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Abstract

Wavelength division multiplexed (WDM) optical communi-
cation offers the advantages of increased capacity and de-
creased latency for signals (traffic) carried across such net-
works. The devices used for “switching”, however, force
additional constraints on the mathematical design of such
networks. In this paper we explore two such constaints: (i)
optical lightpaths must be assigned individual wavelengths
and (ii) sometimes lightpaths must unavoidably go through
an optical-electronic-optical (OEO) conversion by means of
an expensive piece of equipment called an optical transpon-
der. We term the graph theoretical problems related to these
constraints path colouring and island hopping. We present
a range of upper and lower bounds for these problems. In
particular, we extend the work of Winkler and Zhang (2003)
and Anshelevich and Zhang (2004).

1 Introduction

In this paper we focus on issues that arise in the de-
sign of networks in which light travelling along optical
fibers is used to transmit information. While such net-
works have their origins in the sixties, it has only been
in the last twenty years that the technology has becom-
ing fully deployed. One development that capitalizes
on the inherent advantages of optical communication is
that of wavelength division multiplexing (WDM.) This
allows multiple signals using different wavelengths to
be transmitted simultaneously on a single optical fiber.
Systems that used two different wavelengths first ap-
peared around 1985. Today, dense wavelength division
multiplexing can use up to 160 different wavelengths
thereby providing a substantial increase in the possible
transmission rate.

The study of WDM networks includes numerous
natural and compelling questions, some of which have
already been addressed in the literature. These in-
clude minimizing the number of colours needed such
that every demand can be routed monochromatically
(e.g., [1, 11, 27, 29, 33, 34, 41]). More recently, at-
tention has turned to minimizing the cost of fibers,
each being able to carry a fixed number of wavelengths,
that can be used to achieve monochromatic routing
(e.g., [15, 4, 28, 37, 42]). In another set of problems
the possibility of using wavelength convertors has been
explored (e.g., [41, 25, 23, 14]). These devices allow

the wavelength of a signal to be changed mid-route.
Unfortunately these devices are prohibitively expensive.
Other difficult optimization problems arise when build-
ing, configuring and operating WDM networks [12].
Very recently, the limits of optically switching has given
rise to graph decomposition problems [6].

In the next section we formally describe the param-
eters of designing WDM networks. Subsequently, we
specify the precise problems that we address, the exist-
ing results and our improvements. Before we do that
however, we give an informal description of two spe-
cial cases of the problems that we address. We do this
in such a way as to highlight that, while motivated by
problems of practical interest, there are inherently fun-
damental problems which may prove pleasant and in-
teresting in and of themselves.

The first problem is to decompose a graph into
simple paths T1, T2, . . . such that between any two nodes
there exists a path P such that P intersects at most
t of the paths T1, T2, . . .. One can imagine numerous
pseudo-motivations for such a problem. For example,
we may wish to design a subway system (given a set of
existing tunnels) such that the number of times that the
average commuter needs to change lines is minimized.
The second problem starts with a graph G = (V, E) and
a set of siti node pairs. For each pair siti we pick a path
in G between the nodes si and ti and assign one of λ
colours to this path. We seek to minimize the maximum
(over all colours) multiplicity of an edge among the set
of all paths with a given colour.

1.1 Design of WDM Networks In general, our
optical network design problems take the following
inputs. We are given an undirected supply network
G = (V, E) where E is the set of edges uv whose
endpoints are the nodes u and v. We are also given a
demand graph H = (V, F ). For our purposes we assume
each demand f requests one unit of flow between its
endpoints. (We also consider the directed supply graphs
which consist of nodes and arcs, denoted (u, v) having
tail u and head v.) Edge e of the supply network may
have an associated cost ce. Each edge represents point-
to-point links, and within each link there may be many



fibers. Typically, there are already many fibers in a link,
but one pays a price ce each time a fiber is lit (which
amounts to installing the appropriate line terminating
equipment at the link endpoints). Let le be the number
of fibers lit on link e. A fiber has a capacity λ which is
the number of wavelengths that can simultaneously be
used on the fiber.

We now outline the main constraints imposed on
routing in an WDM optical network; for a more thor-
ough background the reader is referred to [38].

1. Routing constraints: We route each demand in H
along a simple path in G.

2. Capacity constraints: The number of paths
through an edge e does not exceed leλ.

3. Optical constraints: Each path is assigned a wave-
length w(P ) ∈ [λ]. Two paths with the same
wavelength may not use the same fiber although
they may use two different fibers on the same
link. At each node there exist switching devices,
called reconfigurable optical add-drop multiplexers
(Roadms), that optically connect signals on inci-
dent fibers. A c-arm Roadm partitions the incident
fibers into sets of size at most c. A signal travel-
ling between two fibers may be switched optically if
the two fibers are in the same partition. If a signal
is not optically switched, then an optical-electrical-
optical (OEO) conversion is required. Colloquially
we say that such a signal must “hop” to the next
fiber. Ideally c would be large enough such that
signals could be optically switched between all inci-
dent fibers. This is called Full Wavelength Selective
Switching (WSC). In practice, c ≤ 4 (cf. [13]).

To take advantage of the benefits of optical com-
munication we try to route demands transparently as
much as possible. Transparency refers to signals that
stay in the optical domain without any conversion to
electronics in this framework. Requiring that each path
is monochromatic is a necessary part of ensuring trans-
parency since converting between wavelength requires
electronics. Note that without the optical constraints
our design problem becomes the same routing and ca-
pacity allocation problem as for traditional networks. It
is quite easy to construct examples in which the optical
constraints necessitate an increase in the cost of fiber re-
quired to route the demands. In [37] this factor increase
is termed the transparency gap. The problem has been
studied from an empirical perspective. For instance, in
[31] very little transparency gap is observed as long as
demand is sufficiently large. Theoretical evidence for
this is further provided in [37].

1.2 Our Results and Previous Work

Fiber Minimization (Full WSC-Switching) Our
first results are applicable when we assume the avail-
ability of full WSC-Switching. In this case our sole
goal is to minimize the total cost of fiber purchased.
This model appears to have been introduced in Lowe
[30] and has been widely studied in various communi-
ties, see for instance [37, 42, 5, 15, 10]. See [24] for a
survey.

Problem: MinFib
Input: Supply network G, demand graph H ,

costs (ce)e∈E , fiber capacity λ
Solution: A multiple le of fibers bought at link e,

simple routing paths (Ph)h∈E(H) and
an assignment of one of λ colours to
each Ph such that the number of paths
of the same colour using any edge e is
at most le

Goal: Minimize
∑

e∈E lece

Winkler and Zhang [42] showed that MinFib can
be solved optimally if G is a path. Our first re-
sult is to extend this to a more general class of
directed tree networks. For general graphs, An-
drews and Zhang [5] gave a polynomial-time O(log n)-
approximation. Moreover, they show that this prob-
lem has no O(log1/4−ǫ n)-approximation for any ǫ > 0,

unless NP ⊂ ZPTIME(nO(log1/ǫ n)). In contrast, we
show that the single-source multicommodity WDM flow
problem can be solved exactly and the correspondng
fiber minimization problem has a constant approxima-
tion in general graphs. Our positive results rely on
the integer decomposition property of certain polyhe-
dra. However, we give a combinatorial algorithm for
a problem that simultaneously generalizes the single-
source WDM flow problem and the multi-route flow
problem.

Hop Minimization (Partial WSC-switching) We
now consider the more realistic possibility that full
WSC-switching is not possible and instead we assume
we only have access to c-arm Roadms. A model that
captures this was introduced by Anshelevich and Zhang
[6] for c = 2. This model assumes that each link consists
of a single lit fiber of infinite capacity. The focus thus
turns away from the cost of lighting fiber, to minimizing
hop costs. To formally define the problem we must first
introduce the notion of a transparent island.

Definition 1. (Transparent Island) A proper c-
arm transparent island is a set of edges of a sub-
tree of the supply graph that has maximum degree c.
An improper c-arm transparent island is defined by a



partitioning of the edges incident to each node into sets
of size at most c. Let Pv be the partitioning of δ(v), the
edges incident to v. Let sv(e) ∈ Pv denote the subset of
edges in the same partition as the edge e. We say that
e ∼ e′ if sv(e) = sv(e

′) for some v ∈ V . An improper
transparent island is an equivalence class of transitive
closure of ∼. A 2-arm transparent island is called a
line system.

This definition generalizes that given in [6] for the
case of 2-armed Roadms as we wish to also develop
methods for c-armed devices with c > 2. Note that a
proper (improper) transparent island is a simple path
(trail).

Definition 2. (Hops) Given a set of transparent is-
lands, T1, . . . , Tl and a path P denoted as a sequence
of edges (e1, e2, . . . , ep), let t(e) denote the transparent
island including edge e. We define the number of hops
taken by P as hT1,...,Tl

(P ) = 1 + |{i ∈ [p − 1] : t(ei) 6=
t(ei+1)}|.

Problem: MinHopc

Input: Supply network G, demand graph H
Solution: c-arm transparent islands T1, . . . , Tl

and simple routing paths (Ph)h∈E(H)

Goal: Minimize average number of hops,
i.e., 1

|E(H)|

∑
h∈E(H) hT1,...Tl

(Ph)

The main result of [6] relevant here is a pleasingly
simple polytime algorithm for MinHop2 in undirected
graphs that achieves a O(log n)-approximation. They
also show that MinHop2 is hard to 2-approximate. Our
first result for MinHop is to improve this hardness re-
sult to Ω(log1−ǫ n) and thereby establish the surprising
(to us) result that the decomposition algorithm of [6]
is close to optimal. We then extend the treatment to
directed graphs. Here we show another negative result
– it is hard to O(n1−ǫ)-approximate MinHop2. This is
the case even if the supply graph is strongly connected.
Note that an O(n)-approximation is trivially achieved
by routing demands along the shortest paths and des-
ignating each edge as a transparent island. On the
positive side, we give a polytime O(

√
n)-approximation

algorithm when the supply graph is a directed acyclic
graph.

In directed graphs, 3-armed Roadms yield sub-
stantial improvements. For example, when the supply
graph is strongly connected, we present an algorithm
that achieves an O(log n)-approximation for MinHop3,
an exponential improvement over the best possible for
2-arm Roadms. We also investigate the benefits of
3-arm Roadms in terms of the cost of optimal so-
lutions. For undirected graphs, we show that if the

supply graph G is 3-node connected and planar, then
MinHop3(G) = 1 whereas if G is only 2-node connected
and planar MinHop3(G) can be Ω(log n). The algorith-
mic results are summarized in Table 1.

2-arm Roadms 3-arm Roadms
Algorithm Hardness Algorithm

a) O(log n) [6] Ω(log1−ǫ n) O(log n) [6]
b) O(n) Ω(n1−ǫ) O(log n)

c) O(n1/2) Ω(log n) O(n1/2)

Table 1: Approximation Ratios – Hardness and Guar-
antees. Rows a), b) and c) correspond to undirected
graphs, strongly-connected graphs, and DAGs.

Towards Joint Optimization of Fiber Layout,
Routing and Roadm Configuration The MinHopc

problem is of interest when we have already decided
precisely which fibers to light. We are often in the
case where each link has a large supply of fibers and
we can always choose to light extra fibers in order to
reduce OEO costs. In Section 4 we make a step towards
jointly optimizing fiber design, routing, and Roadm
configurations. In particular, we consider the model
where fibers again have infinite capacity, however, we
may light as many fibers as needed in a link. We also
consider a related fundamental problem of laying down
a small number of line systems to reduce the diameter of
an acyclic graph to polylogarithmic size. We describe
connections to the shortcutting problem [39, 21] and
give initial results and describe some possible directions.

2 Fiber Minimization

In this section, we consider the network flow and de-
sign problems in WDM networks with full wavelength-
selective switching, MinFib. We show “fractional im-
plies integral” results where given a standard network
flow, we are able to transform it into a WDM flow. Un-
derlying both results is an associated class of polyhedra
having the integer decomposition property (IDP) [8]. A
polyhedron P has the IDP if for any x ∈ P , and any
integer k such that kx is integral, we have kx =

∑k
i xi

where each xi is an integral vector in P . Trivially, any
polyhedron with the IDP is integral, i.e., each of its ver-
tices is integral. We make use of the following result of
Baum and Trotter.

Theorem 1. (Baum, Trotter [8]) A matrix A is
totally unimodular if and only if {x : Ax ≤ b, x ≥ 0}
has the integer decomposition property for every integer
vector b.



Multicommodity WDM Flow in Trees In this
section we assume that the supply network is a directed
tree T = (V, A) and that the demand graph H = (V, F )
has the property that for each h = (u, v) ∈ F , the
unique path in T between u and v is directed from u
to v. This generalizes fiber minimization on a line as
considered by Winkler and Zhang [42].

For any capacity vector u : A(T ) → Z, we define a
polyhedron P (T, H, u) in RF of “feasible” flows for our
demands: {x : B·x ≤ u, 0 ≤ x ≤ 1}. Here B denotes the
0, 1 matrix with a row for each arc of T , and a column for
each h = (u, v) ∈ F . There is a 1 in Bah if and only if a
lies on the path Ph. The matrix B is a network matrix
cf. [36] and hence is totally unimodular. Therefore,
the block matrix [BT I]T is totally unimodular too. It
follows that for any integral u, P (T, H, u) has the integer
decomposition property.

Theorem 2. There is a polytime algorithm that solves
MinFib on directed tree instances.

Proof. It is sufficient to show that in any directed tree
instance of MinFib, if the load on any edge e is at
most leλ, then we may also assign valid wavelengths
to the demands F . That is, there is a partition F =
F1 ∪ . . . ∪ Fλ such that the load of any arc of T under
Fi is at most le. Consider the polyhedron P (T, H, l).
By assumption, the vector 1

λχF lies in this polyhedron,
where χF denotes the 0, 1 incidence vector of the set of
edges F . Since P has the IDP, we may decompose the
vector χF =

∑λ
i χF

i , where χFi ∈ P (T, H, l). Since the
load of any edge under Fi, is ≤ le, we may route the
demands in Fi monochromatically. 2

Single-Source Multicommodity WDM Flows
Now we assume that we have an arbitrary directed sup-
ply graph D = (V, A) but our demand graph H = (V, F )
is a single-source instance, i.e., the demands are of the
form (s, ti) for some s and t1, . . . , tk. We start with
another “fractional implies integral” result for WDM
flows.

Theorem 3. If there is a single source network integral
flow such that the load on any arc e is at most leλ, then
there is a wavelength-labeled such flow that uses at most
le fibers on each edge e.

Proof. Consider the node-arc incidence matrix A for D:
for each node v and arc a, Dv,a is 1 if a has tail v, −1
if it has head v, and otherwise it is 0. Since A is totally
unimodular, we have that P = {f : Af ≤ l, f ≥ 0} has
the IDP. Thus if f ′ is a flow vector whose total load on

any edge e is at most λle, then f ′

λ ∈ P , and so once

again we may decompose f ′ as
∑λ

i=1 f i where each f i

is an integral vector P . As the flow paths determined
by any f i place a load of at most le on any link, there
are enough fibers to route these demands on the same
wavelength. 2

The above theorem can also be proved using an efficient
combinatorial algorithm by employing standard flow
computations. To see this, we call a flow k-ready (for l)
if the total load on any link e is at most kle. We call an
arc e critical for a k-ready flow f if its load is (k−1)le+r
for some r > 0. We also call r its requirement. If e is not
critical, then its requirement is 0. We create a typical
auxiliary graph for flows as follows. For each arc with a
flow of x on it, we include the reverse arc with capacity
x. For each arc with a load of (k−1)le−r for some r > 0,
we include the forward arc with capacity r. In addition,
from each terminal ti, receiving di units of flow from
s, we include an arc from ti back to s with capacity 1
(if there are di demands terminating we give it capacity
di.) Finally, for each critical arc we include this arc
with a lower bound equal to its requirement. One easily
checks (we omit the details) that if f is a k-ready flow,
then Hoffman’s Circulation Conditions [22] hold in this
auxiliary graph. Moreover, if f ′ is such a circulation, the
flow f ′′, produced in the standard symmetric difference
manner from f, f ′, is (k − 1)-ready.

Note that the circulation f ′ determines the set of
flow paths to be routed on wavelength k. We remove
these demands, and then repeat with the flow f ′′. As
is well-known, such a circulation problem can be solved
by repeatedly solving shortest path problems. Note
that this method also gives a simple algorithm for the
computation of so-called p-multi-route flow vectors [2]
by simply taking le = 1 for all e. To find a multi-route
flow of size say kp, we compute a k-ready flow of size kp
and then apply the above procedure to decompose into
the desired protected flows.

We now turn to the network design problem, that
is, computing an optimal choice for lighting fibers.
Theorem 3 implies that it is sufficient to determine
values le such that the minimum cut condition holds.
That is, for each set S containing s, λ · l(δ+(S)) =
λ · ∑e∈δ+(S) le ≥ f(S) where f(S) =

∑
ti∈V −S 1. This

single-sink edge installation problem is hard, even when
each fibre has infinite capacity. For directed graphs,
there is an approximation preserving reduction from
set cover. However, for undirected graphs there is a
factor 3.55-approximation algorithm [20]. Combining
this with Theorem 3 yields the following result.

Theorem 4. In polytime we can 3.55-approximate
MinFib on single source multicommodity instances.

Theorem 4 may be of practical use for empiri-
cal studies, by giving formulations for multicommodity



WDM flows based on setting up n single source multi-
commodity flow vectors, as opposed to Ω(n2) source-
destination flow vectors. Capacity sharing between
these distinct source flows remains a complication.

3 Hop Minimization

2-arm Roadms (Undirected Supply Graphs) In
[6] it was shown that routing along an arbitrary span-
ning tree of G and then setting Roadms optimally
yielded an O(log n)-approximation to MinHop2. They
also prove that it is NP-hard to approximate MinHop2

by better than a factor 2. Given that the routing is rea-
sonably arbitrary it is perhaps surprising that their al-
gorithm is almost optimal. Indeed, we show that, unless

NP ⊂ DTIME(2O(log1/ǫ n)), it is hard to approximate
MinHop2 to within a factor of log1−ǫ n. Our reduction
is from LongPath, the problem of finding long paths
in 3-regular Hamiltonian graphs. It is known that, un-
less P = NP , LongPath cannot be approximated to
within a constant factor [9].

Theorem 5. For ǫ > 0, unless NP ⊂
DTIME(2O(log1/ǫ n)), there exists no polytime al-
gorithm that O(log1−ǫ n)-approximates MinHop2 for
undirected graphs.

Proof. Take an instance L of LongPath on t + 1
nodes. We construct an instance of MinHop2 on n =
2O(log1/ǫ t) nodes such that the optimal cost is 1 but
finding a solution with cost less than Ω( log n

log t ) yields a

path of length greater than t/50 in L. The construction
is as follows.

Let the nodes of L be {u1, u2, . . . , ut+1}. Replace
each node u of L by nodes V (u) = (ua, ub, uc) where
each node becomes an endpoint for one of the edges
originally incident on u. We call these nodes the “split-
triple” for u. We also add two nodes I(u) = (va

u, vb
u)

which we call the “interfacing-pair” for u. Next add a
complete set of edges between the nodes in V (u) and
I(u). Call the resulting graph L′. Let G′ = (V ′, E′) be
a balanced t-ary tree on n′ nodes. Call the root node r.
Double each edge e to produce an “in-and-out” edge pair
(ea, eb). Replace each node v of degree 2(t+1) by a copy
of L′ such that the two nodes of each interfacing-pair in
L become the endpoints of an in-and-out pair of edges.
We call the resulting graph G = (V, E). Let the demand
graph H consist of all edges from r to degree two nodes
of G (the nodes from G′ that were originally leaves.) See
Figure 1. By analogy to the original tree structure of
G′ we consider copies of L′ to be super-nodes in a tree-
like structure and define “parent”, “height”, “sub-tree”,
“leaves” in the natural way. For example, the “depth”
of G is d = logt(n

′(t − 1) + 1) − 1.

Solve MinHop2 on G, H . Consider a copy X of
L′ and the t + 1 in-and-out pairs of edges, EX =
(ea

1 , e
b
1, e

a
2, e

b
2, . . . e

a
t+1, e

b
t+1) where (ea

1 , e
b
1) is the in-and-

out pair of edges that join this copy of L′ to its parent
copy. Our solution has partitioned these edges into line
systems. Let Pa be the line system including ea

1 and let
Ea = EX ∩ Pa. Similarly define Pb and Eb.

We claim that |Ea| > t/10 gives rise to a simple
path of length at least t/50 in L. To see this, consider
the sequence S = (V (ui1), V (ui2), . . . V (uil

)) of split-
triples visited by Pa. The sequence must be of length
at least |Ea|/2 − 1. Furthermore all terms of the
sequence occur only once with the possible exceptions
of V (ui1) and V (uil

) which may appear twice. Hence
there is a (consecutive) sub-sequence S′ of S of length
(|Ea|/2 − 2)/2 that gives rise to simple path in L′ of
length t/50.

Hence assume that |Ea| (and |Eb| by an identical
argument) is ≤ t/10. Since every demand in the subtree
rooted at v must use either ea

1 or eb
1 and each is on the

same line system as at most t/10 − 2 of the edges in
EX \ {ea

1, e
b
2}, at least (1 − 2(t/10 − 2)/t) > 1/2 of the

leaves require to hop between line systems at X . Hence
the average number of hops required by a demand is
Ω(d). But since L is Hamiltonian it is straightforward
to see that each demand can be routed with only the
initial hop. 2

2-arm Roadms (Directed Supply Graphs) We now
turn our attention to directed graphs. We first give
the proverbial bad news: it is hard to approximate
MinHop2 up to a factor O(n1−ǫ) even in a strongly
connected graph. Our reduction is from the problem
2DirPath. This decision problem is known to be NP-
complete [16].

Problem: 2DirPath
Input: A directed graph H = (V, A), distinct

vertices x1, x2, y1, y2 ∈ V .
Question: Are there edge-disjoint directed paths,

from x1 to y1 from x2 to y2, in H?

Note that an O(n)-approximation for MinHop2

is trivially achieved by routing each demand along
the shortest path and letting each edge be a separate
transparent island.

Theorem 6. For any constant ǫ > 0, unless P =
NP , there exists no polynomial algorithm that O(n1−ǫ)-
approximates MinHop2 for strongly connected graphs.

Proof. Consider the graph in Figure 2. The nodes
are v1, v2, . . . , vn′ . There are arcs (vi, vi+1) for i =
1, . . . n′ − 1 and arcs (vi, vi−3) for i = n′, n − 2, n −
4, n − 6, . . .. We wish to route 1 unit of flow from v1
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Figure 1: Reduction from LongestPath to MinHop2 (undirected).
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Figure 2: Reduction from 2DirPath to
MinHop2 (strongly connected graphs).

to vn′ and one unit from vn′ to v1. Note that there
is a unique path for each of these demands. Hence
the total cost is Ω(n′) since at each vi (1 < i < n′)
one of the two paths will have to make a hop. See
Figure. 2. We now prove a hardness result by embedding
numerous copies of an instance (H, in1, in2, out1, out2)
of 2DirPath as follows. For each i = n′ − 3, n′ − 5, . . .,
we remove nodes vi and vi+1 and incident arcs. We
add H and arcs (vi+3, in1), (vi−1, in2), (out1, vi−2) and
(out2, vi+2). Let the resulting graph be G. Clearly if
(H, in1, in2, out1, out2) is a yes instance of 2DirPath,
then MinHop2(G) = 1. However if it is a no instance,
then MinHop2(G) = Ω(n′). Choose H to be of size
at lease nǫ for some constant ǫ and let n′ = n1−ǫ.
Thus if we can approximate MinHop2(G) to within a
factor of O(n1−ǫ) in polytime, then we can resolve the
given instance of 2DirPath in polytime. There is a
slight detail in that the hard instances of 2DirPath as
constructed in [16] are not strongly connected. However,
this problem is easily overcome: we may assume that
in1, in2, out1, out2 have degree 1 and that each node in
H is reachable from either in1 or in2 (otherwise these
nodes may be identified and removed in polytime). We
then add edges (h, in1) and (h, in2) for each node h in
H other than in1 and in2. Such a graph is strongly
connected and there exists edge-disjoint paths from in1

to out1 and from in2 to out2, iff there exists such edge-
disjoint paths before the addition of the edges. 2

We now give some good news: if the supply network
is acyclic, then we can do better. We start with a
preliminary lemma.

Lemma 1. We call a length l sequence of natural num-
bers a1, a2, . . . , al boosted if ai 6= ai+1 for all i < l, and
for any pair i < j with ai = aj, we have ap ≤ ai for
all p ∈ (i, j). The length of a boosted sequence with a
support of size k is at most 2k.

Proof. Without loss of generality the support, {ai :
i = 1, 2, ..., l}, consists of distinct elements 1, 2, . . . , k.
The proof is by induction on k, the case k = 1 being
trivial. If there is no repeated element in the sequence,
then the length is at most k, so assume that q is
the minimum repeated number, and let i1, i2, . . . , in
be the only positions such that ai1 = ai2 = . . . =
ain = q. For each j = 1, 2, . . . , n − 1, let Ij = {ap :
ij < p < ij+1}. By definition and minimality of q,
the elements of each Ij are distinct. Moreover, these
sets are themselves disjoint, for otherwise some aij is
surrounded by a pair of equal, but smaller elements in
the sequence, contradicting the fact that the sequence
was boosted. Define r =

∑n−1
j=1 |Ij |. It follows that the

total length of the sequence is at most 2r plus the length
of the sequence a′ = (a1, a2, . . . , ai1 , ain+1, . . . , al). The
sequence a′ has a support of size k− r since no aq, with
q < i1 or q > in lies in any Ij . Thus by induction (a′

is also boosted), it has length at most 2(k − r), and the
result follows. 2

Theorem 7. There is a polytime O(
√

n)-
approximation algorithm for MinHop2 for DAGs.

Proof. The algorithm routes demands in two phases.
In the first phase we find paths which we subsequently
use to define our line systems. We find these paths in
iterations. In iteration i, we have already found some
paths P1, P2, . . . , Pi−1 for i − 1 of the demands. We
define Gi to be the graph obtained by adding a clique
of edges, each assigned a label of j, between the nodes
V (Pj) for each 1 ≤ j ≤ i − 1. We call these short
arcs and assign them length 1/n2. The original edges
of G are given length 1. If each demand is at distance
at most 3

√
n apart in Gi, then we stop this phase of

the algorithm. Otherwise, we find a demand with a
shortest path Ri in Gi whose length is at least 3

√
n. By



minimality and the fact that G is acyclic, note that any
such path contains at most 2 nodes from any path Pj

with 1 ≤ j ≤ i − 1, otherwise we can “shortcut” (any
pair of nodes on such a Pj are already adjacent in Gi.)
Therefore Ri contains at least 3

√
n − 2(i − 1) “new”

nodes not contained in any Pj , 1 ≤ j ≤ i − 1. Let Pi

be the directed (simple by acyclicity) path obtained by
replacing any short arcs in Ri, say (x, y) of label j < i,
by the subpath of Pj from x to y. Note that we route
O(

√
n) demands since if we kept on finding demands at

a distance at least 3
√

n, then after at most
√

n stages,
every node would appear in some path. Let Pi∗ be the
last route determined in this phase.

In the second phase, we create our line systems
using the Pi’s as follows. Starting with H0 = G, for
each i = 1, 2, . . . , i∗, we set each maximal subpath of
Pi in Hi−1 to be a line system (with label i). We then
delete all edges of Pi to obtain Hi. Finally, edges not
contained in

⋃
1≤i≤i∗ Pi, form single edge line systems.

The result follows from the next claim.

Claim. For any pair of nodes u, v, there is a u− v path
that hops onto line systems created up to the Hi stage
at most O(i) times.

Proof. [Proof of Claim] Let R be the shortest u−v path
in Gi and let P be the path in G formed by replacing
any short arcs by the corresponding subpath of one
of the routes determined in the first phase. The path
P can be decomposed into “fresh” segments and non-
fresh segments as R = F0, N0, F1, N1, . . . , Fp, Np (where
F0 and Np are potentially empty.) Each line system
used in P has an associated label j ≤ i. We consider
the sequence ā = (a1, a2, . . . , al) of these labels as we
traverse P from left to right – we only list a label once
for a contiguous set of edges in P that all belong to the
same line system. We ignore edges in fresh segments as
they have not been assigned a label. We claim that ā is
boosted and hence, by Lemma 1, the path hops at most
O(i) times onto line systems created up to the Hi stage.

Firstly the only way in which aj = aj+1 = a for
some j ∈ [l − 1] is if the last arc (v1, v2) of Nq and
the first arc (v3, v4) of Nq+1 (for some q) are from line
systems with label a. But in this case the path R in
Gi was not the shortest – it incurred a cost at least 1
(the edges in the segment Fq+1 each cost 1) to join v2

to v3 whereas there was an edge (v2, v3) of length 1/n2

in Ga (and hence Gi) since (v1, v2) and (v3, v4) are both
in P a.

Secondly suppose that aj = aj′ = a with j < j′,
yet there is some j′′ ∈ (j, j′) such that aj′′ > aj . By
minimality of R in Gi, we know that the whole sub-path
of P “from” aj to aj′ must be contained in Paj . For this
to be not so, R would have had to share more than two

u1

S1 Sm

un

d

Figure 3: Reduction from set cover.

nodes with Paj . But then after stage aj, the segment
associated with aj′′ should have become a line system
of label at most aj . This is a contradiction. 2

This claim implies two things. For demands that do
not get routed in the first phase, it immediately implies
that there is a path that uses at most O(

√
n) existing

systems, but in addition its total length in Gi∗ is at most
3
√

n, and hence it uses at most O(
√

n) edges not in some
Pi. Therefore, this is routed with O(

√
n) hops. Second,

any Pi determined in the first stage, alternates between
segments of previously created line systems, and fresh
subpaths in Hi. Moreover, the number of fresh subpaths
is clearly bounded by the number of line systems, and
by the claim the latter is O(i). Since each fresh subpath
becomes a new line system, Pi traverses at most O(

√
n)

line systems from end to end. 2

A special case of Lemma 3 will show that the above
upperbound on MinHop2(G) is essentially tight.

Lemma 2. There exists a directed acyclic graph G such
that MinHop2(G) = Ω(

√
n).

While it would appear that the construction used to
prove the above lemma could be used to construct
a hardness of approximation result for acyclic graphs
using a reduction from 2DirPath, this is not the case.
This is because, for acyclic graphs, 2DirPath is not
NP-hard. The following hardness result uses a reduction
from SetCover [35].

Theorem 8. Unless P = NP , there is no polytime al-
gorithm that O(log n)-approximates MinHop2 (DAG).

Proof. Our hardness result is based on a reduction from
set cover. Consider a universe U = {u1, . . . un} and a
set of sets S = {S1, . . . , Sm}. Wlog. we asssume that
m ≤ n. The set cover problem to find a subset S′ ⊆ S
of minimum cardinality such that for each uj ∈ U there
is a Sj ∈ S′ such that uj ∈ Si. It is know that this is
Ω(log n) hard to approximate.



We construct a directed network as follows. Con-
sider a graph as pictured in Figure 3. Note that all
vertical edges are directed upwards and all horizontal
edges are directed to the right. We associate elements
of U with the nodes at the bottom level. Nodes in the
level above correspond to the sets in S. For each uj in
Si we direct an edge from uj to Si. For each Si we have
a path Pi of length 2B + 1 up to a node d. For each Pi

there are B separate paths that share an edge with Pi

(as shown.) There are n+mB demands. For each uj we
need to route a demand to d – we call these set cover
demands. For each Pi there are B paths intersecting
with Pi’s upon which we need to route a demand – we
call these nuisance demands. (In the diagram B = 1.)

Consider a solution of the routing that contains
paths that use s nodes S′ ⊆ S. Now if Si ∈ S′, the
remaining routes incurs a cost of exactly 2B along path
Pi. This is because for each intersection of one of the B
paths, the cost is at least two 2 and if we place the line
system on Pi then we incur 2 at each intersection. For
Si 6∈ S no cost is incurred along Pi. Note that the set
of nodes used in the second level corresponds to a valid
set cover. Hence, once we have decided to use S′ the
optimal cost is (n − s) + 2sB + mB + n where n + mB
correspond to costs to jump onto the first line segment
– we call these start-up costs.

Consider t copies of this graph. We link together
the paths that intersect Pi in each copy. Note that the
route of the nuisance demands are fixed. Furthermore
the path routing any set cover demands remains in a
single copy. Consider choosing the same set S′ in each
– there is no reason to do otherwise. Hence the total
cost is (n−s)t+2sBt+mB+nt. Crucial is the fact that
there are still only mB nuisance demands. Let t = n2

and B = n3 and this becomes s(2n5 − n2) + 2n3 + n4.
For large values of n this is proportional to s. Hence
if we find an α-approximation to our problem then we
get an α+o(1)-approximation to the set cover instance.
We deduce that our problem is Ω(log n) hard. 2

Multi-arm Roadms: Benefits of an Extra Arm
We start with a result that shows the considerable
utility of 3-arm Roadms. This result contrasts the
Ω(n1−ǫ)-hardness result of Theorem 6.

Theorem 9. There is a polytime O(log n)-
approximation algorithm for MinHop3 (strongly
connected).

Proof. Pick an arbitrary node r. Consider an in-
arborescence and an out-arborescence. As in [6], we
may define transparent islands by doing a caterpillar
decomposition of the in-arborescence. Subsequently,
each demand can route to r and incur at most O(log n)

hops. Similarly, for the out-arborescence. Now consider
any node v and suppose the in-arborescence joined
its unique outgoing link a with an incoming link b.
Similarly, suppose that the unique incoming link a′ of
the out-arborescence was paired with some outgoing
link b′. If a, b, a′, b′ are disjoint or consist of precisely the
same pair of links, then there is no problem. Otherwise,
without loss of generality a = b′ and b 6= a′, and use a
3-armed Roadm to pair up a, a′ and b at v. Not that we
may easily ensure routing paths are simple by removing
any cycles in the routing paths – the number of hops
required can only go down. 2

Lemma 3. For c ≥ 2, there exists a DAG G with
MinHopc(G) = Ω(n1/c) but MinHopc+1(G) = 1.

It is known that MinHop2(G) = O(log n) for all undi-
rected graphs G [6]. They also note that for a bal-
anced binary tree T (with demands between the root
and all leaves) MinHop2(T ) = Ω(log n). Clearly
MinHop3(T ) = 1. However there also exist graphs,
for example the balanced tertiary tree, such that
MinHop3(·) = Ω(log n). There is one large class of
graphs where 3-arm Roadms give a strong improve-
ment. This follows from a classical result due to Bar-
nette.1

Lemma 4. (Barnette [7]) Every 3-node-connected
planar graph has a spanning tree of max degree ≤ 3.

The consequence is that, for every 3-node-connected
planar graph G, MinHop3(G) = 1. Furthermore,
Barnette’s proof gives gives a polytime algorithm that
will find the necessary spanning tree. For “all-pairs”
instances, MinHop2(G) > 1 if G is non-Hamiltonian
(and sufficiently large). Also of note is the result
by Fürer and Raghavachari [18] that gives a polytime
algorithm that finds a degree 3 spanning tree in a
Hamiltonian graph G. The bounded degree spanning
tree approach seems promising in general [26]. In
contrast to Barnette’s algorithm, the next result shows
that if the supply graph is only 2-node connected and
planar, then MinHop3(·) can still be Ω(log n).

Theorem 10. There exists a planar 2-node connected
graph G such that MinHop3(G) = Ω(log n).

We next highlight the significance of restricting our
attention to simple routing paths. Our proof uses a
special case of a result due to Mader [32]. The splitting
off of edges uv and uv′ at u consists of deleting these
edges and adding the edge vv′ (possibly resulting in a
double edge). The local connectivity between a pair of
nodes x, y, λ(x, y), is the minimum cut separating x, y.

1For comparison, all 4-node-connected planar graphs are
Hamiltonian by a celebrated theorem of Tutte [40].



Theorem 11. For all 2 edge connected graphs G,
MinHop3(G) = 1 if non-simple routings are allowed.

Proof. The proof uses Mader’s Theorem [32] that says
that for any node s in an undirected graph, that is not
incident to a bridge or of degree 3, there is some pair of
edges incident to s that can be split off without changing
any local connectivity λ(x, y) (x, y 6= s).

If all nodes are of degree at most 3, we are done
since there is a 3-arm spanning transparent island. So
consider any node v of degree 4 or more. One may
argue (we omit the details) that it is possible to “split
off” a pair of edges uv, u′v from v to obtain a new 2-
edge-connected graph. By induction, the smaller graph
has a single transparent island. If it does not use the
new edge, uu′, then it is also a transparent island for G,
and if it does, replacing uu′ by the uv, u′v and a new
Roadm at v, gives the desired island. 2

4 Future Directions

The above two sections have dealt with fiber minimiza-
tion and hop minimization separately. The simplifying
assumptions in each problem, full WSC and existing
unbounded capacity single fibers respectively, are unfor-
tunately somewhat orthogonal. In this final section, we
propose a hybrid model that more completely captures
the full network design problem.

WDM network design is essentially bi-criteria: we
wish to pay little for fibers and minimize the total
OEO conversion. In the new model, rather than
assuming that there already exist lit fibers of unbounded
capacity as in Section 3, we insist that each fiber used
is purchased at the appropriate cost. We still assume
that each fiber has unbounded capacity but allow more
than one fiber to be purchased in a link. The utility
of having multiple unbounded capacity fibers in a link
can be seen by considering the problem of using 2-arm
Roadms for routing between the leaves of a star graph
with 3 leaves.

There are numerous ways in which the bi-criteria
problem can be approached. For example, we can define
an (α, β)-approximation as a solution which pays at
most α times the cost of the minimum Steiner forest
(the cheapest set of fibers that allow each demand
to be routed) and allows the average (over demands)
number of hops to be β. For undirected graphs, using
existing results on approximating the minimum Steiner
forest [3, 19] and ideas from the previous sections, it is
straightforward to find algorithms that achieve a (4, 1)-
approximation (if paths are allowed to be non-simple) or
a (2, 2 logn)-approximation (if paths must be simple.)

Alternatively we could seek to minimize fiber costs
given an upper bound on the hops necessary for any

demand. This problem has similarities to the problem
of “shortcutting” a directed graph. In shortcutting,
we are given a directed graph, and wish to add a
small number of arcs (u, v) in the closure (shortcuts),
so that the maximum distance (between related pairs)
becomes polylogarithmic. Thorup [39] proved that in
planar graphs, this was always possible with O(m)
shortcuts and he conjectured this to hold in general
acyclic graphs. This was recently disproved [21]. In our
version, the shortcuts are more like turnpikes, in the
sense that we may add a directed path, and nodes in
the middle of the turnpike may “jump on” and use it to
decrease their shortest path hop lengths to other nodes.
Unfortunately even this weaker analogue of Thorup’s
conjecture is false. The proof of this uses the same
(lovely) counterexample of [21].
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