorithm is similar to that in [BFR+00], and

is presented in Figure 8.1. It relies on an ℓ2 tester given in [BFR+00]. Central to

the analysis are the following inequalities.

ℓ2
2(p, q)

2(ℓ∞(p) + ℓ∞(q))
≤ Hellinger(p, q) ≤ ℓ1(p, q) ≤

√
nℓ2(p, q) . (8.2)

Lemma 8.14 (ℓ2 Testing [BFR+00]). There exists an (ǫ, ǫ/2, δ)-tester for ℓ2(p, q)

using O(ǫ−4(b2 + ǫ2
√

b) log δ−1) samples where b = max(ℓ∞(p), ℓ∞(q)).

The first prove two preliminary lemmas.

Lemma 8.15. Define p̃i = mp
i /m and q̃i = mq

i /m. Let γ ∈ (0, 1). With m =

O(γ−4nα log(nδ−1)) samples, with probability 1 − δ/2, the following two conditions

hold:

∀i 6∈ S, pi, qi ≤ 2n−α

∀i ∈ S, |(√pi −
√

qi)
2 − (

√

p̃i −
√

q̃i)
2| ≤ γ max{pi, qi}/100 .

Proof. By applying Chernoff-Hoeffding bounds it is straight-forward to show that

with probability at least 1− δ/2,

∀i ∈ [n], |p̃i − pi| ≤ max

(
γpi

1000
,
γ2n−α

1000

)

and |q̃i − qi| ≤ max

(
γqi

1000
,
γ2n−α

1000

)

.

96

Algorithm Hellinger-Test(p, q, ǫ)
1. mp

i , m
q
i ← 0 for all i ∈ [n]

2. for t = 1 to m:
3. do i← sample(p) and mp

i ← mp
i + 1

4. i← sample(q) and mq
i ← mq

i + 1
5. return FAIL if

∑

i∈S

(√

mp
i /m−

√

mq
i /m

)2

> ǫ/10

where S = {i : max{mp
i , m

q
i} ≥ mn−α}

6. return ℓ2-Tester(p′, q′, ǫn−1/2) where p′ is the distribution formed by the
following sampling procedure:

i← sample(p)

sample(p′)← (i if i 6∈ S and j ∈R [2n] \ [n] otherwise)

and q′ is defined analogously.

Figure 8.1: Hellinger-Testing (Generative Oracle Model)

Therefore i 6∈ S implies that pi, qi ≤ 2n−α as required. Also, if i ∈ S and pi > qi then

pi ≥ n−α/2 and hence |p̃i − pi| ≤ (γ/1000)pi. Let i ∈ S. Without loss of generality

assume that pi ≥ qi. Therefore,

|(
√

p̃i −
√

q̃i)
2 + (
√

pi −
√

qi)
2| ≤ |p̃i − pi|+ |q̃i − qi|+ 2|

√

p̃iq̃i −
√

piqi|

≤ γpi/500 + 2|
√

p̃iq̃i −
√

piqi| .

First assume that qi ≥ γ2n−α. Therefore,

2|
√

p̃iq̃i −
√

piqi| ≤ 2
√

piqi|
√

p̃iq̃i/(piqi)− 1| ≤ 2γpi/1000 .

Alternatively, if qi ≤ γ2n−α then,

2|
√

p̃iq̃i −
√

piqi| ≤ 2(γn−α/1000)
√

max{p̃i, pi} ≤ (γ/250)pi

√

(1 + γ) ≤ 2γpi/250 .

In either case, |(√p̃i −
√

q̃i)
2 + (
√

pi −
√

qi)
2| ≤ γpi/100 as required.

97

Lemma 8.16. Let p and q be two distributions on [n] and let S ⊂ [n]. Define a

distribution p′,

p′i =







pi if i ∈ [n] \ S

0 if i ∈ S

(
∑

j∈S pj)/n if i ∈ [2n] \ [n]

.

Let q′ be defined analogously. Then,

∑

i6∈S

(
√

pi −
√

qi)
2 ≤ Hellinger(p′, q′) ≤ Hellinger(p, q) .

Proof. The first inequality is immediate because all terms are positive. To bound

the second term we need to show that,

∑

i∈S

(
√

pi −
√

qi)
2 ≥ n

(√∑

i∈S pi

n
−
√∑

i∈S pi

n

)2

=





√
∑

i∈S

pi −
√
∑

i∈S

qi





2

.

We will first show that (
√

pi −
√

qi)
2 + (

√
pj − √qj)

2 ≥ (
√

pi + pj −
√

qi + qj)
2.

This is because,

(
√

pjqi −√piqj)
2 ≥ 0

⇒ (pi + pj)(qi + qj) ≥ piqi + pjqj + 2
√

pipjqiqj

⇒ 2
√

(pi + pj)(qi + qj) ≥ 2
√

piqi + 2
√

pjqj

⇒ (
√

pi −
√

qi)
2 + (
√

pj −√qj)
2 ≥ (

√
pi + pj −

√
qi + qj)

2 .

Therefore, by “merging” the probability mass on all indices in S we decrease the

Hellinger distance as required.

Theorem 8.17 (Hellinger Testing). There exists an (ǫ, ǫ2/(32n1−α), δ)-tester for

Hellinger(p, q) using O(max{ǫ−2nα log n, ǫ−4(n−2α+2 + ǫ2n1−α/2)} log δ−1) samples.

Proof. Let A =
∑

i∈S(
√

pi−
√

qi)
2 and B =

∑

i6∈S(
√

pi−
√

qi)
2. By Lemma 8.15, we

estimate A with an additive error of ǫ/10.

98

1. If Hellinger(p, q) > ǫ then either A is bigger than ǫ/2 or B is bigger than ǫ/2.

If A is bigger than ǫ/2 then our estimate of A is bigger than ǫ(1/2− 2/10) and

in which case
∑

i∈S(
√

p̃i −
√

q̃i)
2 > ǫ/10 and we fail. Otherwise if B is bigger

than ǫ/2. Therefore, appealing to Eq. 8.2 and Lemma 8.16 (not that the p′

and q′ are on base [2n]) we deduce that,

ǫ/2 ≤ Hellinger(p′, q′) ≤
√

2nℓ2(p
′, q′) .

Consequently the ℓ2 test fails.

2. If Hellinger(p, q) < ǫ2/(32n1−α) then A < ǫ2/n1−α and we pass the first test

because our estimate of A is at most ǫ2/n1−α + ǫ/100 < ǫ/10 (for sufficiently

large n.) By Lemma 8.15, max(ℓ∞(p′), ℓ∞(q′)) ≤ 2n−α. Therefore, appealing

to Eq. 8.2 and Lemma 8.16,

nαℓ2
2(p

′, q′)/8 ≤ Hellinger(p′, q′) ≤ A + B < ǫ2/(32n1−α)

implies that the second test passes since nαℓ2
2(p

′, q′) ≤ ǫ2/(4n1−α) and thus

ℓ2(p
′, q′) ≤ ǫ/(2

√
n).

Observe that setting α = 2/3 yields an algorithm with sample complexity Õ(n2/3/ǫ4).

For distributions such that either pi = qi or one of pi, qi is 0, ∆(p, q) = ℓ1(p, q) =

Hellinger(p, q) = JS(p, q). Batu et al. [BFR+00] discuss lower bounds for ℓ1 distance

property testing.

8.4.2 f-Divergences Testing (Combined Oracle)

In this section we consider property testing in the combined oracle model for all

bounded f -divergences.

Theorem 8.18. There exists an (ǫ, δ)-approximation algorithm for any τ -bounded

Df in the combined oracle model making O(τǫ−2 log(δ−1)/Df(p, q))) queries.

99

Algorithm Combined Oracle Distance Testing
1. E ← 0
2. for t = 1 to m:
3. do i← sample(p) and x = probe(q,i)

probe(p,i)

4. If x > 1 then a← f(x) else a← 0

5. j ← sample(q) and x = probe(q,j)
probe(p,j)

6. If x < 1 then b← f ∗(1/x) else b← 0
7. E ← (a + b)/2τ + E
8. return 2τE/m

Figure 8.2: Distance-Testing (Combined Oracle Model)

Proof. Consider the value (a + b)/(2τ) added to E in each iteration. This is a ran-

dom variable with range [0, 1] and mean (Df(p, q))/(2τ). By applying the Chernoff-

Hoeffding bounds,

Pr

[∣
∣
∣
∣
E −m

Df (p, q)

2τ

∣
∣
∣
∣
< ǫm

Df (p, q)

2τ

]

≤ 2e−ǫ2Df (p,q)m/6τ ≤ 1− δ .

Therefore, E is an (ǫ, δ)-approximation for mDf (p, q)/2τ . Hence, 2τE/m is an (ǫ, δ)-

approximation for Df (p, q) as required.

Using a slightly different analysis, the algorithm also yields an (ǫ, ǫ/2, δ)-tester.

Corollary 8.19. There exists an (ǫ, ǫ/2, δ)-tester algorithm for any bounded Df in

the combined oracle model making O(ǫ−1 log δ−1) queries.

We now prove a corresponding lower-bound that shows that our algorithm is

tight. Note that while it is relatively simple to see that there exists two distributions

that are indistinguishable with less than o(1/ℓ1) oracle calls, it requires some work

to also show a lower bound with a dependence on ǫ. Further note that the proof

below also gives analogous results for JS, Hellinger and ∆. (This follows from the

remarks made at the end of the previous section.)

Theorem 8.20. Any (ǫ, 1/4)-approximation algorithm of ℓ1 in the combined oracle

model requires Ω(ǫ−2/ℓ1) queries.

100

Proof. Let p and qr be the distributions on [n] described by the following two prob-

ability vectors:

p = (1− 3a/2,

k/ǫ
︷ ︸︸ ︷

3aǫ/2k, . . . , 3aǫ/2k, 0, . . . , 0)

qr = (1− 3a/2,

r
︷ ︸︸ ︷

0, . . . 0,

k/ǫ
︷ ︸︸ ︷

3aǫ/2k, . . . , 3aǫ/2k, 0, . . . , 0)

Then ℓ1(p, q
k/3ǫ) = a and ℓ1(p, q

k/3ǫ+k) = a(1 + 3ǫ). Hence to 1 + ǫ approximate

the distance between p and qr we need to distinguish between the cases when r =

k/3ǫ(=: r1) and r = k/3ǫ + k(=: r2). Consider the distributions p′ and qr ′ formed

by arbitrarily permuting the base sets of the p and qr. Note that the ℓ1 distance

remains the same. We will show that, without knowledge of the permutation, it

is impossible to estimate this distance with o(1/(ǫ2a)) oracle calls. We reason this

by first disregarding the value of any “blind probes”, i.e., a probe probe(p′, i) or

probe(q′, i) for any i that has not been returned as a sample. This is the case

because, by choosing n≫ k/(aǫ2) we ensure that, with arbitrarily high probability,

for any o(1/(ǫ2a)) set of i’s chosen from any n − o(1/(aǫ2)) sized subset of [n],

pi
′ = qr

i
′ = 0. This is the case for both r1 and r2. Let I = {i : pi or qr

i = 3aǫ/2k}
and I1 = {i ∈ I : pi 6= qr

i }. Therefore determining whether r = r1 or r2 is equivalent

to determining whether |I1|/|I| = 1/2 or 1/2+ 9ǫ
8+6ǫ

. We may assume that every time

an algorithm sees i returned by sample(p) or sample(q), it learns the exact values

of pi and qi for free. Furthermore, by making k large (k = ω(1/ǫ3) suffices) we can

ensure that no two sample oracle calls will ever return the same i ∈ I (with high

probability.) Hence distinguishing between |I1|/|I| = 1/2 and 1/2+ 9ǫ
8+6ǫ

is analogous

to distinguishing between a fair coin and a 9ǫ
8+6ǫ

= Θ(ǫ) biased coin. It is well known

that the latter requires Ω(1/ǫ2) samples. Unfortunately only O(1/a) samples return

an i ∈ I since with probability 1− 3a/2 we output an i 6∈ I when sampling either p

or q. The bound follows.

101

Chapter 9

Entropy

Chapter Outline: In this chapter we present a single-pass algorithm for estimating

the entropy, −∑i∈[n] pi lg pi, of the empirical distribution defined by a data stream.

We demonstrate that the algorithm is near-optimal by showing an almost matching

lower bound. In the next two sections, we present algorithms and lower-bounds for

estimating related quantities, the k-order entropy and the entropy of a random-walk

on an undirected graph. Lastly, we present an algorithm for estimating entropy in

the combined oracle model. For background see Chapter 7.

9.1 Computing the Entropy of a Stream

For a real-valued function f such that f(0) = 0, let us define fm(A) := 1
m

∑n
i=1 f(mi).

We base our approach on the method of Alon, Matias and Szegedy [AMS99] to

estimate quantities of the form fm(A): note that the empirical entropy of A is one

such quantity with f(mi) = mi log(m/mi).

Definition 9.1. Let D(A) be the distribution of the random variable R defined thus:

Pick J ∈ [m] uniformly at random and let R = |{j : aj = aJ , J ≤ j ≤ m}|.

The core idea is to space-efficiently generate a random variable R ∼ D(A). For

102

an integer c, define the random variable

Estf(R, c) :=
1

c

c∑

i=1

Xi , (9.1)

where the random variables {Xi} are independent and each distributed identically

to (f(R)−f(R−1)). Appealing to Chernoff-Hoeffding bounds one can show that by

increasing c, Estf(R, c) can be made arbitrarily close to fm(A). This is formalized

in the lemma below.

Lemma 9.2. Let X := f(R)− f(R− 1), a, b ≥ 0 such that −a ≤ X ≤ b, and

c ≥ 3(1 + a/ E[X])2ǫ−2 ln(2δ−1)(a + b)/(a + E[X]) .

Then E[X] = fm(A) and, if E[X] ≥ 0, the estimator Estf (R, c) gives an (ǫ, δ)-

approximation to fm(A) using space c times the space required to maintain R.

Proof. E[X] = fm(A) follows by straightforward calculation of the expectation. Con-

sider the random variable Y := (X + a)/(a + b). First note that Y ∈ [0, 1] and that

E[Y] = (fm(A) + a)/(a + b). Therefore, Chernoff-Hoeffding bounds imply that, if

{Yi} are independent and each distributed identically to Y , then

Pr





∣
∣
∣
∣
∣
∣

1

c

∑

i∈[c]

Yi −
fm(A) + a

a + b

∣
∣
∣
∣
∣
∣

>
ǫ

1 + a/ E[X]

fm(A) + a

a + b





= Pr





∣
∣
∣
∣
∣
∣

1

c

∑

i∈[c]

Yi − E[Y]

∣
∣
∣
∣
∣
∣

>
ǫ

1 + a/ E[X]
E[Y]





≤ exp

(

−c

(
ǫ

1 + a/ E[X]

)2
fm(A) + a

2(a + b)

)

+ exp

(

−c

(
ǫ

1 + a/ E[X]

)2
fm(A) + a

3(a + b)

)

≤ δ .

Consequently Est′f(R, c) = c−1
∑

i∈[c] Yi is an (ǫ/(1 + a/ E[X]), δ)-approximation

to (fm(A) + a)/(a + b). Note that, Est′f (R, c) = (Estf (R, c) + a) /(a + b). This

103

implies that,

Pr
[
|Estf(R, c)− fm(A)| > ǫfm(A)

]

= Pr

[∣
∣
∣
∣
Est′f(R, c)− fm(A) + a

a + b

∣
∣
∣
∣
>

ǫ

1 + a/ E[X]

fm(A) + a

a + b

]

≤ δ .

Therefore, Estf(R, c) gives an (ǫ, δ)-approximation to fm(A) as claimed.

Overview of the technique: We now give some of the intuition behind our algo-

rithm for estimating H(p). Let A′ denote the substream of A obtained by removing

from A all occurrences of the most frequent token (with ties broken arbitrarily) and

let R′ ∼ D(A′). A key component of our algorithm (see Algorithm Maintain-Samples

below) is a technique to simultaneously maintain R and enough extra information

that lets us recover R′ when we need it. Let pmax := maxi pi. Let λ be given by

λ(x, m) := x lg(m/x) , where λ(0, m) := 0 , (9.2)

so that λm(A, m) = H(p). Define X = λ(R, m)− λ(R− 1, m) and X ′ = λ(R′, m)−
λ(R′ − 1, m). If pmax is bounded away from 1 then we can show that 1/ E[X] is

“small,” so Estλ(R, c) gives us our desired estimator for a “small” value of c, by

Lemma 9.2. If, on the other hand, pmax > 1
2

then we can recover R′ and can show

that 1/ E[X ′] is “small.” Finally, by our analysis we can show that Estλ(R
′, c) and

an estimate of pmax can be combined to give an (ǫ, δ)-approximation to H(p). This

logic is given in Algorithm Entropy-Estimator below.

Thus, our algorithm must also maintain an estimate of pmax in parallel to Al-

gorithm Maintain-Samples . There are a number of ways of doing this and here we

choose to use the Misra-Gries algorithm [MG82] with a sufficiently large number

of counters. This (deterministic) algorithm takes a parameter k — the number of

counters — and processes the stream, retaining up to k pairs (i, m̂i), where i is a

token and the counter m̂i is an estimate of its frequency mi. The algorithm starts

out holding no pairs and implicitly setting each m̂i = 0. Upon reading a token, i, if

104

a pair (i, m̂i) has already been retained, then m̂i is incremented; else, if fewer than

k pairs have been retained, then a new pair (i, 1) is created and retained; else, m̂j is

decremented for each retained pair (j, m̂j) and then all pairs of the form (j, 0) are

discarded. The following lemma summarizes the key properties of this algorithm;

the proof is simple (see, e.g., [BKMT03]) and we omit it.

Lemma 9.3. The estimates m̂i computed by the Misra-Gries algorithm using k coun-

ters satisfy m̂i ≤ mi and mi − m̂i ≤ (m−mi)/k.

We now describe our algorithm more precisely with some pseudocode. By abuse

of notation we use Estλ(r, c) to also denote the algorithmic procedure of running in

parallel c copies of an algorithm that produces r and combining these results as in

Eq. 9.1.

Algorithm Maintain-Samples
1. for a ∈ A
2. do Let t be a random number in the range [m3]
3. if a = s0

4. then if t < t0 then (s0, t0, r0)← (a, t, 1) else r0 ← r0 + 1
5. else if a = s1 then r1 ← r1 + 1
6. if t < t0
7. then (s1, t1, r1)← (s0, t0, r0); (s0, t0, r0)← (a, t, 1)
8. else if t < t1 then (s1, t1, r1)← (a, t, 1)

Algorithm Entropy-Estimator
1. c← 16ǫ−2 ln(2δ−1) lg(me)
2. Run the Misra-Gries algorithm on A with k = ⌈7ǫ−1⌉ counters, in parallel

with Maintain-Samples
3. if Misra-Gries retains a token i with counter m̂i > m/2
4. then (imax, p̂max)← (i, m̂i/m)
5. if a0 = imax then r ← r1 else r ← r0

6. return (1− p̂max) · Estλ(r, c) + p̂max lg(1/p̂max)
7. else return Estλ(r0, c)

Figure 9.1: An Algorithm for Approximating Entropy.

105

Maintaining Samples from the Stream: We show a procedure that allows us

to generate R and R′ with the appropriate distributions. For each token a in the

stream, we draw t, a random number in the range [m3], as its label. We choose to

store certain tokens from the stream, along with their label and the count of the

number of times the same token has been observed in the stream since it was last

picked. We store two such tokens: the token s0 that has achieved the least t value

seen so far, and the token s1 such that it has the least t value of all tokens not

equal to s0 seen so far. Let t0 and t1 denote their corresponding labels, and let

r0 and r1 denote their counts in the above sense. Note that it is easy to maintain

these properties as new items arrive in the stream, as Algorithm Maintain-Samples

illustrates.

Lemma 9.4. Algorithm Maintain-Samples satisfies the following properties. (i)

After processing the whole stream A, s0 is picked uniformly at random from A and

r0 ∼ D(A). (ii) For a ∈ [n], let A \ a denote the stream A with all occurrences of a

removed. Suppose we set s and r thus: if s0 6= a then s = s0 and r = r0, else s = s1

and r = r1. Then s is picked uniformly from A \ a and r ∼ D(A \ a).

Proof. To prove (i), note that the way we pick each label t ensures that (w.h.p.) there

are no collisions amongst labels and, conditioned on this, the probability that any

particular token gets the lowest label value is 1/m.

We show (ii) by reducing to the previous case. Imagine generating the stream

A \ a and running the algorithm on it. Clearly, picking the item with the smallest t

value samples uniformly from A \ a. Now let us add back in all the occurrences of a

from A. One of these may achieve a lower t value than any item in A \ a, in which

case it will be picked as s0, but then s1 will correspond to the sample we wanted

from A \ a, so we can return that. Else, s0 6= a, and is a uniform sample from A \ a.

Hence, by checking whether s0 = a or not, we can choose a uniform sample from

A \ a. The claim about the distribution of r is now straightforward: we only need

to observe from the pseudocode that, for j ∈ {0, 1}, rj correctly counts the number

106

of occurrences of sj in A from the time sj was last picked.

Analysis of the Algorithm: We now analyse our main algorithm, given in full

in Algorithm Entropy-Estimator .

Theorem 9.5. Algorithm Entropy-Estimator uses

O(ǫ−2 log(δ−1) log m(log m + log n)) bits

and gives an (ǫ, δ)-approximation to H(p).

Proof. To argue about the correctness of Algorithm Entropy-Estimator , we first look

closely at the Misra-Gries algorithm used within it. By Lemma 9.3, p̂i := m̂i/m is

a good estimate of pi. To be precise, |p̂i − pi| ≤ (1− pi)/k. Hence, by virtue of the

estimation method, if pi > 2
3

and k ≥ 2, then i must be among the tokens retained

and must satisfy p̂i > 1
2
. Therefore, in this case we will pick imax — the item with

maximum frequency — correctly, and pmax will satisfy

p̂max ≤ pmax and |p̂max − pmax| ≤
1− pmax

k
. (9.3)

Let A, A′, R, R′, X, X ′ be as before. Suppose p̂max ≤ 1
2
. The algorithm then

reaches Line 7. By Part (i) of Lemma 9.4, the returned value is Estλ(R, c). Now (9.3),

together with k ≥ 2, implies pmax ≤ 2
3
. Lemma 3.3 from [CDM06] states that

the minimum entropy is obtained when all other tokens are identical, giving us

H(p) ≥ 2
3
lg 3

2
+ 1

3
lg 3

1
> 0.9. Note that − lg e ≤ X ≤ lg m. This follows because,

d

dx
x lg

(m

x

)

= lg
(m

x

)

− lg e

and so d
dx

λ(x) − λ(x − 1) = lg(1 − 1/x) shows λ(x) − λ(x − 1) is decreasing in

the range 1 to m. The maximum value is λ(1) − λ(0) = lg m and the minimum is

λ(m)−λ(m−1) = − lg e. Hence Lemma 9.2 implies that c is large enough to ensure

that the return value is a (3
4
ǫ, δ)-approximation to H(p).

107

Now suppose p̂max > 1/2. The algorithm then reaches Line 6. By Part (ii) of

Lemma 9.4, the return value is (1 − p̂max) · Estλ(R
′, c) + p̂max lg(1/p̂max), and (9.3)

implies that pmax > 1/2. Assume, w.l.o.g., that imax = 1. Then

E[X ′] = λ(A′) =
1

m−m1

n∑

i=2

λ(mi) ≥ lg
m

m−m1
≥ 1 ,

where the penultimate inequality follows by convexity arguments. As before, − lg e ≤
X ≤ lg m, and hence Lemma 9.2 implies that c is large enough to ensure that

Estλ(R
′, c) is a (3

4
ǫ, δ)-approximation to λ(A′).

Next, we show that p̂1 lg(1/p̂1) is a (2
k
, 0)-approximation to p1 lg(1/p1), as follows:

|p1 lg(1/p1)− p̂1 lg(1/p̂1)|
p1 lg(1/p1)

≤ |p̂1 − p1|
p1 lg(1/p1)

max
p∈[1

2
,1]

∣
∣
∣
∣

d

dp
(p lg(1/p))

∣
∣
∣
∣
≤ (1− p1)

k p1 lg(1/p1)
·lg e,

and this bounded by 2/k because g(p) := (1− p)/(p ln(1/p)) is non-increasing in the

interval [1
2
, 1], so g(p) ≤ g(1

2
) < 2. To see this, note that 1 − p + ln p ≤ 0 for all

positive p and that g′(p) = (1− p + ln p)/(p ln p)2. Now observe that

H(p) = (1− p1)λm−m1
(A′, m) + p1 lg(1/p1) . (9.4)

From (9.3) it follows that (1 − p̂1) is an (1
k
, 0)-approximation to (1 − p1). Note

that 1
7
ǫ + 3

4
ǫ + 3

28
ǫ2 ≤ ǫ for ǫ ≤ 1. Thus, setting k ≥ ⌈7ǫ−1⌉ ensures that that

(1 − p̂1) · Estλ(R
′, c) is a (ǫ, δ)-approximation to (1 − p1)λ(A′), and p̂1 lg(1/p̂1) is a

(better than) (ǫ, 0)-approximation to p1 lg(1/p1). Thus, we have shown that in this

case the algorithm returns a (ǫ, δ)-approximation to H(p), since both terms in (9.4)

are approximated with relative error.

The claim about the space usage is straightforward. The Misra-Gries algo-

rithm requires O(k) = O(ǫ−1) counters and item identifiers. Each run of Algo-

rithm Maintain-Samples requires O(1) counters, labels, and item identifiers, and

there are c = O(ǫ−2 log(δ−1) log m) such runs. Everything stored is either an item

from the stream, a counter that is bounded by m, or a label that is bounded by m3,

so the space for each of these is O(log m + log n) bits.

108

9.1.1 Variations on the Algorithm

Randomness and Stream Length: As described, our algorithm seems to re-

quire O(m log m) bits of randomness, since we require a random number in the

range [m3] for each item in the stream. This randomness requirement can be re-

duced to O(logO(1) m) bits by standard arguments invoking Nisan’s pseudorandom

generator [Nis92]. An alternate approach is to use a hash function from a min-wise

independent family on the stream index to generate t [Ind01]. This requires a mod-

ification to the analysis: the probability of picking any fixed item changes from 1/m

to a value in the interval [(1− ǫ)/m, (1+ ǫ)/m]. One can show that this introduces a

1+O(ǫ) factor in the expressions for expectation, and does not significantly affect the

range of the estimators, and so does not affect the overall correctness; an additional

O(log n log ǫ−1) factor in space would also be incurred to store the descriptions of

the hash functions.

The algorithm above also seems to require prior knowledge of m, although an

upper bound clearly suffices (we can compute the true m as the stream arrives).

But we only need to know m in order to choose the size of the random labels large

enough to avoid collisions. Should the assumed bound be proven too low, it suffices

to extend the length of labels t0 and t1 by drawing further random bits in the event

of collisions to break ties. Invoking the principle of deferred decisions, it is clear that

the correctness of the algorithm is unaffected.

Sliding Window Computations: In many cases it is desirable to compute func-

tions not over the whole semi-infinite stream, but rather over a sliding window of the

last W updates. Our method accommodates such an extension with an O(log2 W)

expansion of space (with high probability). Formally, define the sliding window count

of i as mw
i = |{j|aj = i, i > m− w}|. The empirical probability is pw

i = mw
i /w, and

the empirical entropy is H(pw) =
∑n

i=1−pw
i lg pw

i .

Lemma 9.6. We can approximate H(pw) for any w < W in space bounded by

109

O(ǫ−2 log(δ−1) log3 W) machine words with high probability.

Proof. We present an algorithm that retains sufficient information so that, after

observing the stream of values, given w < W we can recover the information that

Algorithm Entropy-Estimator would have stored had only the most recent w values

been presented to it. From this, the correctness follows immediately. Thus, we must

be able to compute sw
0 , rw

0 , sw
1 , rw

1 , iwmax and pw
max, the values of s0, r0, s1, r1, imax and

pmax on the substreams defined by the sliding window specified by w.

For iwmax and pw
max, it is not sufficient to apply standard sliding window frequent

items queries [AM04]. To provide the overall accuracy guarantee, we needed to

approximate pmax with error proportion to ǫ′(1 − pw
max) for a parameter ǫ′. Prior

work gives guarantees only in terms of ǫ′pw
max, so we need to adopt a new approach.

We replace our use of the Misra-Gries algorithm with the Count-Min sketch [CM05a].

This is a randomized algorithm that hashes each input item to O(log δ−1) buckets,

and maintains a sum of counts within each of a total of O(ǫ−1 log δ−1) buckets. If

we were able to create a CM-sketch summarizing just the most recent w updates,

then we would be able to find an (ǫ, δ) approximation to (1 − pw
max), and hence

also find pw
max with error ǫ(1 − pw

max). This follow immediately from the properties

of the sketch proved in [CM05a]. In order to make this valid for arbitrary sliding

windows, we replace each counter within the sketch with an Exponential Histogram

or Deterministic Wave data structure [DGIM02, GT02]. This allows us to (ǫ, 0)

approximate the count of each bucket within the most recent w < W timesteps

in space O(ǫ−1 log2 W). Combining these and rescaling ǫ, one can build an (ǫ, δ)

approximation of (1− pw
max) for any w < W . The space required for this estimation

is O(ǫ−2 log2 W log δ−1(log m + log n)) bits.

For sw
0 , rw

0 , sw
1 and rw

1 , we can take advantage of the fact that these are defined

by randomly chosen tags tw0 and tw1 , and for any W there are relatively few possible

candidates for all the w < W . Let tj be the random tag for the jth item in the

110

stream. We maintain the following set of tuples,

S0 = {(j, aj , tj, rj) : j = argmin
m−w<i≤m

tj , rj = |{k|ak = aj , k ≥ j}|, w < W}

This set defines jw
0 = argminm−w<i≤m tj for w < W . We maintain a second set of

tuples,

S1 = {(j, aj , tj, rj) : j = argmin
m−w<i≤m

i6=jw
0

tj , rj = |{k|ak = aj , k ≥ j}|, w < W}

and this set defines jw
1 = argminm−w<i≤m tj for w < W . Note that it is straight-

forward to maintain S0 and S1. Then, for any w < W , we set,

(sw
0 , rw

0)← (ajw
0
, rjw

0
) and (sw

1 , rw
1)← (ajw

1
, rjw

1
) .

We now bound the sizes of S0 and S1. The size of S0 can be bounded by observing

that if we build a treap over the sequence of timestamp, label pairs where we order

by timestamp and heapify by label, the members of S0 correspond to precisely the

right spine of the treap. As argued in [BDM02], this approach yields a strong bound

on |S0|, since with high probability the height of a treap with randomly chosen

priorities such as these (i.e., a random binary search tree) is logarithmic. Further,

we can observe that members of S1 correspond to nodes in the treap that are also

on the right spine, are left children of members of S0, or the right descendants of

left children. Thus, if the treap has height h, the size of S1 is O(h2). For windows

of size at most W , the implicit treap has height O(log W) with high probability.

Thus, we need to store a factor of O(log2 W) more information for each instance of

the basic estimator. The total space bound is therefore O(ǫ−2 log(δ−1) log3 W (log m+

log n)) bits, since now the estimator is bounded by log W , not log m.

9.1.2 Extensions to the Technique

We observe that the method we have introduced here, of allowing a sample to be

drawn from a modified stream with an item removed may have other applications.

111

The method naturally extends to allowing us to specify a set of k items to remove

from the stream after the fact, by keeping the k + 1 distinct items achieving the

smallest label values. In particular, Lemma 9.4 can be extended to give the following.

Lemma 9.7. There exists an algorithm A, using O(k) space, that returns k pairs

(si, ri)i∈[k+1] such that si is picked uniformly at random from A \ {s1, . . . , si−1} and

r ∼ D(A \ {s1, . . . , si−1}). Consequently, given a set S of size at most k and the

output of A it is possible to sample (s, r) such that s is picked uniformly at random

from A \ S and r ∼ D(A \ S).

This may be of use in applications where we can independently identify “junk”

items or other undesirable values which would dominate the stream if not removed.

For example, in the case in which we wish to compute the quantiles of a distribution

after removing the k most frequent items from the distribution. Additionally, the

procedure may have utility in situations where a small fraction of values in the stream

can significantly contribute to the variance of other estimators.

9.1.3 Lower Bound

We now show that the dependence of the above space bound on ǫ is nearly tight. To

be precise, we prove the following theorem.

Theorem 9.8. Any one-pass randomized (ǫ, 1
4
)-approximation for H(p) requires

Ω(ǫ−2/ log2(ǫ−1)) space.

Proof. Let gap-hamdist denote the following (one-way) communication problem.

Alice receives x ∈ {0, 1}N and Bob receives y ∈ {0, 1}N . Alice must send a message

to Bob after which Bob must answer “near” if the Hamming distance ‖x−y‖1 ≤ N/2

and “far” if ‖x− y‖1 ≥ N/2 +
√

N . They may answer arbitrarily if neither of these

two cases hold. The two players may follow a randomized protocol that must work

correctly with probability at least 3
4
. It is known [IW03, Woo04] that gap-hamdist

has one-way communication complexity Ω(N).

112

We now reduce gap-hamdist to the problem of approximating H(p). Suppose

A is a one-pass algorithm that (ǫ, δ)-approximates H(p). Let N be chosen such that

ǫ−1 = 3
√

N(lg N + 1/2) and assume, w.l.o.g., that N is an integer. Alice and Bob

will run A on a stream of tokens from [N]×{0, 1} as follows. Alice feeds the stream

〈(i, xi)〉Ni=1 into A and then sends over the memory contents of A to Bob who then

continues the run by feeding in the stream 〈(i, yi)〉Ni=1. Bob then looks at the output

out(A) and answers “near” if

out(A) < lg N +
1

2
+

1

2
√

N

and answers “far” otherwise. We now prove the correctness of this protocol.

Let d := ‖x − y‖1. Note that the stream constructed by Alice and Bob in the

protocol will have N − d tokens with frequency 2 each and 2d tokens with frequency

1 each. Therefore,

H(p) = (N − d) · 2

2N
lg

2N

2
+ 2d · 1

2N
lg

2N

1
= lg N +

d

N
.

Therefore, if d ≤ N/2, then H(p) ≤ lg N + 1
2

whence, with probability at least 3
4
, we

will have

out(A) ≤ (1 + ǫ)H(p) ≤
(

1 +
1

3
√

N(lg N + 1/2)

)(

lg N +
1

2

)

< lg N +
1

2
+

1

2
√

N

and Bob will correctly answer “near.” A similar calculation shows that if d ≥ N/2+
√

N then, with probability at least 3
4
, Bob will correctly answer “far.” Therefore the

protocol is correct and the communication complexity lower bound implies that A
must use space at least Ω(N) = Ω(ǫ−2/ log2(ǫ−1)).

9.2 Higher-Order Entropy

The kth order entropy is a quantity defined on a sequence that quantifies how easy

it is to predict a character of the sequence given the previous k characters. We start

with a formal definition.

113

Definition 9.9. For a data stream A = 〈a1, a2, . . . , am〉, with each token aj ∈ [n],

we define

mi1i2...it := |{j ≤ m− k : aj−1+l = il for l ∈ [t]}| ; pit|i1,i2,...,it−1
:=

mi1i2...it

mi1i2...it−1

,

for i1, i2, . . . , it ∈ [n]. The (empirical) kth order entropy of A is defined as

Hk(A) := −
∑

i1

pi1

∑

i2

pi2|i1 . . .
∑

ik+1

pik+1|i1...ik lg pik+1|i1...ik .

Unfortunately, unlike empirical entropy, H0, there is no small space algorithm for

multiplicatively approximating Hk. This is even the case for H1 as substantiated in

the following theorem.

Theorem 9.10. Any (ǫ, 9/10)-approximation of H1(A) requires Ω(m/ log m) bits of

space for any ǫ.

Proof. Let prefix denote the following (one-way) communication problem. Alice

has a string x ∈ {0, 1}N and Bob has a string y ∈ {0, 1}N ′

with N ′ ≤ N . Alice

must send a message to Bob, and Bob must answer “yes” if y is a prefix of x, and

“no” otherwise. The one-way probabilistic communication complexity of prefix

is Ω(N/ log N), as the following argument shows. Suppose we could solve prefix

using C bits of communication. Repeating such a protocol O(log n) times in parallel

reduces the probability of failure from constant to O(1/n). But by posing O(n)

prefix queries in response to Alice’s message in this latter protocol, Bob could learn

x with failure probability at most a constant. Therefore, we must have C log n =

Ω(n).

Consider an instance (x, y) of prefix. Let Alice and Bob jointly construct the

stream A = 〈a1, a2, . . . , aN , b1, b2, . . . , bN ′〉, where ai = (i, xi) for i ∈ [N] and bi =

(i, yi) for i ∈ [N ′]. Note that,

H1(A) = −
∑

i

pi

∑

j

pj|i lg pj|i = 0

114

if x is a prefix of y. But H1(A) 6= 0 if x is not a prefix of y. This reduction proves

that any multiplicative approximation to H1 requires Ω(N/ log N) space, using the

same logic as that in the conclusion of the proof of Theorem 9.8. Since the stream

length m = N + N ′ = Θ(N), this translates to an Ω(m/ log m) lower bound.

Since the above theorem effectively rules out efficient multiplicative approxima-

tion, we now turn our attention to additive approximation. The next theorem (and

its proof) shows how the algorithm in Section 2 gives rise to an efficient algorithm

that additively approximates the kth order entropy.

Theorem 9.11. There exists a one-pass, O(k2ǫ−2 log δ−1 log2 n log2 m)-space, (ǫ, δ)-

additive-approx. for Hk(A).

Proof. We first rewrite the kth order entropy as follows.

Hk(A) = −
∑

i1,i2,...,ik+1

pi1pi2|i1 . . . pik+1|i1i2...ik lg pik+1|i1i2...ik

=
∑

i1,i2,...,ik+1

mi1...ik+1

m− k
lg

mi1...ik

mi1...ik+1

= −
∑

i1,i2,...,ik

mi1...ik

m− k
lg

m− k

mi1...ik

+
∑

i1,i2,...,ik+1

mi1...ik+1

m− k
lg

m− k

mi1...ik+1

= H(pk+1)−H(pk)

where pk is the distribution over nk points with pk
i1i2...ik

= mi1i2...ik/(m − k) and

pk+1 is the distribution over nk+1 points with pk
i1i2...ik+1

= mi1i2...ik+1
/(m − k). Since

H(pk) is less than k lg n, if we approximate it to a multiplicative factor of at most

(1+ǫ/(2k lg n)) then we have an additive ǫ/2 approximation. Appealing to Theorem

9.5 this can be done in O(k2ǫ−2 log(δ−1) log2(n) log(m)) space. We can deal with

H(pk+1) similarly and hence we get an ǫ additive approximation for Hk(A). Directly

implementing these algorithms, we need to store strings of k characters from the

input stream as a single kth order character; for large k, we can hash these strings

onto the range [m2]. Since there are only m − k substrings of length k, then there

115

are no collisions in this hashing w.h.p., and the space needed is only O(log m) bits

for each stored item or counter.

9.3 Entropy of a Random Walk

In Theorem 9.10 we showed that it was impossible to multiplicatively approximate

the first order entropy, H1, of a stream in sub-linear space. In this section we consider

a related quantity HG, the unbiased random walk entropy. We will discuss the nature

of this relationship after a formal definition.

Definition 9.12. For a data stream A = 〈a1, a2, . . . , am〉, with each token aj ∈
[n], we define an undirected graph G(V, E) on n vertices, where V = [n] and E =

{{u, v} ∈ [n]2 : u = aj , v = aj+1 for some j ∈ [m− 1]}. Let di be the degree of node

i. Then the unbiased random walk entropy of A is defined as,

HG :=
1

2|E|
∑

i∈[n]

di lg di .

Consider a stream formed by an unbiased random walk on an undirected graph

G, i.e., if ai = j then ai+1 is uniformly chosen from the dj neighbors of j. Then HG

is the limit of H1(A) as the length of this random walk tends to infinity:

1

2|E|
∑

i∈[n]

di lg di = lim
m→∞

∑

i∈[n]

mi

m

∑

j∈[n]

mij

mi
lg

mi

mij
= lim

m→∞
H1(〈a1, a2, . . . , am〉) ,

since limm→∞(mij/mi) = 1/di and limm→∞(mi/m) = di/(2|E|) as the stationary

distribution of a random walk on an undirected graph is

(d1/(2|E|), d2/(2|E|), . . . , dn/(2|E|)) .

See Section 4.3 of Cover and Thomas [CT91], for example, for more context. We

focus on computing HG rather than on computing the entropy of a sample walk,

116

since this gives greater flexibility: it can be computed on arbitrary permutations of

the edges, for example, and only requires that each edge be observed at least once.

For the rest of this section it will be convenient to reason about a stream E ′ that

can be easily transduced from A. E ′ will consist of m − 1, not necessarily distinct,

edges on the set of nodes V = [n], E ′ = 〈e1, e2, . . . , em−1〉 where ei = (ai, ai+1) .

Note that E is the set produced by removing all duplicate edges in E ′.

Overview of the algorithm: Our algorithm uses the standard AMS-Estimator

as described in Section 9.1. However, because E ′ includes duplicate items which we

wish to disregard, our basic estimator is necessarily more complicated. The algo-

rithm combines ideas from multi-graph streaming [CM05b] and entropy-norm esti-

mation [CDM06] and uses min-wise hashing [Ind01] and distinct element estimators

[BYJK+02].

Ideally the basic estimator would sample a node w uniformly from the multi-set in

which each node u occurs du times. Then let r be uniformly chosen from {1, . . . , dw}.
If the basic estimator were to return g(r) = f(r)− f(r−1) where f(x) = x lg x then

the estimator would be correct in expectation:

∑

w∈[n]

dw

2|E|
∑

r∈[dw]

1

dw
(f(r)− f(r − 1)) =

1

2|E|
∑

w∈[n]

dw lg dw .

To mimic this sampling procedure we use an ǫ-min-wise hash function h [Ind01]

to map the distinct edges in E ′ into [m]. It allows us to pick an edge e = (u, v)

(almost) uniformly at random from E by finding the edge e that minimizes h(e).

We pick w uniformly from {u, v}. Note that w has been chosen with probability

proportional to (1± ǫ) dw

2|E|
. Let i = max{j : ej = e} and consider the r distinct edges

among {ei, . . . , em} that are incident on w. Let e1, . . . , edw be the dw edges that are

incident on w and let ik = max{j : ej = ek} for k ∈ [dw]. Then r is distributed as

|{k : ik ≥ i}| and hence takes a value from {1, . . . , dw} with probability (1± ǫ)/dw.

Unfortunately we cannot compute r exactly unless it is small. If r ≤ ǫ−2 then

we maintain an exact count, by keeping the set of distinct edges. Otherwise we

117

compute an (ǫ, δ)-approximation of r using a distinct element estimation algorithm,

e.g. [BYJK+02]. Note that if this is greater than n we replace the estimate by n to

get a better bound. This will be important when bounding the maximum value of

the estimator. Either way, let this (approximate) count be r̃. We then return g(r̃).

The next lemma demonstrates that using g(r̃) rather than g(r) only incurs a small

amount of additional error.

Lemma 9.13. Assuming ǫ < 1/4, Pr [|g(r)− g(r̃)| ≤ O(ǫ)g(r)] ≥ 1− δ.

Proof. If r ≤ ǫ−2, then r = r̃, and the claim follows immediately. Therefore we focus

on the case where r > ǫ−2. Let r̃ = (1 + γ)r where |γ| ≤ ǫ. We write g(r) as the

sum of the two positive terms,

g(r) = lg(r − 1) + r lg(1 + 1/(r − 1))

and will consider the two terms in the above expression separately.

Note that for r ≥ 2, r̃−1
r−1

= 1 ± 2ǫ. Hence, for the first term, and providing the

distinct element estimation succeeds with its accuracy bounds,

| lg(r̃ − 1)− lg(r − 1)| =

∣
∣
∣
∣
lg

r̃ − 1

r − 1

∣
∣
∣
∣

= O(ǫ) ≤ O(ǫ) lg(r − 1) .

where the last inequality follows since r > ǫ−2, ǫ < 1
4
, and hence lg(r − 1) > 1.

Note that for r ≥ 2, r lg
(
1 + 1

r−1

)
≥ 1. For the second term,

∣
∣
∣
∣
r lg

(

1 +
1

r − 1

)

− r̃ lg

(

1 +
1

r̃ − 1

)∣
∣
∣
∣
≤ O(ǫ)r lg

(

1 +
1

r − 1

)

.

Hence |g(r)− g(r̃)| ≤ O(ǫ)g(r) as required.

Theorem 9.14. There is a one-pass, Õ(ǫ−4)-space, (ǫ, δ)-approx. for HG.

Proof. Consider the expectation of the basic estimator:

E[X] =
∑

w∈[n]

(1± O(ǫ))dw

2|E|
∑

r∈[dw]

1±O(ǫ)

dw
(f(r)− f(r − 1)) =

1±O(ǫ)

2|E|
∑

w∈[n]

dw lg dw .

118

Note that since the graph G is revealed by a random walk, this graph must be

connected. Hence |E| ≥ n− 1 and dw ≥ 1 for all w ∈ V . But then
∑

w dw = 2|E| ≥
2(n− 1) and therefore,

1

2|E|
∑

w∈[n]

dw lg dw ≥ lg
2|E|
n
≥ lg 2(1− 1/n) .

The maximum value taken by the basic estimator is,

max[X] ≤ max
1≤r≤n

(f(r)− f(r − 1)) ≤
(

n lg
n

n− 1
+ lg(n− 1)

)

< (2 + lg n) .

Therefore, by appealing to Lemma 9.2, if we take c independent copies of this estima-

tor we can get a (ǫ, δ)-approximation to E[X] if c ≥ 6ǫ−2(2 + lg n) ln(2δ−1)/(lg 2(1−
1/n)). Hence, with probability 1−O(δ), the value returned is (1±O(ǫ))HG.

The space bound follows because for each of the O(ǫ−2 log n log δ−1) basic estima-

tors we require an ǫ min-wise hash function using O(log n log ǫ−1) space [Ind01] and

a distinct element counter using O((ǫ−2 log log n + log n) log δ−1
1) space [BYJK+02]

where δ−1
1 = O(cδ−1). Hence, rescaling ǫ and δ gives the required result.

Our bounds are independent of the length of the stream, m, since there are only

n2 distinct edges, and our algorithms are not affected by multiple copies of the same

edge. Note that our algorithm is still correct if the multi-set of edges E ′ arrives in

an arbitrary order, i.e., it is not necessary that (u, v) is followed by (v, w) for some

w. Hence, it also belongs to the graph-stream paradigm discussed in Chapter 10.

9.4 Testing Entropy (Combined Oracle)

In this section we present a simple algorithm that achieves the optimal bounds for

estimating the entropy in the combined oracle model. This algorithm improves upon

the previous upper bound of Batu et al. [BDKR05] by a factor of Ω(log n/H) where

H is the entropy of the distribution. The authors of [BDKR05] showed that their

algorithms were tight for H = Ω(log n); we show that the upper and lower bounds

119

Algorithm Combined Oracle Entropy Testing
1. E ← 0
2. for t = 1 to m:
3. do i← sample(p)
4. pi ← probe(p, i)
5. if pi ≥ n−3 then a← lg(1/pi)/(3 lg n) else a← 0
6. E ← a + E
7. return 3E lg n/m

Figure 9.2: Entropy-Testing (Combined Oracle Model)

match for arbitrary H . The algorithm is presented in Figure 9.2. It is structurally

similar to the algorithm given in [BDKR05] but uses a cutoff that will allow for a

tighter analysis via Chernoff bounds.

The next lemma estimates the contribution of the unseen elements and that leads

to the main theorem about estimating entropy in the combined oracle model.

Lemma 9.15. For any S ⊂ [n], lg 1/pi ≤ lg(n/
∑

i∈S pi)
∑

i∈S pi.

Theorem 9.16. There exists an (ǫ, δ)-approximation algorithm for H(p) making

O(ǫ−2H−1 log(n) log(δ−1)) combined-oracle queries.

Proof. We restrict our attention to the case when H(p) > 1/n and ǫ > 1/
√

n since

otherwise we can trivially find the entropy exactly in O(1/ǫ2H(p)) time by simply

probing each i ∈ [n]. Consider the value a added to E in each iteration. This is a ran-

dom variable with range [0, 1] since pi ≥ 1/n3 guarantees that− lg(1/pi)/(3 lg n) ≤ 1.

Now, the combined mass of all pi such that pi < 1/n3 is at most 1/n2. Therefore,

by Lemma 9.15 the maximum contribution to the entropy from such i is at most

3n−2 lg n ≤ ǫH(p)/2 for sufficiently large n. Hence,

(1− ǫ/2)H(p)/(3 lgn) ≤ E [a] ≤ H(p)/(3 lg n),

and therefore, if we can (ǫ/2, δ)-approximate E [a] then we are done. By applying

the Chernoff-Hoeffding bounds, this is achieved for the chosen value of m. Therefore

with O(ǫ−2H−1 log(n) log(δ−1)) samples/probes the probability that we do not 1+ǫ/2

approximate E [a] is at most δ.

120

Part III

Graph Streams

121

Chapter 10

Introduction

10.1 Graph Streams

In this section of the thesis we present the first comprehensive treatment of streaming

problems in which the stream defines an undirected, unweighted, simple graph in the

following way.

Definition 10.1 (Graph Stream). For a data stream A = 〈a1, a2, . . . , am〉, with each

data item aj ∈ [n] × [n], we define a graph G on n vertices V = {v1, . . . , vn} with

edges E = {(vi, vk) : aj = (i, k) for some j ∈ [m]}.

We normally assume that each aj is distinct although this assumption is often

not necessary. When the data items are not distinct, the model can naturally be

extended to consider multi-graphs, i.e., an edge (vi, vk) has multiplicity equal to

|{j : aj = (i, k)}|. Similarly, we mainly consider undirected graphs but the definition

can be generalized to define directed graphs. Sometimes we will consider weighted

graphs and in this case aj ∈ [n] × [n] × N where the third component of the data

item indicates a weight associated with the edge. Note that some authors have also

considered a special case of the model, the adjacency-list model, in which all incident

edges are grouped together in the stream [BYKS02], we will be primarily interested

in the fully general model.

122

Massive graphs arise naturally in many real world scenarios. Two examples

are the call-graph and the web-graph. In the call-graph, nodes represent telephone

numbers and edges correspond to calls placed during some time interval. In the

web-graph, nodes represent web pages, and the edges correspond to hyper-links

between pages. Also, massive graphs appear in structured data mining, where the

relationships among the data items in the data set are represented as graphs. When

processing these graphs it is often appropriate to use the streaming model. For

example, the graph may be revealed by a web-crawler or the graph may be stored

on external memory devices and being able to process the edges in an arbitrary

order improves I/O efficiency. Indeed, the authors of [KRRT99] argue that one of

the major drawbacks of standard graph algorithms, when applied to massive graphs

such as the web, is their need to have random access to the edge set.

10.1.1 Related Work

Prior to the work contained in this thesis there was only a few results concerning

graph streams [HRR99, BYKS02, BGW03]. Subsequently, the area has attracted

more interest [JG05, CM05b, EZ06, BFL+06, Zel06, GS06, Bas06, Elk07] and a

couple of other papers have considered graph problems in a various extensions of

the streaming model [ADRR04, DFR06]. Much of this work is of a statistical na-

ture, e.g. counting triangles [BFL+06, BYKS02, JG05] or estimating frequency and

entropy moments of the degrees in a multi-graph [CM05b, CCM07]. It seemed

that more “complicated” computation was not possible in this model. For exam-

ple, Buchsbaum et al. [BGW03] demonstrated the intrinsic difficultly of computing

common neighborhoods in the streaming model with small space.

In general it seems that most graph algorithms need to access the data in a very

adaptive fashion. Since we can not store the entire graph (this would require O(m)

space), emulating a traditional algorithm may necessitate an excessive number of

passes over the data. One possible alternative is to consider algorithms that use

123

O(n polylog n) space, i.e., space proportional to the number of nodes rather than

the number of edges. For a massive dense graph this requires considerably less

space than storing the entire graph. This restriction was identified as an apparent

“sweet-spot” for graph streaming in a survey article by Muthukrishnan [Mut06] and

dubbed the semi-streaming space restriction in Feigenbaum et al. [FKM+05b]. This

spurred further research on designing algorithm for solving graph problems in the

streaming model such as distance estimation [FKM+05b, FKM+05a, EZ06, Bas06,

Elk07], matchings [FKM+05b, McG05] and connectivity [FKM+05b, Zel06]. We will

provide further discussion on the results on distance estimation and matching in the

next two sections.

A related model is the semi-external model. This was introduced by Abello et

al. [ABW02] for computations on massive graphs. In this model the vertex set

can be stored in memory, but the edge set cannot. However, this work addresses

the problems in an external memory model in which random access to the edges,

although expensive, is allowed. Lastly, graph problems have been considered in a

model that extends the stream model by allowing the algorithm to write to the

stream during each pass [ADRR04, DFR06]. These annotations can then be utilized

by the algorithm during successive passes. [ADRR04] goes further and suggests a

model in which sorting passes are permitted in which the data stream is sorted

according to a key encoded by the annotations.

10.2 Distances

In this section we present results pertaining to the estimation of graph distances

in the data stream model. Graph distance is a natural quantity when trying to

understand properties of massive graphs such as the diameter of the world-wide-web

[AJB99]. We start with a formal definition of the relevant terms.

124

Definition 10.2 (Graph Distance, Diameter, and Girth). For an undirected, un-

weighted graph G = (V, E) we define a distance function dG : V ×V → {0, . . . , n−1}
where dG(u, v) is the length of the shortest path in G between u and v. The diameter

of G is the length of the longest shortest path, i.e.,

Diam(G) = max
u,v∈V

dG(u, v) .

The girth of G is the length of the shortest cycle in G, i.e.,

Girth(G) = 1 + min
(u,v)∈E

dG\(u,v)(u, v) .

The above definitions extend naturally to weighted graphs.

10.2.1 Related Work

Designing algorithms for computing graph distances is a well studied problem in

computer science. Classic algorithms such as Dijkstra’s algorithm, the Bellman-Ford

algorithm and the Floyd-Warshall algorithm are taught widely [CLRS01]. Recent

research has focused on computing approximate graph distances [ABCP98, Elk01,

TZ01, BS03]. Unfortunately these algorithms are inherently unsuitable for comput-

ing distances in the streaming model. In particular, an important sub-routine of

many of the existing algorithms is the construction of Breadth-First-Search (BFS)

trees. One of our main results is a lower-bound on the number of passes required by

an algorithm that computes a BFS tree.

Algorithms for approximating distances in the streaming model were presented in

[FKM+05a, FKM+05b, EZ06, Bas06, Elk07]. These algorithms approximate distance

by constructing spanners.

Definition 10.3 (Spanners). A subgraph H = (V, E ′) is a (α, β)-spanner of G =

(V, E) if, for any vertices x, y ∈ V ,

dG(x, y) ≤ dH(x, y) ≤ α · dG(x, y) + β .

125

In [FKM+05a], we present a randomized streaming algorithm that constructs a

(2t + 1, 0)-spanner in one pass. With probability 1 − 1/nΩ(1), the algorithm uses

O(tn1+1/t log2 n) bits of space and processes each edge in O(t2n1/t log n) time. Using

this spanner, all distances in the graph can be approximated up to a factor of (2t+1).

This improves upon an algorithm that can be found in [FKM+05b]. That construc-

tion had similar space requirements but was much slower taking O(n) time to process

each edge. Both algorithms can be generalized to weighted graphs. Recent results

have further improved this construction [Bas06, Elk07]. [EZ06] present algorithms

for constructing (α, β)-spanners. However, these algorithms require multiple passes

over the stream.

10.2.2 Our Results

In these section we focus on negative results. The lower-bounds we present comple-

ment the algorithms presented in [FKM+05a, Zha05]

1. Connectivity and Balanced Properties: We show that testing any of a large

class of graph properties, which we refer to as balanced properties, in one pass

requires Ω(n) space. This class includes properties such as connectivity and

bipartite-ness. This result provides a formal motivation for the semi-streaming

space restriction where algorithms are permitted O(n polylog n) space.

2. Graph Distances and Graph Diameter: We show that any single pass algorithm

that approximates the (weighted) graph distance between two given nodes up

to a factor 1/γ with probability at least 3/4 requires Ω(n1+γ) bits of space.

Furthermore, this bound also applies to estimating the diameter of the graph.

The lower-bound shows that the algorithms in [FKM+05a, Zha05] are close to

optimal.

3. Breadth-First-Search Trees: Let γ be a constant in the range (0, 1) and l ∈
[⌊1/γ⌋]. Computing the first l layers of a BFS tree from a prescribed node

126

requires either ⌈(l − 1)/2⌉ passes or Ω(n1+γ) bits of space. On the other hand,

it will be trivial to construct the first l layers of a BFS tree with l passes even

in space O(n logn). Constructing BFS trees is a very common sub-routine

in many graph algorithms. Hence this result demonstrates the need for sub-

stantially different algorithmic techniques when computing in the streaming

model.

4. Girth: Any P -pass algorithm that ascertains whether the length of the shortest

cycle is longer than g, requires Ω
(
P−1(n/g)1+4/(3g−4)

)
bits of space.

Trade-offs: The above results indicate various trade-offs between model parame-

ters and accuracy. This include the smooth trade-off between the space a single-pass

algorithm is permitted and the accuracy achievable when estimating graph distances.

For multiple-pass algorithms, a smooth trade-off between passes and space is evident

when trying to compute the girth of a graph. This trade-off is, in a sense. funda-

mental as it indicates that the only way to get away with using half the amount of

space is essentially to make half as much progress in each pass. The trade-off be-

tween space and passes when computing BFS-trees indicates that as we restrict the

space, no algorithm can do much better than emulating a trivial traditional graph

algorithm and will consequently require an excessive number of passes.

10.3 Matchings

In this section we present algorithms for computing maximum cardinality matching

and maximum weighted matching. We start with basic definitions for these problems

before reviewing related work.

Definition 10.4 (Matching). Given a graph G = (V, E), the Maximum Cardinality

Matching (MCM) problem is to find the largest set of edges such that no two adja-

cent edges are selected. More generally, for an edge-weighted graph, the Maximum

127

Weighted Matching (MWM) problem is to find the set of edges whose total weight is

maximized subject to the condition that no two adjacent edges are selected.

10.3.1 Related Work

Computing large matchings is classic graph problem. Exact polynomial solutions

are known [Edm65, Gab90, HK73, MV80] for MCM and MWM. The fastest of

these algorithms solves the maximum weighted matching problem with running time

O(nm + n2 log n) where n = |V | and m = |E|.
However, for massive graphs in real world applications, the above algorithms can

still be prohibitively slow. Consequently there has been much interest in faster al-

gorithms, typically of O(m + n) complexity, that find good approximate solutions

to the above problems. For MCM, a linear time approximation-scheme was given

by Kalantari and Shokoufandeh [KS95]. The first linear time approximation algo-

rithm for MWM was introduced by Preis [Pre99]. This algorithm achieved a 1/2

approximation ratio. This was later improved upon by the (2/3 − ǫ) linear time1

approximation algorithm given by Drake and Hougardy [DH03]. A simplified version

of this result was given by Pettie and Sanders [PS04].

In addition to concerns about time complexity, when computing with massive

graphs it is no longer reasonable to assume that we can store the entire input graph

in random access memory. In this case the above algorithms are not applicable as

they require random access to the input. With this in mind, we consider the problem

in the graph stream model.

MCM and MWM have previously been studied under similar assumptions by

Feigenbaum et al. [FKM+05b]. The best previously attained results were a 1/6

approximation to MWM and for ǫ > 0 and a (2/3− ǫ)-approximation to MCM on

the assumption that the graph is a bipartite graph. We improve upon both of these

results.

1Note that here, and throughout this section, we assume that ǫ is an arbitrarily small constant.

128

10.3.2 Our Results

We present the following O(m)-time, O(n polylog n)-space algorithms:

1. Maximum Cardinality Matching: A single pass, 1/2-approximation for maxi-

mum cardinality matchings. For any ǫ > 0, Oǫ(1) pass (1− ǫ)-approximation.

2. Maximum Weighted Matching: A single pass, 1/(3 + 2
√

2)-approximation for

maximum weighted matchings. For ǫ > 0, a Oǫ(1) pass (1/2−ǫ)-approximation.

Trade-offs: The trade-offs that are implicit in our algorithms are more positive

than those discussed in the previous section. While the single pass algorithms will be

relatively straightforward, the main challenge in improving upon the matchings that

can be found in one pass will be how to fully utilize the successive passes. For both

the weighted and unweighted case we will show how to “grow” a matching using a

small number of passes and thereby achieve the claimed approximation factors.

129

Chapter 11

Graph Distances

Chapter Outline: In this chapter we present the technical details behind the

results related to graph distance in the data-stream model. We start by showing

that testing a range of basic graph properties such as whether a graph is connected

or bipartite requires space proportional the number of nodes. This justifies the

semi-streaming model. We then present a lower-bounds on the space required to

approximate graph distances or to construct breadth-first-search trees. We conclude

with a lower-bound on the space required to determine the girth of a graph. For

background see Chapter 10.

11.1 Connectivity and other Balanced Properties

Our first result shows that a large class of problems can not be solved by a single

pass streaming algorithm in small space. Specifically, we identify a general type of

graph property1 and show that testing any such graph property requires Ω(n) space.

Definition 11.1 (Balanced Properties). We say a graph property P is balanced if

there exists a constant c > 0 such that for all sufficiently large n, there exists a graph

1A graph property is simply a boolean function whose variables are the elements of the adjacency
matrix of the graph but whose value is independent of the labeling of the nodes of the graph.

130

G = (V, E) with |V | = n and u ∈ V such that:

min{|{v : (V, E ∪ {(u, v)}) has P}|, |{v : (V, E ∪ {(u, v)}) has ¬P}| } ≥ cn .

Note that many interesting properties are balanced including connectivity, bipar-

titeness, and whether there exists a vertex of a certain degree.

Theorem 11.2. Testing any balanced graph property P with probability 2/3 requires

Ω(n) space.

Proof. Let c be a constant, G = (V, E) be a graph on n vertices and u ∈ V be a

vertex satisfying the relevant conditions.

The proof is by a reduction to the communication complexity of Index. Let

(x, j) ∈ F
cn
2 × [cn] be an instance of Index. Let G(x) be a relabeling of the vertices

of G such that u = vn and for i ∈ [cn], (V, E ∪ {(vn, vi)}) has P iff xi = 1. Such a

relabeling is possible because P does not depend on the labeling of the vertices. Let

e(j) = (vj , vn). Hence the graph determined by the edges of G(x) and e(j) has P iff

xj = 1. Therefore, any single pass algorithm for testing P using M bits of work space

gives rise to a one-message protocol for solving Index. Therefore M = Ω(cn).

For some balanced graph properties the above theorem can be generalized. For

example it is possible to show that any p-pass algorithm that determines if a graph

is connected requires Ω(np−1) bits of space [DFR06].

11.2 Graph-Distances and Graph-Diameter

In this section we show a lower-bound on the amount of space required to approxi-

mate the length of the shortest path between two nodes. Our bound also applies to

estimating the diameter of the graph. Integral to our proof is the notion of an edge

being k-critical.

Definition 11.3. In a graph G = (V, E), an edge e = (u, v) ∈ E is k-critical if

dG\(u,v)(u, v) ≥ k.

131

In Lemma 11.4 we show the existence of a graph G with a large subset of edges

E ′ such that each edge in E ′ is k-critical but the removal of all edges in E ′ still leaves

a graph with relatively small diameter. The proof is by a probabilistic argument.

Lemma 11.4. For any γ > 0, k = ⌊1/γ − ǫ⌋ (for some arbitrarily small constant

ǫ > 0) and sufficiently large n, there exists a set E of edges partitioned into two

disjoint sets E1 and E2 on a set of n nodes V such that,

1. |E2| = n1+γ/64.

2. Every edge in E2 is k-critical for G = (V, E).

3. Diam(G1) ≤ 2/γ where G1 = (V, E1).

Proof. Consider choosing a random graph G′ = (V, E ′) on n nodes where each edge

is present with probability p = 1/(2n1−γ). This is commonly denoted as G′ ∼ Gn,p.

We will then construct G1 = (V, E1) by deleting each edge in G′ with probability

1/2. We will show that with non-zero probability the sets E1 and

E2 = {e ∈ E ′ \ E1 : e is k-critical for G′},

satisfy the three required properties. Hence, there exist sets with the required prop-

erties.

The second property is satisfied by construction. It follows from the fact that if

an edge is k-critical in a graph G, then it is also k-critical in any subgraph of G. We

now argue that the third property is satisfied with probability at least 9/10. First

note that the process that generates G1 is identical to picking G1 ∼ Gn,p/2. It can be

shown that with high probability, the diameter of such a graph is less than 2/γ for

sufficiently large n [Bol85, Corollary 10.12].

We now show that the first property is satisfied with probability at least 9/10.

Applying the Chernoff bound and the union bound proves that with probability at

least 99/100, the degree of every vertex in G′ is between nγ/4 and nγ .

132

Now consider choosing a random graph and a random edge in that graph si-

multaneously, i.e., G′ = (V, E ′) ∼ Gn,p and an edge (u, v) ∈R E ′. We now try to

lower-bound the probability that(u, v) is k-critical in G′. Let Γi(v) = {w ∈ V :

dG′\(u,v)(v, w) ≤ i}. For sufficiently large n,

|Γk(v)| ≤
∑

0≤i≤k

niγ ≤ 2nkγ ≤ (n− 1)/100 .

As G′ varies over all possible graphs, by symmetry, each vertex is equally likely

to be in Γk(v). Thus the probability that u is not in this set is at least 99/100. By

Markov’s inequality,

Pr
[
|{(u, v) ∈ E ′ : dG′\(u,v)(u, v) ≥ k}| ≥ |E ′|/2

]
≥ 98/100 .

Note that if the degree of every vertex in G′ is at least nγ/4 then |E ′| ≥ n1+γ/8.

Hence,

Pr
[
|{(u, v) ∈ E ′ : dG′\(u,v)(u, v) ≥ k}| ≥ n1+γ/16

]
≥ 97/100 .

Given that each edge in E ′ is independently deleted with probability 1/2 to form

E1, by a further application of the Chernoff bound we deduce that,

Pr
[
|{(u, v) ∈ E ′ \ E1 : dG′\(u,v)(u, v) ≥ k}| ≥ n1+γ/64

]
≥ 96/100 .

From this set of k-critical edges we can certainly choose a subset whose size is

exactly n1+γ/64 as required by statement 1.

Therefore all three properties hold with probability at least 1− 2/10 = 4/5.

Theorem 11.5. For any constant γ > 0, any single pass algorithm that, with prob-

ability at least 3/4, returns D̃ such that for an arbitrarily small ǫ > 0,

Diam(G) ≤ D̃ ≤ (⌊1/γ − ǫ⌋ − 1) Diam(G)

where G is a weighted graph on n nodes, requires Ω(n1+γ) space.

133

s

t

V2V1 Vr

...

Figure 11.1: Diameter Lower-Bound Construction. Edges Ex/Ej/Em are dot-
ted/dashed/solid.

Proof. Let (x, j) ∈ F
t
2× [t] by an instance of Index. We will show how to transform

an algorithm A for approximating the diameter of a graph into a protocol for Index.

Let G = (V, E = E1 ∪ E2) be a graph on n′ = (64t)1/(1+γ) nodes with the

properties listed in Lemma 11.4. G is hardwired into the protocol. An enumeration

of the edges in E2, e1, . . . , et is also hardwired into the protocol.

Alice forms the graph Gx = (V, Em ∪ Ex) where, Ex = {ei ∈ E2 : xi = 1} and

Em = E1. She then creates the prefix of a stream by taking r (to be determined

later) copies of Gx, i.e., a graph on n′r vertices {v1
1, . . . , v

1
n′, v2

1, . . . , v
2
n′, v3

1, . . . , v
r
n′}

and with edge set, {(vi
j , v

i
k) : i ∈ [r], (vj, vk) ∈ Ex}. All these edges have unit weight.

Let j be the index in the instance of Index and let ej = (a, b). Bob determines

the remaining edges Ej as follows: r−1 edges of zero weight, {(vi
b, v

i+1
a) : i ∈ [r−1]},

and two edges of weight 2k + 2, (s, v1
a) and (vr

b , t). See Fig. 11.1.

Regardless of the values of x and j, the diameter of the graph described by the

stream equals dG(s, t). Note that xj = 1 implies dG(s, t) = r + 4k + 3. However,

if xj = 0 then dG(s, t) ≥ k(r − 1) + 4k + 4. Hence for r = 1 + (4k + 4)(k − 2),

the ratio between k(r − 1) + 4k + 4 and r + 4k + 3 is at least k − 1. Hence any

single-pass algorithm that approximates the diameter to within a factor k − 1 gives

rise to a one-way protocol for solving Index. Therefore, any such algorithm requires

Ω(n1+γ) bits of space since the total number of nodes in the construction is n =

O((64t)1/(1+γ)k2).

134

11.3 Constructing BFS-Trees

In this section we prove a lower bound on the number of passes required to construct

the first l layers of breadth first search tree in the streaming model. The result is

proved using a reduction from the communication-complexity problem “multi-valued

pointer chasing.” This is a naturally defined generalization of the pointer-chasing

problem considered by Nisan and Wigderson [NW93]. We prove the first results on

the multi-round communication complexity of the problem.

Overview of Proof: Nisan and Wigderson [NW93] considered the problem where

Alice and Bob have functions fA and fB respectively, mapping [m] to [m]. The

k-round pointer chasing problem is to output the result of starting from 1 and alter-

natively applying fA and fB a total of k times, starting with fA. Nisan and Wigder-

son proved that if Bob speaks first the communication complexity of any k-round

communication protocol to solve this problem is Ω(m/k2− k log m). Jain, Radhakr-

ishnan, and Sen [JRS03] gave a direct sum extension showing that if there are t pairs

of functions and the goal is to perform k-round pointer chasing as above on each

pair, the communication complexity lower bound is approximately t times the bound

of [NW93]. More precisely, they showed a lower bound of Ω(tm/k3 − tk log m− 2t)

for the problem.

We show how the lower bound of [JRS03] also implies a lower bound on the

communication complexity of pointer chasing with t-valued functions. If fA and fB

are such functions, then the result of pointer chasing starting from 1 produces a

set of size at most tk. The key difference between this problem and the problem of

[JRS03] is that in the problem of [JRS03] we are only concerned with chasing “like”

pointers. In other words, if we get to an element j using the function f i
A, then we

can only continue with f i
B. Nevertheless, we show by our reduction that the two

problems have fairly similar communication complexity.

Finally, we create a layered graph with l layers in which alternate layers have edges

135

corresponding to d-valued functions fA and fB. In order to construct the breadth

first search tree, we must solve the l-round, d-valued pointer chasing problem and

the lower bound above applies. This will lead to the following theorem.

Theorem 11.6 (BFS Lower Bound). Let γ be a constant in the range (0, 1) and let

l ∈ {1, . . . , 1/γ}. Computing the first l layers of a BFS from a prescribed node with

probability at least 2/3 requires (l − 1)/2 passes or Ω(n1+γ) space.

Formal Argument: We now present the above argument formally. In the follow-

ing definition, for a function f : [m]→ [m] and set A ⊂ [m] we denote,

f(A) := {j : f(i) = j for some i ∈ A} .

Definition 11.7 (d-valued Pointer Chasing). Let Fd be the set of all d-valued func-

tions from [m] to [m]. Define gd,k : Fd × Fd → P ([m]) by gd,0(fA, fB) = 1 and,

gd,i(fA, fB) =







fA(gd,i−1(fA, fB)) if i odd

fB(gd,i−1(fA, fB)) if i even
,

where P ([m]) denotes the power-set of [m]. Note that gd,k is a set of size at most

dk. Let ḡd,k : Fd × Fd → P ([m])k be the function,

ḡd,k(fA, fB) = 〈gd,1(fA, fB), . . . , gd,k(fA, fB)〉 .

Let gt
1,k : F t

1 × F t
1 → P ([m])t be the t-fold direct sum of g1,k, i.e.,

gt
1,k(〈f 1

A, . . . , f t
A〉, 〈f 1

B, . . . , f t
B〉) = 〈g1,k(f

1
A, f 1

B), . . . , g1,k(f
t
A, f t

B)〉 .

Let Alice have function fA and Bob have function fB. Let Rr
δ(gd,k) be the r-

round randomized communication complexity of gd,k where Bob speaks first, i.e., the

number of bits sent in the worst case (over all inputs and random coin tosses) by

the best r-round protocol Π in which, with probability at least 1− δ, both Alice and

Bob learn gd,k.

136

Theorem 11.8 (Nisan, Wigderson [NW93]). Rk
µ1,1/3(g1,k) = Ω(m/k2 − k log m)

The following direct-sum theorem for g1,k is proved by [JRS03] using the notion

of the information complexity.

Theorem 11.9 (Jain et al. [JRS03]). Rk
1/4(g

t
1,k) = Ω(tmk−3 − tk log m− 2t).

We use the above Theorem 11.9 to prove the main communication complexity of

this section.

Theorem 11.10. Rk−1
1/8 (ḡd,k) = Ω(dm/k3 − dk log m− 2d− 12dk lg m− km).

Proof. The proof will be using a reduction from gd
1,k. Let (〈f 1

A, . . . , fd
A〉, 〈f 1

B, . . . , fd
B〉)

be an instance of gd
1,k Define f ∗

A and f ∗
B by,

f ∗
A(j) := {f i

A(j) : i ∈ [d]} and f ∗
B(j) := {f i

B(j) : i ∈ [d]} .

Assume there exists a (k−1)-round protocol Π for ḡd,k that fails with probability

at most 1/4 and communicates o(dm/k3 − dk log m − 2d − 12dk lg m − km) bits in

the worst case. We will show how to transform Π into a protocol Π′ for gd
1,k that

fails with probability at most 1/4 and communicates o(dm/k3 − dk log m− 2d) bits

in the worst case. This will be a contradiction by Theorem 11.9 and hence there was

no such protocol for ḡd,k.

If Π is successful then the player who sends the last message, mk−1, of Π knows

ḡd,k(f
∗
A, f ∗

B) = 〈gd,1(f
∗
A, f ∗

B), . . . , gd,k(f
∗
A, f ∗

B)〉 .

Assume this message is sent my Alice. In Π′ we append mk−1 with ḡd,k and the

following set of triples,

{〈i, j, f i
A(j)〉 : i ∈ [d], j ∈

⋃

r∈{0}∪[k−1]:even

gd,r(f
∗
A, f ∗

B)} .

Sending ḡd,k(f
∗
A, f ∗

B) adds at most an extra km bits of communication. Sending the

triples adds at most an extra 6dk lg m bits of communication since |gd,r(f
∗
A, f ∗

B)| ≤ dr.

137

The final message of Π′ is the set of triples,

{〈i, j, f i
B(j)〉 : i ∈ [d], j ∈

⋃

r∈[k−1]:odd

gd,r(f
∗
A, f ∗

B)} .

Again, sending the triples adds at most an extra 6dk lg m bits of communication.

Hence Π′ communicates o(dm/k3 − dk log m− 2d) bits in the worst case.

We are now ready to prove Theorem 11.6.

Proof of Theorem 11.6. We do a reduction from d-valued pointer chasing. Let m =

n/(l + 1) and let d = mγ . By Thm 11.10, Rl−1
1/8 (ḡd,l) = Ω(n1+γ) since l is constant.

Consider an instance (fA, fB) of ḡd,l. The graph described by the stream is on

the following set of n = (l + 1)m nodes,

V =
⋃

1≤i≤l+1

{vi
1, . . . , v

i
m} .

For i ∈ [l] we define a set of edges E(i) between {vi
1, . . . , v

i
m} and {vi+1

1 , . . . , vi+1
m } in

the following way:

E(i) =







{(vi
j, v

i+1
k) : k ∈ fA(j)} if i is odd

{(vi
j, v

i+1
k) : k ∈ fB(j)} if i is even

.

Suppose there exists an algorithmA that computes the first l layers of the breadth

first search tree from v1
1 in p passes using memory M . Let Lr be set of nodes that

are exactly distance r from v1
1. Note that for all r ∈ [l],

gd,r = Lr ∩ {vr+1
1 , . . . , vr+1

m } .

Hence by simulating A on a stream starting with
⋃

i∈[l]:even E(i) and concluding with
⋃

i∈[l]:odd E(i) in the natural way we deduce there exists an 2p round communication

protocol for gd,l that uses only 2pM communication. Hence either 2p > l − 1 or

M = Ω(n1+γ).

138

... ...

V2V1 V3 Vg

Figure 11.2: Girth Lower-Bound Construction. The edges Ex are dotted, Ey are
dashed, and Em are solid.

11.4 Girth Estimation

In this section we prove a lower bound on the space required by a multi-pass algo-

rithm that tests whether a graph has girth at most g. We shall make use of the

following result from [LUW95],

Lemma 11.11 (Lazebnik, Ustimenko, and Woldar [LUW95]). Let k ≥ 1 be an odd

integer, t =
⌊

k+2
4

⌋
and q be a prime power. There exists a bipartite, q-regular graph

with at most 2qk−t+1 nodes and girth at least k + 5.

Theorem 11.12. For g ≥ 5, any p-pass algorithm that tests if the girth of an

unweighted graph is at most g, requires Ω
(
p−1(n/g)1+4/(3g−4)

)
space. If g is odd this

can be strengthened to Ω
(
p−1(n/g)1+4/(3g−7)

)
space.

Proof. Let q be a prime power and let k = g − 4 if g is odd and k = g − 3 if g is

even. Let t =
⌊

k+2
4

⌋
. Therefore,

k − t + 1 ≤ k − k + 2

4
+ 3/4 + 1 ≤







(3g − 7)/4 if g is odd

(3g − 4)/4 if g is even
.

139

Then Lemma 11.11 implies that there exists a q-regular graph G′ = (L∪R, E ′) with

at most 2n′ ≤ 2qk−t+1 nodes and girth at least g + 1. We denote L = {l1, . . . , ln′}
and R = {r1, . . . , rn′} and, for each i ∈ [n′], let Di = Γ(li).

Let (x, y) ∈ F
r
2 × F

r
2 by an instance of Set-Disjointness where r = n′q. It will

be convenient to write x = x1 . . . xn′

and y = y1 . . . yn′

where xi, yj ∈ F
q
2. We will

show how to transform a p-pass algorithm A for testing if the girth of a graph is at

most g into a protocol for Set-Disjointness. If A uses M bits of working memory

then the protocol will use Ω(pM). Hence M = Ω(p−1n′q).

Alice and Bob construct a graph G based upon G′, x, and y as follows. For i ∈ [g],

let Vi = {vi
1, . . . , v

i
n′}. For each i ∈ [n′], let Di(x) ⊂ Di be the subset of Di whose

characteristic vector is xi. Di(y) is defined similarly. There are three sets of edges

on these nodes;

Em =
⋃

j∈[g]\{1,⌊g/2⌋}

{(vj
i , v

j+1
i) : i ∈ [n′]},

Ex = {(v1
i , v

2
j) : j ∈ Di(x), i ∈ [n′]}, and

Ey = {(v⌊g/2⌋
j , v

⌊g/2⌋+1
i) : j ∈ Di(y), i ∈ [n′]} .

See Fig. 11.2 for a diagram of the construction.

Note that the Girth(G) = g if there exists i such that Di(x) ∩ Di(y) 6= ∅, i.e.,

x and y are not disjoint. However if x and y are disjoint then the shortest cycle is

at least length 4 + 2
⌊

g−2
2

⌋
≥ g + 1. Hence, determining if the girth is at most g

determines if x and y are disjoint.

140

Chapter 12

Graph Matching

Chapter Outline: In this chapter we present the technical details behind our

results on finding maximum matchings in the data-stream model. We first present

a (1 − ǫ)-approximation in the unweighted case. We then demonstrate a (1/2 − ǫ)-

approximation in the weighted case. For background see Chapter 10.

12.1 Unweighted Matchings

In this section we describe a streaming algorithm that, for ǫ > 0, computes a (1− ǫ)-

approximation to the maximum cardinality matching (MCM) of the streamed graph.

The algorithm will use a Oǫ(1) number of passes. We start by giving some basic

definitions common to many matching algorithms.

Definition 12.1 (Basic Matching Theory Definitions). Given a matching M in a

graph G = (V, E), we call a vertex free if it does not appear as the end point of any

edge in M . A length 2i + 1 augmenting path is a path u1u2 . . . u2i+2 where u1 and

u2i+2 are free and (uj, uj+1) ∈M for even j and (uj, uj+1) ∈ E \M for odd j.

Note that if M is a matching and P is an augmenting path then M△P (the

symmetric difference of M and P) is a matching of size strictly greater than M .

Our algorithm will start by finding a maximal matching and then, by finding short

141

augmenting paths, increase the size of the matching by making local changes. Note

that finding a maximal matching can easily achieved in one pass: we select an edge

iff we have not already selected an adjacent edge. Finding maximal matchings in this

way will be an important sub-routine of our algorithm and we will make repeated

use of the fact that the maximum matching has cardinality at most twice that of

any maximal matching.

The following lemma establishes that, when there are few short augmenting paths,

the size of the matching found can be lower-bound in terms of the size of the maxi-

mum cardinality matching Opt.

Lemma 12.2. Let M be a maximal matching and Opt be a matching of maximum

cardinality. Consider the connected components of Opt△M . Let αi|M | be the num-

ber of connected components with exactly i edges from M and i + 1 edges from Opt.

Then,
(

max
1≤i≤k

αi ≤
1

2k2(k + 1)

)

⇒
(

|M | ≥ Opt

1 + 1/k

)

.

Proof. First note that
∑

i≥k+1 αi ≤ 1/(k + 1) because
∑

i iαi|M | ≤ |M |. In each

connected component of Opt△M with i edges from M there are either i or i + 1

edges from Opt. Therefore,

Opt

|M | ≤ (1−
∑

i

iαi) +
∑

i

(i + 1)αi = 1 +
∑

i

αi ≤ 1 + k(max
1≤i≤k

αi) +
1

k + 1
≤ 1 +

1

k
.

So, if there are αi|M | components in Opt△M with i + 1 edges from Opt and i

edges from M , then there are at least αi|M | length 2i + 1 augmenting paths for M .

Finding an augmenting path allows us to increase the size of M . Hence, if max1≤i≤k αi

is small we already have a good approximation to Opt whereas, if max1≤i≤k αi is

large then there exists i ∈ [k] such that there are many length 2i + 1 augmenting

paths.

142

v8

v7

v6
v5

v4

v3
v2

v1

v13 v12

v11

v10

v9

(a) Current Matching.

uv9,v10

v1

v3

v2

v4

v5

uv13,v6

uv7,v8

uv12,v11

(b) Layered Graph.

Figure 12.1: A schematic of the procedure for finding length 5 augmenting paths.

Description of the Algorithm: Now we have defined the basic notion of aug-

menting paths, we are in a position to give an overview of our algorithm. We have

just reasoned that, if our matching is not already large, then there exists augmenting

paths of some length no greater than 2k + 1. Our algorithm looks for augmenting

paths of each of the k different lengths separately. Consider searching for augment-

ing paths of length 2i + 1. See Fig. 12.1 for a schematic of this process when i = 2.

Fig. 12.1(a) depicts the graph G with heavy solid lines denoting edges in the cur-

rent matching. To find length 2i + 1 we randomly “project” the graph (and current

matching) into a set of graphs, Li, which we now define.

Definition 12.3. Consider a graph whose n nodes are partitioned into i + 2 layers

Li+1, . . . L0 and whose edge set is a subset of

⋃

1≤j≤i+1

{(u, v) : u ∈ Lj , v ∈ Lj−1} .

Let Li denote graphs of this type and call a path ul, . . . , u0 with uj ∈ Lj an l-path.

The random projection is performed as follows. The image of a free node in

G is a node in either Li+1 or L0. The image of a matched edge e = (v, v′) is a

node, either u(v,v′) or u(v′,v), in one of Li, . . . , L1 chosen at random. The edges in

the projected graph G′ are those in G that are “consistent” with the mapping of the

free nodes and the matched edges, i.e., there is an edge between a node u(v1,v2) ∈ Lj

and u(v3,v4) ∈ Lj−1 if there is an edge (v2, v3) ∈ E. Now note that an (i + 1)-path

143

in G′ corresponds to a 2i + 1 augmenting path in G. Unfortunately the converse

is not true, there may be 2i + 1 augmenting paths in G that do not correspond to

(i+1)-paths in G′ because we only consider consistent edges. However, we will show

later that a constant fraction of augmenting paths exist (with high probability) as

(i + 1)-paths in G′. Fig. 12.1(b) depicts G′, the layered graph formed by randomly

projecting G into Li.

We now try to find a nearly maximal set of node disjoint (i+1)-paths in a graph

G′. See algorithm Find-Layer-Paths in Fig. 12.2. The algorithm finds node disjoint

(i+1)-paths by doing something akin to a depth first search. Finding a maximal set of

node disjoint (i+1)-paths can easily be achieved in the RAM model by actually doing

a DFS, deleting nodes of found (i+1)-paths and deleting edges when back-tracking.

Unfortunately this would necessitate too many passes in the streaming model as each

back-track potentially requires another pass of the data. Our algorithm in essence

blends a DFS and BFS in such a way that we can substantially reduce the number

of backtracks required. This will come at the price of possibly stopping prematurely,

i.e., when there may still exist some (i + 1)-paths that we have not located.

The algorithm first finds a maximal matching between Li+1 and Li. Let S ′ be

the subset of nodes Li involved in this first matching. It then finds a maximal

matching between S ′ and Li−1. We continue in this fashion, finding a matching

between S ′′ = {u ∈ Li−1 : u matched to some u′ ∈ Li} and Li−2. One can think

of the algorithm as growing node disjoint paths from left to right. If the size of

the maximal matching between some subset S of a level Lj and Lj−1 falls below

a threshold we declare all vertices in S to be dead-ends and conceptually remove

them from the graph (in the sense that we never again use these nodes while try

to find (i + 1)-paths.) At this point we start back-tracking. It is the use of this

threshold that ensures a limit on the amount of back-tracking performed by the

algorithm. However, because of the threshold, it is possible that a vertex may be

falsely declared to be a dead-end, i.e., there may still be a node disjoint path that

144

uses this vertex. With this in mind we want the threshold to be low such that this

does not happen often and we can hope to find all but a few of a maximal set of

node disjoint (i + 1)-paths. When we grow some node disjoint paths all the way to

L0, we remove these paths and recurse on the remaining graph. For each node v,

the algorithm maintains a tag indicating if it is a “Dead End” or, if we have found

a i + 1 path involving v, the next node in the path.

It is worth reiterating that in each pass of the stream we simply find a maximal

matching between some set of nodes. The above algorithm simply determines within

which set of nodes we find a maximal matching.

Our algorithm is presented in detail in Fig. 12.2. Here we use the notation

s ∈R S to denote choosing an element s uniformly at random from a set S. Also, for

a matching M , let ΓM(u) = v if (u, v) ∈M and ∅ otherwise.

Correctness and Running Time Analysis: We first argue that the use of

thresholds in Find-Layer-Paths ensures that we find all but a small number of a

maximal set of (i + 1)-paths.

Lemma 12.4 (Running Time and Correctness). Given G′ ∈ Li, Find-Layer-Paths

algorithm finds at least (γ−δ)|M | of the (i+1)-paths where γ|M | is the size of some

maximal set of (i+1)-paths. Furthermore, the algorithm takes a constant number of

passes.

Proof. First note that Find-Layer-Paths(·, ·, ·, l) is called with argument δ2i+1−l

. Dur-

ing the running of Find-Layer-Paths(·, ·, ·, l) when we run line 15, the number of

(i + 1)-paths we rule out is at most 2δ2i+1−l |Ll−1| where the factor 2 comes from

the fact that a maximal matching is at least half the size of a maximum match-

ing. Let El be the number of times Find-Layer-Paths(·, ·, ·, l) is called: Ei+1 = 1,

El ≤ El+1/δ
2i+1−l

and therefore El ≤ δ−
P

0≤j≤i−l 2j

= δ−2i−l+1+1. Hence, we remove

at most 2Elδ
2i+1−l|Ll| ≤ 2δ|Ll|. Note that when nodes are labeled as dead-ends in

a call to Find-Layer-Paths(·, ·, ·, 1), they really are dead-ends and declaring them

145

Algorithm Find-Matching(G, ǫ)
1. Find a maximal matching M
2. k ← ⌊ǫ−1 + 1⌋ and r ← 4k2(8k + 10)(k − 1)(2k)k

3. for j = 1 to r:
4. for i = 1 to k: Mi ← Find-Aug-Paths(G, M, i)
5. M ← argmaxMi

|Mi|
6. return M

Algorithm Find-Aug-Paths(G, M, i)
(∗ Finds length 2i + 1 augmenting paths for a matching M in G ∗)
1. G′ ←Create-Layer-Graph(G, M, i)
2. P =Find-Layer-Paths(G′, Li+1,

1
r(2k+2)

, i + 1)
3. return M△P

Algorithm Create-Layer-Graph(G, M, i)
(∗ Randomly constructs G′ ∈ Li from a graph G and matching M ∗)
1. if v is a free vertex then l(v) ∈R {0, i + 1}
2. if e = (u, v) ∈M then (l(e), l(v), l(u)) ∈R {(j, ja, jb), (j, jb, ja) : j ∈ [i]}
3. E0 ← (l−1(1b), l−1(0)) ∩E and Ei ← (l−1(i + 1), l−1(ia)) ∩ E
4. for j = 0 to i + 1: Lj ← l−1(j)
5. for j = 1 to i− 1: Ej ← {(u, v) ∈ E : (l(u), l(v)) = ((j + 1)b, ja)}
6. return G′ = (Li+1 ∪ Li ∪ . . . ∪ L0, Ei ∪ Ei−1 ∪ . . . ∪ E0)

Algorithm Find-Layer-Paths(G′, S, δ, j)
(∗ Finds many j-paths from S ⊂ Lj ∗)
1. Find maximal matching M ′ between S and untagged vertices in Lj−1

2. S ′ ← {v ∈ Lj−1 : ∃u, (u, v) ∈M ′}
3. if j = 1
4. then if u ∈ ΓM ′(Lj−1) then t(u)← ΓM ′(u), t(ΓM ′(u))← ΓM ′(u)
5. if u ∈ S \ ΓM ′(Lj−1) then t(u)← “Dead End ”
6. return
7. repeat
8. Find-Layer-Paths(G′, S ′, δ2, j − 1)
9. for v ∈ S ′ such that t(v) 6=“Dead End”: t(ΓM ′(v))← v
10. Find maximal matching M ′ between untagged vertices in S and Lj−1.
11. S ′ ← {v ∈ Lj−1 : ∃u, (u, v) ∈M ′}
12. until |S ′| ≤ δ|Lj−1|
13. for v ∈ S untagged: t(b)← “Dead End”.
14. return

Figure 12.2: An Algorithm for Finding Large Cardinality Matchings.

146

such rules out no remaining (i + 1)-paths. Hence, the total number of paths not

found is at most 2δ
∑

1≤j≤i |Lj| ≤ 2δ|M |. The number of invocations of the recursive

algorithm is,
∑

1≤l≤i+1

El ≤
∑

1≤l≤i+1

δ−2i+1−l+1 ≤ δ−2i+1

.

i.e., O(1) and each invocation requires one pass of the data stream to find a maximal

matching.

When looking for length (2i+1) augmenting paths for a matching M in graph G,

we randomly create a layered graph G′ ∈ Li+1 using Create-Layer-Graph such that

(i + 1)-paths in G′ correspond to length (2i +1) augmenting paths. We now need to

argue that a) many of the (2i+1) augmenting paths in G exist in G′ as (i+1)-paths

and b) that finding a maximal, rather that a maximum, set of (i + 1)-paths in G′ is

sufficient for our purposes.

Theorem 12.5. If G has αiM length 2i + 1 augmenting paths, then the number of

length (i + 1)-paths found in G′ is at least (biβi− δ)|M | where bi = 1/(2i+ 2) and βi

is a random variables distributed as Bin(αi|M |, 1/(2(2i)i)).

Proof. Consider a length (2i + 1) augmenting path P = u0u1 . . . u2i+1 in G. The

probability that P appears as an (i + 1)-path in G′ is at least,

2 Pr [l(u0) = 0]Pr [l(u2i+1) = i + 1]
∏

j∈[i]

Pr [l(u2j) = ja, l(u2j−1) = jb] =
1

2(2i)i
.

Given that the probability of each augmenting path existing as a (i + 1)-path

in G′ is independent, the number of length (i + 1)-paths in G′ is distributed as

Bin(αi|M |, 1/(2(2i)i)). The size of a maximal set of node disjoint (i + 1)-paths is

at least a 1/(2i + 2) fraction of the maximum size node-disjoint set (i + 1)-paths.

Combining this with Lemma 12.4 gives the result.

Finally, we argue that we only need to try to augment our initial matching a

constant number of times.

147

Theorem 12.6 (Correctness). With probability 1− f by running O(log f−1) copies

of the algorithm Find-Matching in parallel we find a 1 − ǫ approximation to the

matching of maximum cardinality.

Proof. We show that the probability that a given run of Find-Matching does not

find a (1− ǫ)-approximation is bounded above by e−1.

Define a phase of the algorithm to be one iteration of the loop started at line 4

of Find-Matching . At the start of phase p of the algorithm, let Mp be the current

matching. In the course of phase p of the algorithm we augment Mp by at least

|Mp|(max1≤i≤k(biβi,p) − δ) edges where βi,p|Mp| ∼ Bin(αi,p|Mp|, 1/(2(2i)i)). Let Ap

be the value of |Mp|maxi(biβi,p) in the p-th phase of the algorithm. Assume that

for each of the r phases of the algorithm maxαi,p ≥ α∗ := 1/(2k2(k − 1)). (By

Lemma 12.2, if this is ever not the case, we already have a sufficiently sized matching.)

Therefore, Ap dominates bk Bin(α∗|M1|, 1/(2(2k)k)). Let (Xp)1≤p≤r be independent

random variables, each distributed as bk Bin(α∗|M1|, 1/(2(2k)k)). Therefore,

Pr

[
∏

1≤p≤r

(1 + max{0, max
1≤i≤k

(biβi,p)− δ}) ≥ 2

]

≥ Pr

[
∑

1≤p≤r

max
1≤i≤k

biβi,p ≥ 2 + rδ

]

≥ Pr

[
∑

1≤p≤r

Xp ≥ |M1|
2 + rδ

bk

]

= Pr [Z ≥ |M1|(4k + 5)] ,

for δ = bk/r where Z = Bin(α∗|M1|r, 1/(2(2k)k)). Finally, by an application of the

Chernoff bound,

Pr [Z ≥ |M1|(4k + 5)] = 1− Pr [Z < E [Z] /2] > 1− e−2(8k+10)|M1| ≥ 1− e−1 ,

for r = 2(2k)k(8k + 10)/α∗. Of course, since M1 is already at least half the size of

the maximal matching this implies that with high probability, at some point during

the r phases our assumption that maxαi,p ≥ α∗, became invalid and at this point

we had a sufficiently large matching.

148

12.2 Weighted Matching

We now turn our attention to finding maximum weighted matchings. Here each

edge e ∈ E of our graph G has a weight w(e) > 0. For a set of edges S let

w(S) =
∑

e∈S w(e). We seek to maximize w(S) subject to the constraint that S

contains no two adjacent edges.

Consider the algorithms in Fig. 12.3. The algorithm greedily collects edges as

they stream past and maintains a matching, M , at all points. On seeing an edge

e, if w(e) > (1 + γ)w({e′|e′ ∈ M , e′ and e share an end point}) then the algorithm

removes any edges in M sharing an end point with e and adds e to M . The algorithm

Find-Weighted-Matching-Multipass generalizes this to a multi-pass algorithm that

repeats the one pass algorithm until the improvement achieved falls below some

threshold. We start by introducing some notation.

Definition 12.7. In a given pass of the graph stream, we say that an edge e is

born if e ∈ M at some point during the execution of the algorithm. We say that

an edge is bumped if it was born but subsequently removed from M by a newer

edge. This new edge is a bumper. We say an edge is a survivor if it is born

and never bumped. For each survivor e, let the Replacement Tree be the set of

edges T (e) = C1 ∪ C2 ∪ . . ., where C0 = {e}, C1 = {the edges bumped by e}, and

Ci = ∪e′∈Ci−1
{the edges bumped by e′}.

Lemma 12.8. For a given pass let the set of survivors be S. The weight of the

matching found at the end of that pass is therefore w(S).

1. w(T (S)) ≤ w(S)/γ

2. w(Opt) ≤ (1 + γ) (w(T (S)) + 2w(S))

Proof. We prove each statement separately.

1. For each bumper e, w(e) is at least (1+γ) the total cost of bumped edges, and

an edge has at most one bumper. Hence, for all i, w(Ci) ≥ (1+γ)w(Ci+1) and

149

therefore (1+γ)w(T (e)) =
∑

i≥1(1+γ)w(Ci) ≤
∑

i≥0 w(Ci) = w(T (e))+w(e).

The first point follows by summing over the survivor edges.

2. Consider the optimal solution that includes edges Opt = {o1, o2, . . .}. We are

going to charge the costs of edges in Opt to the survivors and their replacement

trees, ∪e∈ST (e)∪ {e}. We hold an edge e in this set accountable to o ∈ Opt if

either e = o or else o was not born because e was in M when o arrived. Note

that, in the second case, it is possible for two edges to be accountable to o. If

only one edge is accountable for o then we charge w(o) to e. If two edges e1 and

e2 are accountable for o, then we charge w(o)w(e1)
w(e1)+w(e2)

to e1 and w(o)w(e2)
w(e1)+w(e2)

to e2.

In either case, the amount charged by o to any edge e is at most (1 + γ)w(e).

We now redistribute these charges as follows: (for distinct u1, u2, u3) if e =

(u1, v) gets charged by o = (u2, v), and e subsequently gets bumped by e′ =

(u3, v), we transfer the charge from e to e′. Note that we maintain the property

that the amount charged by o to any edge e is at most (1 + γ)w(e) because

w(e′) ≥ w(e). What this redistribution of charges achieves is that now every

edge in a replacement tree is only charged by one edge in Opt. Survivors can,

however, be charged by two edges in Opt. We charge w(Opt) to the survivors

and their replacement trees, and hence

w(Opt) ≤
∑

e∈S

(1 + γ)w(T (e)) + 2(1 + γ)w(e) .

Hence, in one pass we achieve an 1/(1/γ + 3 + 2γ) approximation ratio since

Opt ≤ (1 + γ)(w(T (S)) + 2w(S)) ≤ (3 + 1/γ + 2γ)w(S) .

The maximum of this function is achieved for γ = 1/
√

2 giving approximation ratio

1/(3 + 2
√

2). This represents only a slight improvement over the 1/6 ratio attained

previously. However, a much more significant improvement is realized in the multi-

pass algorithm Find-Weighted-Matching-Multipass .

150

Algorithm Find-Weighted-Matching(G, γ)
(∗ Finds Large Weighted Matchings in One Pass ∗)
1. M ← ∅
2. for each edge e ∈ G
3. do Me ← {e′|e′ ∈M , e′ and e share an end point}
4. if w(e) > (1 + γ)w(Me) then M ← M ∪ {e} \Me return M

Algorithm Find-Weighted-Matching-Multipass(G, ǫ)
(∗ Finds Large Weighted Matchings ∗)
1. γ ← 2ǫ/3
2. κ← γ3/((1 + γ)2 − γ3)
3. Find a 1/(3 + 2

√
2) weighted matching, M

4. repeat
5. S ← w(M)
6. for each edge e ∈ G
7. do Me ← {e′|e′ ∈M , e′ and e share an end point}
8. if w(e) > (1 + γ)w(Me) then M ←M ∪ {e} \Me

9. until w(M)/S ≤ 1 + κ
10. return M

Figure 12.3: An Algorithm for Finding Large Weighted Matchings

Theorem 12.9. The algorithm Find-Weighted-Matching-Multipass finds a (1/2−ǫ)-

approximation to the maximum weighted matching in O(ǫ−1) passes.

Proof. First we prove that the number of passes is as claimed. We increase the

weight of our solution by a factor 1 + κ each time we do a pass and we start with

a 1/(3 + 2
√

2) approximation. Hence, if we take, log1+κ(3/2 +
√

2) passes we have

already found a maximum weighted matching. Substituting in κ = γ3/((1+γ)2−γ3)

establishes the bound on the number of passes.

Let Mi be the matching constructed after the i-th pass. Let Bi = Mi ∩Mi−1.

Now, (1 + γ)(w(Mi−1)− w(Bi)) ≤ w(Mi)− w(Bi) and so,

w(Mi)

w(Mi−1)
=

w(Mi)

w(Mi−1)− w(Bi) + w(Bi)
≥ (1 + γ)w(Mi)

w(Mi) + γw(Bi)
.

If w(Mi)/w(Mi−1) < (1+κ), then we deduce that w(Bi) ≥ w(Mi)(γ−κ)/(γ+γκ).

151

Appealing to Lemma 12.8, this means that, for all i,

OPT ≤ (1/γ + 3 + 2γ)(w(Mi)− w(Bi)) + 2(1 + γ)w(Bi) ,

since edges in Bi have empty replacement trees. So if w(Bi) ≥ w(Mi)(γ−κ)/(γ+γκ)

we deduce that,

OPT ≤ (1/γ + 3 + 2γ)(w(Mi)− w(Bi)) + 2(1 + γ)w(Bi)

≤
(

1/γ + 3 + 2γ − (1/γ + 1)
γ − κ

γ + γκ

)

w(Mi)

≤ (2 + 3γ)w(Mi) .

Since γ = 2ǫ/3 the claimed approximation ratio follows.

152

Bibliography

[ABB+03] Arvind Arasu, Brian Babcock, Shivnath Babu, Mayur Datar, Keith Ito,

Rajeev Motwani, Itaru Nishizawa, Utkarsh Srivastava, Dilys Thomas,

Rohit Varma, and Jennifer Widom. STREAM: The Stanford stream

data manager. IEEE Data Eng. Bull., 26(1):19–26, 2003.

[ABCP98] Baruch Awerbuch, Bonnie Berger, Lenore Cowen, and David Peleg.

Near-linear time construction of sparse neighborhood covers. SIAM J.

Comput., 28(1):263–277, 1998.

[ABW02] James Abello, Adam L. Buchsbaum, and Jeffery Westbrook. A func-

tional approach to external graph algorithms. Algorithmica, 32(3):437–

458, 2002.

[ACÇ+03] Daniel J. Abadi, Donald Carney, Ugur Çetintemel, Mitch Cherniack,

Christian Convey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul,

and Stanley B. Zdonik. Aurora: a new model and architecture for data

stream management. VLDB J., 12(2):120–139, 2003.

[AdBHZ07] Mohammad Ali Abam, Mark de Berg, Peter Hachenberger, and Alireza

Zarei. Streaming algorithms for line simplification. In Symposium on

Computational Geometry, pages 175–183, 2007.

[ADRR04] Gagan Aggarwal, Mayur Datar, Sridhar Rajagopalan, and Matthias

Ruhl. On the streaming model augmented with a sorting primitive.

153

IEEE Symposium on Foundations of Computer Science, pages 540–549,

2004.

[AHPV04] Pankaj K. Agarwal, Sariel Har-Peled, and Kasturi R. Varadarajan. Ap-

proximating extent measures of points. J. ACM, 51(4):606–635, 2004.

[AJB99] Reka Albert, Hawoong Jeong, and Albert-Laszlo Barabasi. The diam-

eter of the world wide web. Nature, 401:130, 1999.

[AJKS02] Miklós Ajtai, T. S. Jayram, Ravi Kumar, and D. Sivakumar. Approx-

imate counting of inversions in a data stream. In ACM Symposium on

Theory of Computing, pages 370–379, 2002.

[AM04] Arvind Arasu and Gurmeet Singh Manku. Approximate counts and

quantiles over sliding windows. In ACM Symposium on Principles of

Database Systems, pages 286–296, 2004.

[Ama85] Shun-Ichi Amari. Differential-geometrical methods in statistics.

Springer-Verlag, New York, 1985.

[AMP+06] Deepak Agarwal, Andrew McGregor, Jeff M. Phillips, Suresh Venkata-

subramanian, and Zhengyuan Zhu. Spatial scan statistics: approxi-

mations and performance study. In ACM International Conference on

Knowledge Discovery and Data Mining, pages 24–33, 2006.

[AMS99] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity

of approximating the frequency moments. Journal of Computer and

System Sciences, 58(1):137–147, 1999.

[AN00] Shun-Ichi Amari and Hiroshi Nagaoka. Methods of Information Geom-

etry. Oxford University and AMS Translations of Mathematical Mono-

graphs, 2000.

154

[AS66] S. M. Ali and S. D. Silvey. A general class of coefficients of divergence

of one distribution from another. J. of Royal Statistical Society, Series

B, 28:131–142, 1966.

[AY07] Pankaj K. Agarwal and Hai Yu. A space-optimal data-stream algorithm

for coresets in the plane. In Symposium on Computational Geometry,

pages 1–10, 2007.

[Bas06] Surender Baswana. Faster streaming algorithms for graph spanners,

2006.

[BBD+02] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and

Jennifer Widom. Models and issues in data stream systems. ACM

Symposium on Principles of Database Systems, pages 1–16, 2002.

[BCFM00] Andrei Z. Broder, Moses Charikar, Alan M. Frieze, and Michael Mitzen-

macher. Min-wise independent permutations. J. Comput. Syst. Sci.,

60(3):630–659, 2000.

[BDKR05] Tuğkan Batu, Sanjoy Dasgupta, Ravi Kumar, and Ronitt Rubinfeld.

The complexity of approximating the entropy. SIAM J. Comput.,

35(1):132–150, 2005.

[BDM02] Brian Babcock, Mayur Datar, and Rajeev Motwani. Sampling from a

moving window over streaming data. In ACM-SIAM Symposium on

Discrete Algorithms, pages 633–634, 2002.

[BEY98] Allan Borodin and Ran El-Yaniv. Online Computation and Competitive

Analysis. Cambridge University Press, Cambridge, 1998.

[BFL+06] Luciana S. Buriol, Gereon Frahling, Stefano Leonardi, Alberto

Marchetti-Spaccamela, and Christian Sohler. Counting triangles in data

155

streams. In ACM Symposium on Principles of Database Systems, pages

253–262, 2006.

[BFR+00] Tuğkan Batu, Lance Fortnow, Ronitt Rubinfeld, Warren D. Smith, and

Patrick White. Testing that distributions are close. In IEEE Symposium

on Foundations of Computer Science, pages 259–269, 2000.

[BG06] Lakshminath Bhuvanagiri and Sumit Ganguly. Estimating entropy over

data streams. In ESA, pages 148–159, 2006.

[BGKS06] Lakshminath Bhuvanagiri, Sumit Ganguly, Deepanjan Kesh, and Chan-

dan Saha. Simpler algorithm for estimating frequency moments of data

streams. In ACM-SIAM Symposium on Discrete Algorithms, pages 708–

713, 2006.

[BGW03] Adam L. Buchsbaum, Raffaele Giancarlo, and Jeffery Westbrook. On

finding common neighborhoods in massive graphs. Theor. Comput. Sci.,

1-3(299):707–718, 2003.

[BKMT03] Prosenjit Bose, Evangelos Kranakis, Pat Morin, and Yihui Tang.

Bounds for frequency estimation of packet streams. In SIROCCO, pages

33–42, 2003.

[Blu98] Avrim Blum. On-line algorithms in machine learning. In Developments

from a June 1996 seminar on Online algorithms, pages 306–325, Lon-

don, UK, 1998. Springer-Verlag.

[Bol85] Bela Bollobás. Random Graphs. Academic Press, London, 1985.

[Bre67] Lev M. Bregman. The relaxation method of finding the common point

of convex sets and its application to the solution of problems in convex

programming. U.S.S.R. Computational Mathematics and Mathematical

Physics, 7(1):200–217, 1967.

156

[Bre99] Leo Breiman. Prediction games and arcing algorithms. Neural Compu-

tation, 11(7):1493–1517, 1999.

[BS03] Surender Baswana and Sandeep Sen. A simple linear time algorithm for

computing a (2k− 1)−spanner of O(n1+1/k) size in weighted graphs. In

International Colloquium on Automata, Languages and Programming,

pages 384–296, 2003.

[BY02] Ziv Bar-Yossef. The Complexity of Massive Data Set Computations.

PhD thesis, University of California at Berkeley, 2002.

[BYJK+02] Ziv Bar-Yossef, T.S. Jayram, Ravi Kumar, D. Sivakumar, and Luca

Trevisan. Counting distinct elements in a data stream. In Proc. 6th

International Workshop on Randomization and Approximation Tech-

niques in Computer Science, pages 1–10, 2002.

[BYJKS02] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An infor-

mation statistics approach to data stream and communication complex-

ity. In IEEE Symposium on Foundations of Computer Science, pages

209–218, 2002.

[BYKS01] Ziv Bar-Yossef, Ravi Kumar, and D. Sivakumar. Sampling algorithms:

lower bounds and applications. ACM Symposium on Theory of Com-

puting, pages 266–275, 2001.

[BYKS02] Ziv Bar-Yossef, Ravi Kumar, and D. Sivakumar. Reductions in stream-

ing algorithms, with an application to counting triangles in graphs. In

ACM-SIAM Symposium on Discrete Algorithms, pages 623–632, 2002.

[CC05] Timothy M. Chan and Eric Y. Chen. Multi-pass geometric algorithms.

In Symposium on Computational Geometry, pages 180–189, 2005.

157

[CCD+03] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J.

Franklin, Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy,

Samuel Madden, Vijayshankar Raman, Frederick Reiss, and Mehul A.

Shah. TelegraphCQ: Continuous dataflow processing for an uncertain

world. In CIDR, 2003.

[CCFC02] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding fre-

quent items in data streams. In International Colloquium on Automata,

Languages and Programming, pages 693–703, 2002.

[CCFM04] Moses Charikar, Chandra Chekuri, Tomás Feder, and Rajeev Motwani.

Incremental clustering and dynamic information retrieval. SIAM J.

Comput., 33(6):1417–1440, 2004.

[CCM07] Amit Chakrabarti, Graham Cormode, and Andrew McGregor. A near-

optimal algorithm for computing the entropy of a stream. In ACM-

SIAM Symposium on Discrete Algorithms, pages 328–335, 2007.

[CDIM03] Graham Cormode, Mayur Datar, Piotr Indyk, and S. Muthukrishnan.

Comparing data streams using hamming norms (how to zero in). IEEE

Trans. Knowl. Data Eng., 15(3):529–540, 2003.

[CDM06] Amit Chakrabarti, Khanh Do Ba, and S. Muthukrishnan. Estimating

entropy and entropy norm on data streams. In Symposium on Theoret-

ical Aspects of Computer Science, pages 196–205, 2006.

[CDTW00] Jianjun Chen, David J. DeWitt, Feng Tian, and Yuan Wang. Niagaracq:

A scalable continuous query system for internet databases. In Weidong

Chen, Jeffrey F. Naughton, and Philip A. Bernstein, editors, ACM In-

ternational Conference on Management of Data, pages 379–390. ACM,

2000.

158

[CG07a] Graham Cormode and Sumit Ganguly. On estimating frequency mo-

ments of data streams. In International Workshop on Randomization

and Approximation Techniques in Computer Science, 2007.

[CG07b] Graham Cormode and Minos Garofalakis. Sketching probabilistic data

streams. In ACM International Conference on Management of Data,

2007.

[CGL+05] A. Robert Calderbank, Anna C. Gilbert, Kirill Levchenko, S. Muthukr-

ishnan, and Martin Strauss. Improved range-summable random variable

construction algorithms. In ACM-SIAM Symposium on Discrete Algo-

rithms, pages 840–849, 2005.

[Cha06] Timothy M. Chan. Faster core-set constructions and data-stream algo-

rithms in fixed dimensions. Comput. Geom., 35(1-2):20–35, 2006.

[CJSS03] Charles D. Cranor, Theodore Johnson, Oliver Spatscheck, and Vladislav

Shkapenyuk. Gigascope: A stream database for network applications.

In ACM International Conference on Management of Data, pages 647–

651, 2003.

[CK06] Kevin L. Chang and Ravi Kannan. The space complexity of pass-

efficient algorithms for clustering. In ACM-SIAM Symposium on Dis-

crete Algorithms, pages 1157–1166, 2006.

[CKM07] Matthew Chu, Sampath Kannan, and Andrew McGregor. Checking

and spot-checking of heaps. In International Colloquium on Automata,

Languages and Programming, 2007.

[CKMS06] Graham Cormode, Flip Korn, S. Muthukrishnan, and Divesh Srivas-

tava. Space- and time-efficient deterministic algorithms for biased quan-

tiles over data streams. In ACM Symposium on Principles of Database

Systems, pages 263–272, 2006.

159

[CKS03] Amit Chakrabarti, Subhash Khot, and Xiaodong Sun. Near-optimal

lower bounds on the multi-party communication complexity of set dis-

jointness. In IEEE Conference on Computational Complexity, pages

107–117, 2003.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-

ford Stein. Introduction to Algorithms. MIT Press and McGraw-Hill,

New York, NY, USA, 2001.

[CM05a] Graham Cormode and S. Muthukrishnan. An improved data stream

summary: the count-min sketch and its applications. J. Algorithms,

55(1):58–75, 2005.

[CM05b] Graham Cormode and S. Muthukrishnan. Space efficient mining of

multigraph streams. In ACM Symposium on Principles of Database

Systems, pages 271–282, 2005.

[CMS01] Graham Cormode, S. Muthukrishnan, and Süleyman Cenk Sahinalp.

Permutation editing and matching via embeddings. In International

Colloquium on Automata, Languages and Programming, pages 481–492,

2001.

[COP03] Moses Charikar, Liadan O’Callaghan, and Rina Panigrahy. Better

streaming algorithms for clustering problems. In ACM Symposium on

Theory of Computing, pages 30–39, 2003.

[CS06] Timothy M. Chan and Bashir S. Sadjad. Geometric optimization prob-

lems over sliding windows. Int. J. Comput. Geometry Appl., 16(2-

3):145–158, 2006.

[Csi91] Imre Csiszár. Why least squares and maximum entropy? an axiomatic

approach to inference for linear inverse problems. Ann. Statist., pages

2032–2056, 1991.

160

[CSS02] Michael Collins, Robert E. Schapire, and Yoram Singer. Logistic regres-

sion, adaboost and bregman distances. Machine Learning, 48(1-3):253–

285, 2002.

[CT91] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory.

Wiley Series in Telecommunications. John Wiley & Sons, New York,

NY, USA, 1991.

[DFK+04] Petros Drineas, Alan M. Frieze, Ravi Kannan, Santosh Vempala, and

V. Vinay. Clustering large graphs via the singular value decomposition.

Machine Learning, 56(1-3):9–33, 2004.

[DFR06] Camil Demetrescu, Irene Finocchi, and Andrea Ribichini. Trading off

space for passes in graph streaming problems. In ACM-SIAM Sympo-

sium on Discrete Algorithms, pages 714–723, 2006.

[DGIM02] Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani.

Maintaining stream statistics over sliding windows. SIAM J. Comput.,

31(6):1794–1813, 2002.

[DH03] Doratha E. Drake and Stefan Hougardy. Improved linear time approx-

imation algorithms for weighted matchings. In RANDOM-APPROX,

pages 14–23, 2003.

[DKM04a] Petros Drineas, Ravi Kannan, and Michael Mahoney. Fast monte carlo

algorithms for matrices I. SIAM Journal on Computing (To Appear),

2004.

[DKM04b] Petros Drineas, Ravi Kannan, and Michael Mahoney. Fast monte carlo

algorithms for matrices II. SIAM Journal on Computing (To Appear),

2004.

161

[DKM04c] Petros Drineas, Ravi Kannan, and Michael Mahoney. Fast monte carlo

algorithms for matrices III. SIAM Journal on Computing (To Appear),

2004.

[DLOM02] Erik D. Demaine, Alejandro López-Ortiz, and J. Ian Munro. Frequency

estimation of internet packet streams with limited space. In European

Symposium on Algorithms, pages 348–360, 2002.

[DRVW06] Amit Deshpande, Luis Rademacher, Santosh Vempala, and Grant

Wang. Matrix approximation and projective clustering via volume sam-

pling. ACM-SIAM Symposium on Discrete Algorithms, pages 1117–

1126, 2006.

[Edm65] Jack Edmonds. Maximum matching and a polyhedron with 0,1-vertices.

J. Res. Nat. Bur. Standards, 69(B):125–130, 1965.

[Elk01] Michael L. Elkin. Computing almost shortest paths. In Proc. 20th ACM

Symposium on Principles of Distributed Computing, pages 53–62, 2001.

[Elk07] Michael Elkin. A near-optimal fully dynamic distributed algorithm for

maintaining sparse spanners. In International Colloquium on Automata,

Languages and Programming, 2007.

[EZ06] Michael Elkin and Jian Zhang. Efficient algorithms for constructing

(1+ ǫ, β)-spanners in the distributed and streaming models. Distributed

Computing, 18(5):375–385, 2006.

[FHT00] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive lo-

gistic regression: a statistical view of boosting. Annals of Statistics,

28:337–407, 2000.

162

[FIS05] Gereon Frahling, Piotr Indyk, and Christian Sohler. Sampling in dy-

namic data streams and applications. In Symposium on Computational

Geometry, pages 142–149, 2005.

[FKM+05a] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth

Suri, and Jian Zhang. Graph distances in the streaming model: the

value of space. In ACM-SIAM Symposium on Discrete Algorithms,

pages 745–754, 2005.

[FKM+05b] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth

Suri, and Jian Zhang. On graph problems in a semi-streaming model.

Theoretical Computer Science, 348(2-3):207–216, 2005.

[FKSV02a] Joan Feigenbaum, Sampath Kannan, Martin Strauss, and Mahesh

Viswanathan. An approximate L1 difference algorithm for massive data

streams. SIAM Journal on Computing, 32(1):131–151, 2002.

[FKSV02b] Joan Feigenbaum, Sampath Kannan, Martin Strauss, and Mahesh

Viswanathan. Testing and spot-checking of data streams. Algorithmica,

34(1):67–80, 2002.

[FKV04] Alan M. Frieze, Ravi Kannan, and Santosh Vempala. Fast monte-carlo

algorithms for finding low-rank approximations. J. ACM, 51(6):1025–

1041, 2004.

[FKZ04] Joan Feigenbaum, Sampath Kannan, and Jian Zhang. Computing di-

ameter in the streaming and sliding-window models. Algorithmica,

41(1):25–41, 2004.

[FM85] Philippe Flajolet and G. Nigel Martin. Probabilistic counting algo-

rithms for data base applications. J. Comput. Syst. Sci., 31(2):182–209,

1985.

163

[FS82] M. Fischer and S. Salzberg. Finding a majority among n votes. Journal

of Algorithms, 3(4):362–380, 1982.

[FS01] Jessica H. Fong and Martin Strauss. An approximate Lp-difference algo-

rithm for massive data streams. Discrete Mathematics and Theoretical

Computer Science, 4(2):301–322, 2001.

[FS05] Gereon Frahling and Christian Sohler. Coresets in dynamic geometric

data streams. In ACM Symposium on Theory of Computing, pages

209–217, 2005.

[Gab90] Harold N. Gabow. Data structures for weighted matching and nearest

common ancestors with linking. In ACM-SIAM Symposium on Discrete

Algorithms, pages 434–443, 1990.

[GG07] Anna Gal and Parikshit Gopalan. Lower bounds on streaming algo-

rithms for approximating the length of the longest increasing subse-

quence. In IEEE Symposium on Foundations of Computer Science,

2007.

[GGI+02a] Anna C. Gilbert, Sudipto Guha, Piotr Indyk, Yannis Kotidis,

S. Muthukrishnan, and Martin Strauss. Fast, small-space algorithms

for approximate histogram maintenance. In ACM Symposium on The-

ory of Computing, pages 389–398, 2002.

[GGI+02b] Anna C. Gilbert, Sudipto Guha, Piotr Indyk, S. Muthukrishnan, and

Martin Strauss. Near-optimal sparse fourier representations via sam-

pling. In STOC, pages 152–161, 2002.

[GH06] Sudipto Guha and Boulos Harb. Approximation algorithms for wavelet

transform coding of data streams. In ACM-SIAM Symposium on Dis-

crete Algorithms, pages 698–707, 2006.

164

[GIM07] Sudipto Guha, Piotr Indyk, and Andrew McGregor. Sketching infor-

mation divergences. In Conference on Learning Theory, pages 424–438,

2007.

[GIMS02] Sudipto Guha, Piotr Indyk, S. Muthukrishnan, and Martin Strauss.

Histogramming data streams with fast per-item processing. In Inter-

national Colloquium on Automata, Languages and Programming, pages

681–692, 2002.

[GJKK07] Parikshit Gopalan, T.S. Jayram, Robert Krauthgamer, and Ravi Ku-

mar. Estimating the sortedness of a data stream. In ACM-SIAM Sym-

posium on Discrete Algorithms, 2007.

[GK01] Michael Greenwald and Sanjeev Khanna. Efficient online computation

of quantile summaries. In ACM International Conference on Manage-

ment of Data, pages 58–66, 2001.

[GKMS01] Anna C. Gilbert, Yannis Kotidis, S. Muthukrishnan, and Martin

Strauss. Surfing wavelets on streams: One-pass summaries for approx-

imate aggregate queries. In International Conference on Very Large

Data Bases, pages 79–88, 2001.

[GKMS02] Anna C. Gilbert, Yannis Kotidis, S. Muthukrishnan, and Martin

Strauss. How to summarize the universe: Dynamic maintenance of

quantiles. In International Conference on Very Large Data Bases, pages

454–465, 2002.

[GKS06] Sudipto Guha, Nick Koudas, and Kyuseok Shim. Approximation and

streaming algorithms for histogram construction problems. ACM Trans.

Database Syst., 31(1):396–438, 2006.

[GM99] Phillip B. Gibbons and Yossi Matia. Synopsis data structures for mas-

sive data sets. DIMACS Series in Discrete Mathematics and Theoretical

165

Computer Science: Special Issue on External emory Algorithms and Vi-

sualization, A:39–70, 1999.

[GM06] Sudipto Guha and Andrew McGregor. Approximate quantiles and the

order of the stream. In ACM Symposium on Principles of Database

Systems, pages 273–279, 2006.

[GM07a] Sudipto Guha and Andrew McGregor. A general approach to multi-pass

stream lower-bounds. Manuscript, 2007.

[GM07b] Sudipto Guha and Andrew McGregor. Lower bounds for quantile es-

timation in random-order and multi-pass streaming. In International

Colloquium on Automata, Languages and Programming, 2007.

[GM07c] Sudipto Guha and Andrew McGregor. Space-efficient sampling. In

AISTATS, pages 169–176, 2007.

[GMMO00] Sudipto Guha, Nina Mishra, Rajeev Motwani, and Liadan O’Callaghan.

Clustering data streams. In IEEE Symposium on Foundations of Com-

puter Science, pages 359–366, 2000.

[GMP02] Phillip B. Gibbons, Yossi Matias, and Viswanath Poosala. Fast incre-

mental maintenance of approximate histograms. ACM Trans. Database

Syst., 27(3):261–298, 2002.

[GMT05] Yu Gu, Andrew McCallum, and Don Towsley. Detecting anomalies in

network traffic using maximum entropy estimation. In Internet Mea-

surement Conference, page 345350, 2005.

[GMV06] Sudipto Guha, Andrew McGregor, and Suresh Venkatasubramanian.

Streaming and sublinear approximation of entropy and information dis-

tances. In ACM-SIAM Symposium on Discrete Algorithms, pages 733–

742, 2006.

166

[GS06] Sumit Ganguly and Barna Saha. On estimating path aggregates over

streaming graphs. In ISAAC, pages 163–172, 2006.

[GT02] Phillip B. Gibbons and Srikanta Tirthapura. Distributed streams algo-

rithms for sliding windows. In ACM Symposium on Parallel Algorithms

and Architectures, pages 63–72, 2002.

[GZ03] Anupam Gupta and Francis Zane. Counting inversions in lists. ACM-

SIAM Symposium on Discrete Algorithms, pages 253–254, 2003.

[HK73] John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum

matchings in bipartite graphs. SIAM J. Comput., 2(4):225–231, 1973.

[HRR99] Monika R. Henzinger, Prabhakar Raghavan, and Sridhar Rajagopalan.

Computing on data streams. External memory algorithms, pages 107–

118, 1999.

[HS03] John Hershberger and Subhash Suri. Convex hulls and related problems

in data streams. In Workshop on Management and Processing of Data

Streams, 2003.

[Ind00] Piotr Indyk. Stable distributions, pseudorandom generators, embed-

dings and data stream computation. IEEE Symposium on Foundations

of Computer Science, pages 189–197, 2000.

[Ind01] Piotr Indyk. A small approximately min-wise independent family of

hash functions. J. Algorithms, 38(1):84–90, 2001.

[Ind03] Piotr Indyk. Better algorithms for high-dimensional proximity problems

via asymmetric embeddings. In ACM-SIAM Symposium on Discrete

Algorithms, pages 539–545, 2003.

167

[IW03] Piotr Indyk and David P. Woodruff. Tight lower bounds for the dis-

tinct elements problem. IEEE Symposium on Foundations of Computer

Science, pages 283–288, 2003.

[IW05] Piotr Indyk and David P. Woodruff. Optimal approximations of the

frequency moments of data streams. In ACM Symposium on Theory of

Computing, pages 202–208, 2005.

[JG05] Hossein Jowhari and Mohammad Ghodsi. New streaming algorithms for

counting triangles in graphs. In International Conference on Computing

and Combinatorics, pages 710–716, 2005.

[JKV07] T.S. Jayram, Satyen Kale, and Erik Vee. Efficient aggregation algo-

rithms for probabilistic data. In ACM-SIAM Symposium on Discrete

Algorithms, 2007.

[JMMV07] T. S. Jayram, Andrew McGregor, S. Muthukrishnan, and Erik Vee.

Estimating statistical aggregates on probabilistic data streams. In ACM

Symposium on Principles of Database Systems, pages 243–252, 2007.

[JRS03] Rahul Jain, Jaikumar Radhakrishnan, and Pranab Sen. A direct sum

theorem in communication complexity via message compression. In

International Colloquium on Automata, Languages and Programming,

pages 300–315, 2003.

[Kan01] Sampath Kannan. Open problems in streaming. DIMACS Workshop

on Streaming Data Analysis and Mining (Slides: http: // dimacs.

rutgers. edu/ Workshops/ Streaming/ abstracts. html), 2001.

[KCC+03] Sailesh Krishnamurthy, Sirish Chandrasekaran, Owen Cooper, Amol

Deshpande, Michael J. Franklin, Joseph M. Hellerstein, Wei Hong,

Samuel Madden, Frederick Reiss, and Mehul A. Shah. TelegraphCQ: An

architectural status report. IEEE Data Eng. Bull., 26(1):11–18, 2003.

168

[KMR+94] Michael J. Kearns, Yishay Mansour, Dana Ron, Ronitt Rubinfeld,

Robert E. Schapire, and Linda Sellie. On the learnability of discrete

distributions. In ACM Symposium on Theory of Computing, pages 273–

282, 1994.

[KN97] Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cam-

bridge University Press, 1997.

[KRRT99] Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, and Andrew

Tomkins. Extracting large-scale knowledge bases from the web. In

International Conference on Very Large Data Bases, pages 639–650,

1999.

[KS92] Bala Kalyanasundaram and Georg Schnitger. The probabilistic com-

munication complexity of set intersection. SIAM J. Discrete Math.,

5(4):545–557, 1992.

[KS95] Bahman Kalantari and Ali Shokoufandeh. Approximation schemes for

maximum cardinality matching. Technical Report LCSR–TR–248, Lab-

oratory for Computer Science Research, Department of Computer Sci-

ence. Rutgers University, August 1995.

[KSP03] Richard M. Karp, Scott Shenker, and Christos H. Papadimitriou. A

simple algorithm for finding frequent elements in streams and bags.

ACM Trans. Database Syst., 28:51–55, 2003.

[KW99] Jyrki Kivinen and Manfred K. Warmuth. Boosting as entropy projec-

tion. In Conference on Learning Theory, pages 134–144, 1999.

[Laf99] John D. Lafferty. Additive models, boosting, and inference for gener-

alized divergences. In Conference on Learning Theory, pages 125–133,

1999.

169

[LNVZ06] David Liben-Nowell, Erik Vee, and An Zhu. Finding longest increas-

ing and common subsequences in streaming data. J. Comb. Optim.,

11(2):155–175, 2006.

[LPP97] John D. Lafferty, Stephen Della Pietra, and Vincent J. Della Pietra.

Statistical learning algorithms based on bregman distances. Proc. of.

Canadian Workshop on Information Theory, 1997.

[LSO+06] Ashwin Lall, Vyas Sekar, Mitsunori Ogihara, Jun Xu, and Hui Zhang.

Data streaming algorithms for estimating entropy of network traffic. In

ACM SIGMETRICS, 2006.

[LUW95] Felix Lazebnik, Vasiliy A. Ustimenko, and Andrew J. Woldar. A new

series of dense graphs of high girth. Bulletin of the AMS, 32(1):73–79,

1995.

[LV87] F. Liese and F. Vajda. Convex statistical distances. Teubner-Texte zur

Mathematik, Band 95, Leipzig, 1987.

[MAA05] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. Efficient

computation of frequent and top-k elements in data streams. In ICDT,

pages 398–412, 2005.

[MBBF99] Llew Mason, Jonathan Baxter, Peter Bartlett, and Marcus Frean. Func-

tional gradient techniques for combining hypotheses. In Advances in

Large Margin Classifiers. MIT Press, 1999.

[McG05] Andrew McGregor. Finding graph matchings in data streams. In

APPROX-RANDOM, pages 170–181, 2005.

[MG82] Jayadev Misra and David Gries. Finding repeated elements. Sci. Com-

put. Program., 2(2):143–152, 1982.

170

[Mor78] Robert Morris. Counting large numbers of events in small registers.

CACM, 21(10):840–842, 1978.

[MP80] J. Ian Munro and Mike Paterson. Selection and sorting with limited

storage. Theor. Comput. Sci., 12:315–323, 1980.

[MRL98] Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G. Lindsay.

Approximate medians and other quantiles in one pass and with limited

memory. In ACM International Conference on Management of Data,

pages 426–435, 1998.

[MRL99] Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G. Lindsay.

Random sampling techniques for space efficient online computation of

order statistics of large datasets. In ACM International Conference on

Management of Data, pages 251–262, 1999.

[Mut06] S. Muthukrishnan. Data streams: Algorithms and applications. Now

Publishers, 2006.

[MV80] Silvio Micali and Vijay V. Vazirani. An O(
√

V E) algorithm for finding

maximum matching in general graphs. In IEEE Symposium on Foun-

dations of Computer Science, pages 17–27, 1980.

[Nis92] Noam Nisan. Pseudorandom generators for space-bounded computa-

tion. Combinatorica, 12:449–461, 1992.

[NW93] Noam Nisan and Avi Wigderson. Rounds in communication complexity

revisited. SIAM J. Comput., 22(1):211–219, 1993.

[NWJ05] XuanLong Nguyen, Martin J. Wainwright, and Michael I. Jordan. Di-

vergences, surrogate loss functions and experimental design. Proceedings

of NIPS, 2005.

171

[Pre99] Robert Preis. Linear time 1/2-approximation algorithm for maximum

weighted matching in general graphs. In Symposium on Theoretical

Aspects of Computer Science, pages 259–269, 1999.

[PS04] Seth Pettie and Peter Sanders. A simpler linear time 2/3-ǫ approxima-

tion for maximum weight matching. Inf. Process. Lett., 91(6):271–276,

2004.

[Raz92] Alexander A. Razborov. On the distributional complexity of disjoint-

ness. Theor. Comput. Sci., 106(2):385–390, 1992.

[RRR+07] Sofya Raskhodnikova, Dana Ron, Ronitt Rubinfeld, Amir Shpilka, and

Adam Smith. Sublinear algorithms for approximating string compress-

ibility and the distribution support size. In International Workshop on

Randomization and Approximation Techniques in Computer Science,

2007.

[SBAS04] Nisheeth Shrivastava, Chiranjeeb Buragohain, Divyakant Agrawal, and

Subhash Suri. Medians and beyond: new aggregation techniques for

sensor networks. In SenSys, pages 239–249, 2004.

[Sha48] Claude E. Shannon. A mathematical theory of communication. Bell

System Technical Journal, 27:379–423 and 623–656, July and October

1948.

[SS02] Michael E. Saks and Xiaodong Sun. Space lower bounds for distance

approximation in the data stream model. ACM Symposium on Theory

of Computing, pages 360–369, 2002.

[SW07] Xiaoming Sun and David Woodruff. The communication and stream-

ing complexity of computing the longest common and increasing subse-

quences. In ACM-SIAM Symposium on Discrete Algorithms, 2007.

172

[Top00] Flemming Topsøe. Some inequalities for information divergence and

related measures of discrimination. IEEE Transactions on Information

Theory, 46(4):1602–1609, 2000.

[TZ01] Mikkel Thorup and Uri Zwick. Approximate distance oracles. In ACM

Symposium on Theory of Computing, pages 183–192, 2001.

[Č81] Nikolǎı Nikolaevich Čencov. Statistical decision rules and optimal infer-

ence. Transl. Math. Monographs, Am. Math. Soc. (Providence), 1981.

[Vit85] Jeffrey Scott Vitter. Random sampling with a reservoir. ACM Trans.

Math. Softw., 11(1):37–57, 1985.

[Woo04] David P. Woodruff. Optimal space lower bounds for all frequency mo-

ments. In ACM-SIAM Symposium on Discrete Algorithms, pages 167–

175, 2004.

[WP05] Arno Wagner and Bernhard Plattner. Entropy based worm and anomaly

detection in fast IP networks. In IEEE International Workshops on En-

abling Technologies: Infrastructures for Collaborative Enterprises, pages

172–177, 2005.

[XZB05] Kuai Xu, Zhi-Li Zhang, and Supratik Bhattacharyya. Profiling internet

backbone traffic: behavior models and applications. In SIGCOMM,

pages 169–180, 2005.

[Yao79] Andrew Chi-Chih Yao. Some complexity questions related to distribu-

tive computing (preliminary report). ACM Symposium on Theory of

Computing, pages 209–213, 1979.

[Yao80] Andrew Chi-Chih Yao. Lower bounds by probabilistic arguments. In

IEEE Symposium on Foundations of Computer Science, pages 420–428,

1980.

173

[ZC06] Hamid Zarrabi-Zadeh and Timothy M. Chan. A simple streaming algo-

rithm for minimum enclosing balls. In Canadian Conference on Com-

putational Geometry, pages 139–142, 2006.

[Zel06] Mariano Zelke. k-connectivity in the semi-streaming model. CoRR,

cs/0608066, 2006.

[Zha05] Jian Zhang. Massive Data Streams in Graph Theory and Computational

Geometry. PhD thesis, Yale University, 2005.

174

