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1. Introduction

The problem of computing the frequency moments of a stream [Alon et al. 1999]
has stimulated significant research within the algorithms community, leading to
new algorithmic techniques and lower bounds. For all frequency moments, match-
ing upper and lower bounds for the space complexity are now known [Chakrabarti
et al. 2003; Woodruff 2004; Indyk and Woodruff 2005; Bhuvanagiri et al. 2006].
Subsequently, attention has been focused on the strongly related question of com-
puting the entropy of a stream. Motivated by networking applications [Gu et al.
2005; Wagner and Plattner 2005; Xu et al. 2005], several partial results have been
shown on computing the (empirical) entropy of a sequence of m items in sublinear
space [Chakrabarti et al. 2006; Guha et al. 2006; Lall et al. 2006; Bhuvanagiri
and Ganguly 2006]. In this article, we show a simple algorithm for computing an
(ε, δ)-approximation to this quantity in a single pass, using O(ε−2 log(δ−1) log m)
words of space. We also show a lower bound of �(ε−2/ log2(ε−1)), proving that
our algorithm is near-optimal in terms of its dependency on ε. We then give al-
gorithms and lower bounds for kth-order entropy, a quantity that arises in text
compression, based on our results for empirical (zeroth-order) entropy. We also
provide algorithms to multiplicatively approximate the entropy of a random walk
over an undirected graph. Our techniques are based on a method originating with
Alon et al. [1999]. However, this alone is insufficient to approximate the entropy
in bounded space. Their method involves uniformly sampling an element from the
stream and counting the number of subsequent occurrences of this element. We
show how to extend this to sampling a set of distinct elements such that the i th
element sampled is chosen uniformly from the substream formed by ignoring all
occurrences of first i − 1 sampled elements. This is achieved in one pass. The
idea is straightforward to implement, and may have applications to other problems.
For the estimation of entropy we will show that keeping a “backup sample” for
each estimator is sufficient to guarantee the desired space bounds. In Section 2,
we discuss this case and present our algorithm for approximating entropy and in
Section 3 we present a time-efficient implementation of this algorithm along with
a space lower bound and an adaptation for the sliding-window model. The results
pertaining to kth-order entropy are in Section 4. The extension to entropy of a
random walk on a graph is in Section 5.

1.1. PRELIMINARIES. A randomized algorithm is said to (ε, δ)-approximate a
real number Q if it outputs a value Q̂ such that |Q̂ − Q| ≤ εQ with probability
at least (1 − δ) over its internal coin tosses. Our goal is to produce such (ε, δ)-
approximations for the entropy of a stream. We first introduce some notation and
definitions.

Definition 1.1. For a data stream A = 〈a1, a2, . . . , am〉, with each token a j ∈
[n], we define mi := |{ j : a j = i}| and pi := mi/m, for each i ∈ [n]. The
empirical probability distribution of A is p := (p1, p2, . . . , pn). The empirical
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entropy of A is defined1 as H (p) := ∑n
i=1 −pi lg pi . The entropy norm of A is

FH := ∑n
i=1 mi lg mi .

Clearly FH and H are closely related, since we can write FH = m lg m −
m H . However, they differ significantly in their approximability: FH cannot be
approximated within constant factors in poly-logarithmic space [Chakrabarti et al.
2006], while we show here an (ε, δ)-approximation of H in poly-logarithmic space.

1.2. PRIOR WORK. Predating the recent work on approximating entropy in the
data-stream model, Batu et al. [2005] considered the problem of approximating en-
tropy in a variety of oracle models including the combined oracle model in which
an algorithm may request independent samples from the underlying distribution or
request the exact value a pi . Guha et al. [2006] improved upon their results and
observed that they led to a two-pass, additive approximation in poly-logarithmic
space. They also presented a one-pass, poly-logarithmic space algorithm that ap-
proximated H up to a constant factor if H was constant. Chakrabarti et al. [2006]
gave a one-pass algorithm for approximating H up to a (1 + ε) factor with sub-
linear but polynomial in m space, as well as a two-pass algorithm requiring only
poly-logarithmic space. In the networking world, the problem of approximating the
entropy of a stream was considered in Lall et al. [2006]. They focused on estimating
FH , under assumptions about the distribution defined by the stream that ensured
that computing H based on their estimate of FH would give accurate results. More
recently, Bhuvanagiri and Ganguly [2006] described an algorithm that can approx-
imate H in poly-logarithmic space in a single pass. The algorithm is based on
the same ideas and techniques as recent algorithms for optimally approximating
frequency moments [Indyk and Woodruff 2005; Bhuvanagiri et al. 2006]. It has the
feature (absent from our results) that it works for streams with deletions and and
negative frequencies. The exact space bound is

O

(
ε−3(log4 m)(log δ−1)

log m + log n + log ε−1

log ε−1 + log log m

)
,

which is suboptimal in its dependency on ε, and has high cost in terms of log m.
Subsequent to our work, Harvey et al. [2008] present an algorithm in the “sketch-
ing model” (permitting deletions and negative frequencies) which requires space
Õ(ε−2 log m).

At the heart of our technique is the idea of identifying and removing any very
high-frequency item; similar ideas have been useful in other data stream computa-
tions, such as approximating the frequency moments [Ganguly].

2. Computing the Entropy of a Stream

Consider a data stream A of length m, with mi and n defined as in Definition 1.1.
For a real-valued function f such that f (0) = 0, we define the following notation.

f (A; m) := 1

m

n∑
i=1

f (mi )

1 Here and throughout we use lg x to denote log2 x .
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51:4 A. CHAKRABARTI ET AL.

We base our approach on the method of Alon et al. [1999] to estimate quantities of
the form f (A; m): note that the empirical entropy of A is one such quantity with
f (mi ) = mi log(m/mi ).

Definition 2.1. Let D(A) be the distribution of the random variable R defined
thus: Pick J ∈ [m] uniformly at random and let R = |{ j : a j = aJ , J ≤ j ≤ m}|.

The core idea is to space-efficiently generate a random variable R ∼ D(A). For
an integer c, define the random variable

Est f (R, c) := 1

c

c∑
i=1

Xi , (1)

where the random variables {Xi } are independent and each distributed identically
to ( f (R) − f (R − 1)). Appealing to Chernoff-Hoeffding bounds one can show
that by increasing c, Est f (R, c) can be made arbitrarily close to f (A; m). This is
formalized in the lemma that follows.

LEMMA 2.2. Let X := f (R) − f (R − 1), a, b ≥ 0 such that −a ≤ X ≤ b,
and

c ≥ 3(1 + a/ E[X ])2ε−2 ln(2δ−1)(a + b)/(a + E[X ]).

Then E[X ] = f (A; m) and, if E[X ] ≥ 0, the estimator Est f (R, c) gives an (ε, δ)-
approximation to f (A; m) using space c times the space required to maintain
R.

PROOF. The expectation follows by a simple calculation.

E[X ] = 1

m

∑
i∈[n], j∈[mi ]

( f ( j) − f ( j − 1)) = 1

m

∑
i∈[n]

f (mi ) − f (0) = f (A; m)

The claim about the space required to maintain the estimator Est f (R, c) is immedi-
ate. So, we focus on the claim about the approximation guarantee of the estimator.

Consider the random variable Y := (X + a)/(a + b). First note that Y ∈ [0, 1]
and that E[Y ] = ( f (A; m) + a)/(a + b). Therefore, the multiplicative Chernoff-
Hoeffding bound implies that, if {Yi } are independent and each distributed identi-
cally to Y , then

Pr

⎡
⎣

∣∣∣∣∣∣
1

c

∑
i∈[c]

Yi − f (A; m) + a

a + b

∣∣∣∣∣∣ >
ε

1 + a/E[X ]

f (A; m) + a

a + b

⎤
⎦

= Pr

⎡
⎣

∣∣∣∣∣∣
1

c

∑
i∈[c]

Yi − E[Y ]

∣∣∣∣∣∣ >
ε

1 + a/E[X ]
E[Y ]

⎤
⎦

≤ 2 exp

(
−c

(
ε

1 + a/E[X ]

)2 f (A; m) + a

3(a + b)

)

≤ δ.
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Consequently Est′f (R, c) = c−1 ∑
i∈[c] Yi is an (ε/(1 + a/ E[X ]), δ)-

approximation to the quantity ( f (A; m) + a)/(a + b). Note that, Est′f (R, c) =(
Est f (R, c) + a

)
/(a + b). This implies that

Pr
[| Est f (R, c) − f (A; m)| > ε f (A; m)

]
= Pr

[∣∣(a + b) Est′f (R, c) − f (A; m) − a
∣∣ > ε f (A; m)

]
= Pr

[∣∣∣∣∣Est′f (R, c) − f (A; m) + a

a + b

∣∣∣∣∣ >
ε

1 + a/ E[X ]

f (A; m) + a

a + b

]

≤ δ .

Therefore, Est f (R, c) gives an (ε, δ)-approximation to f (A; m) as claimed.

2.1. OVERVIEW OF THE TECHNIQUE. We now give some of the intuition behind
our algorithm for estimating H (p). Let A′ denote the substream of A obtained
by removing from A all occurrences of the most frequent token (with ties broken
arbitrarily) and let R′ ∼ D(A′). A key component of our algorithm (see Algorithm 1
shortly) is a technique to simultaneously maintain R and enough extra information
that lets us recover R′ when we need it. Let pmax := maxi pi . Let the function λm
be given by

λm(x) := x lg(m/x), where λm(0) := 0, (2)

so that λm(A; m) = H (p). Define X = λm(R) − λm(R − 1) and X ′ = λm(R′) −
λm(R′ − 1). If pmax is bounded away from 1 then we will show that 1/ E[X ] is
“small,” so Estλm (R, c) gives us our desired estimator for a “small” value of c, by
Lemma 2.2. If, on the other hand, pmax > 1

2 then we can recover R′ and can show
that 1/ E[X ′] is “small.” Finally, by our analysis we can show that Estλm (R′, c) and
an estimate of pmax can be combined to give an (ε, δ)-approximation to H (p). This
logic is given in Algorithm 2 later.

Thus, our algorithm must also maintain an estimate of pmax in parallel to Al-
gorithm 1. There are a number of ways of doing this and here we choose to use
the Misra-Gries algorithm [Misra and Gries 1982] with a sufficiently large number
of counters. This (deterministic) algorithm takes a parameter k (the number of
counters) and processes the stream, retaining up to k pairs (i, m̂i ), where i is a
token and the counter m̂i is an estimate of its frequency mi . The algorithm starts
out holding no pairs and implicitly setting each m̂i = 0. Upon reading a token, i , if
a pair (i, m̂i ) has already been retained, then m̂i is incremented; else, if fewer than
k pairs have been retained, then a new pair (i, 1) is created and retained; else, m̂ j is
decremented for each retained pair ( j, m̂ j ) and then all pairs of the form ( j, 0) are
discarded. The following lemma summarizes the key properties of this algorithm;
the proof is simple (see, e.g., Bose et al. [2003]) and we omit it.

LEMMA 2.3. The estimates m̂i computed by the Misra-Gries algorithm using
k counters satisfy m̂i ≤ mi and mi − m̂i ≤ (m − mi )/k.

We now describe our algorithm more precisely with some pseudocode. By abuse
of notation we use Estλm (r, c) to also denote the algorithmic procedure of running
in parallel c copies of an algorithm that produces r and combining these results as
in (1).
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51:6 A. CHAKRABARTI ET AL.

2.2. MAINTAINING SAMPLES FROM THE STREAM. We show a procedure that
allows us to generate R and R′ with the appropriate distributions. For each token
a in the stream, we draw t , a random number in the range [m3], as its label. We
choose to store certain tokens from the stream, along with their label and the count
of the number of times the same token has been observed in the stream since it
was last picked. We store two such tokens: the token s0 that has achieved the least
t value seen so far, and the token s1 such that it has the least t value of all tokens
not equal to s0 seen so far. Let t0 and t1 denote their corresponding labels, and let
r0 and r1 denote their counts in the preceding sense. Note that it is easy to maintain
these properties as new items arrive in the stream, as Algorithm 1 illustrates.

LEMMA 2.4. Algorithm 1 satisfies the following properties. (i) After process-
ing the whole stream A, s0 is picked uniformly at random from A and r0 ∼ D(A).
(ii) For a ∈ [n], let A \ a denote the stream A with all occurrences of a removed.
Suppose we set s and r thus: if s0 
= a then s = s0 and r = r0, else s = s1 and
r = r1. Then s is picked uniformly from A \ a and r ∼ D(A \ a).

PROOF. To prove (i), note that the way we pick each label t ensures that with
high probability there are no collisions amongst labels and, conditioned on this,
the probability that any particular token gets the lowest label value is 1/m.

We show (ii) by reducing to the previous case. Imagine generating the stream
A \ a and running the algorithm on it. Clearly, picking the item with the smallest
t value samples uniformly from A \ a. Now let us add back in all the occurrences
of a from A. One of these may achieve a lower t value than any item in A \ a, in
which case it will be picked as s0, but then s1 will correspond to the sample we
wanted from A \ a, so we can return that. Else, s0 
= a, and is a uniform sample
from A \ a. Hence, by checking whether s0 = a or not, we can choose a uniform
sample from A\a. The claim about the distribution of r is now straightforward: we
only need to observe from the pseudocode that, for j ∈ {0, 1}, r j correctly counts
the number of occurrences of s j in A (equivalently, the number in A \ a) from the
time s j was last picked.

2.3. ANALYSIS OF THE ALGORITHM. We now analyse our main algorithm, given
in full in Figure 1.

THEOREM 2.5. Algorithm 2 uses O(ε−2 log(δ−1) log m(log m + log n)) bits of
space and gives an (ε, δ)-approximation to H (p).

PROOF. To argue about the correctness of Algorithm 2, we first look closely at
the Misra-Gries algorithm used within it. By Lemma 2.3, p̂i := m̂i/m is a good
estimate of pi . To be precise, | p̂i − pi | ≤ (1 − pi )/k. Hence, by virtue of the
estimation method, if pi > 2

3 and k ≥ 2, then i must be among the tokens retained
and must satisfy p̂i > 1

2 . Therefore, in this case we will pick imax (the item with
maximum frequency) correctly, and pmax will satisfy

p̂max ≤ pmax and | p̂max − pmax| ≤ 1 − pmax

k
. (3)

Let A, A′, R, R′, X, X ′ be as before. We break the proof into two cases based
on the value of p̂max.

Case 1. Suppose p̂max ≤ 1
2 . The algorithm then reaches line 7. By Part (i)

of Lemma 2.4, the returned value is Estλm (R, c). Now (3), together with k ≥ 2,

ACM Transactions on Algorithms, Vol. 6, No. 3, Article 51, Publication date: June 2010.



A Near-Optimal Algorithm for Estimating the Entropy of a Stream 51:7

FIG. 1. Algorithms for sampling and estimating entropy.

implies pmax ≤ 2
3 . We lower bound the entropy, H (p), in this case: let Y ∼ p be

a random variable (i.e., Pr[Y = i] = pi ), and let S be any subset of indices such
that p(S) := ∑

i∈S pi satisfies 1
3 ≤ p(S) ≤ 2

3 (given that pmax ≤ 2
3 , such an S is

guaranteed to exist and can be found greedily). Now define the random variable Z
to be 1 if Y ∈ S, and 0 otherwise. We have

H (p) = H (Y ) ≥ H (Z ) = −p(S) lg p(S) − (1 − p(S)) lg(1 − p(S)) > 0.9.

Further, we can show that − lg e ≤ λm(x)−λm(x −1) ≤ lg m for 1 ≤ x ≤ m. This
is because

λ′
m(x) = d

dx

(
x lg

(m

x

))
= lg

(m

x

)
− lg e,

whence λ′
m(x) − λ′

m(x − 1) = lg(1 − 1/x), which shows that λm(x) − λm(x − 1) is
decreasing in the range [1, m]. The maximum value is λm(1) − λm(0) = lg m and
the minimum is λm(m)−λm(m −1) ≥ λ′

m(m) = − lg e. Hence, Lemma 2.2 implies
that c is large enough to ensure that the return value is a ( 3

4ε, δ)-approximation to
H (p).

Case 2. Suppose p̂max > 1
2 . The algorithm then reaches line 6. By Part (ii) of

Lemma 2.4, the return value is (1 − p̂max) · Estλm (R′, c) + p̂max lg(1/ p̂max), and (3)
implies that pmax > 1

2 . Assume, without loss of generality, that imax = 1. Then

E[X ′] = λm(A′; m − m1) = 1

m − m1

n∑
i=2

λm(mi ) ≥ lg
m

m − m1
≥ 1,
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51:8 A. CHAKRABARTI ET AL.

where the penultimate inequality follows by convexity arguments. As before,
− lg e ≤ λm(x) − λm(x − 1) ≤ lg m for 1 ≤ x ≤ m, and hence Lemma 2.2
implies that c is large enough to ensure that Estλm (R′, c) is a ( 3

4ε, δ)-approximation
to λm(A′; m − m1).

Next, we show that p̂1 lg(1/ p̂1) is a ( 2
k , 0)-approximation to p1 lg(1/p1), as

follows. We have

|p1 lg(1/p1) − p̂1 lg(1/ p̂1)|
p1 lg(1/p1)

≤ | p̂1 − p1|
p1 lg(1/p1)

max
p∈[ 1

2 ,1]

∣∣∣∣ d

dp
(p lg(1/p))

∣∣∣∣
≤ (1 − p1)

kp1 lg(1/p1)
· lg e

≤ 2

k
,

where the final inequality follows from the fact that g(p) := (1 − p)/(p ln(1/p))
is nonincreasing in the interval [ 1

2 , 1], so g(p) ≤ g( 1
2 ) < 2. To see this, note that

1 − p + ln p ≤ 0 for all positive p and that g′(p) = (1 − p + ln p)/(p ln p)2. Now
observe that

H (p) = (1 − p1)λm(A′; m − m1) + p1 lg(1/p1). (4)

From (3) it follows that (1 − p̂1) is an ( 1
k , 0)-approximation to (1 − p1). Note

that 1
7ε + 3

4ε + 3
28ε

2 ≤ ε for ε ≤ 1. Thus, setting k ≥ ⌈
7ε−1

⌉
ensures that

(1 − p̂1) · Estλm (R′, c) is a (ε, δ)-approximation to (1 − p1)λm(A′; m − m1), and
p̂1 lg(1/ p̂1) is a (better than) (ε, 0)-approximation to p1 lg(1/p1). Thus, we have
shown that in this case the algorithm returns a (ε, δ)-approximation to H (p), since
both nonnegative terms in (4) are approximated with relative error.

The claim about the space usage is straightforward. The Misra-Gries algo-
rithm requires O(k) = O(ε−1) counters and item identifiers. Each run of Al-
gorithm 1 requires O(1) counters, labels, and item identifiers, and there are
c = O(ε−2 log(δ−1) log m) such runs. Everything stored is either: (a) an item
from the stream, (b) a counter that is bounded by m, or (c) a label that is bounded
by m3, so the space for each of these is O(log m + log n) bits.

3. Extensions, Variations, and Near-Optimality

3.1. SLIDING WINDOW COMPUTATION. In many cases it is desirable to compute
functions not over the whole semiinfinite stream, but rather over a sliding window of
the last W tokens. Our method accommodates such an extension with an O(log2 W )
expansion of space (with high probability). Formally, define the sliding window
count of i as mw

i := |{ j : a j = i and j > m −w}|. The (sliding window) empirical
probability is given by pw

i := mw
i /w and pw := (pw

1 , . . . , pw
n ), and the (sliding

window) empirical entropy is H (pw ).

LEMMA 3.1. We can approximate H (pw ) for any w < W in space bounded
by O(ε−2 log(δ−1) log3 W ) machine words with high probability.

PROOF. We present an algorithm that retains sufficient information so that, after
observing the stream of values, given w < W we can recover the information that
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Algorithm 2 would have stored had only the most recent w values been presented
to it. From this, the correctness follows immediately. Thus, we must be able to
compute sw

0 , rw
0 , sw

1 , rw
1 , iw

max and pw
max, the values of s0, r0, s1, r1, imax and pmax on

the substreams defined by the sliding window specified by w .
For iw

max and pw
max, it is not sufficient to apply standard sliding-window frequent

items queries [Arasu and Manku 2004]. To provide the overall accuracy guarantee,
we needed to approximate pw

max with error proportional to ε′(1 − pw
max) for a

parameter ε′. Prior work for estimating frequencies and counts in sliding windows
does not give a sufficiently strong guarantee on the error, so we need to adopt a
new approach. We replace our use of the Misra-Gries algorithm with the Count-
Min sketch [Cormode and Muthukrishnan 2005a]. This is a randomized algorithm
that hashes each input item to O(log δ−1) buckets, and maintains a sum of counts
within each of a total of O(ε−1 log δ−1) buckets. The estimate of the frequency
of a given input token is found by taking the minimum of the counts of the
buckets to which that token has been hashed. If we were able to create a CM-
sketch summarizing just the most recent w tokens, then we would be able to
find an (ε, δ) approximation to (1 − pw

max), and hence also find pw
max with error

ε(1 − pw
max). This follows immediately from the properties of the sketch proved

in Theorem 1 of Cormode and Muthukrishnan [2005a]. In order to make this
valid for arbitrary sliding windows, we replace each counter within the sketch
with an exponential histogram or deterministic wave data structure [Datar et al.
2002; Gibbons and Tirthapura 2002]. This allows us to (ε, 0) approximate the
count of each bucket in the sketch within the most recent w < W time-steps in
space O(ε−1 log2 W ). Combining these and rescaling ε, one can build an (ε, δ)
approximation of (1− pw

max) for any w < W . The space required for this estimation
is O(ε−2 log2 W log δ−1(log m + log n)) bits.

For sw
0 , rw

0 , sw
1 and rw

1 , we can take advantage of the fact that these are defined
by randomly chosen tags tw

0 and tw
1 , and for any W there are relatively few possible

candidates for all the w < W . Let t j be the random label for the j th item in the
stream. We maintain the following set of tuples

S0 := {( j, a j , t j , r j ) : j = argmin
m−w<i≤m

t j , r j = |{k : ak = a j , k ≥ j}|, w < W }

This set defines jw
0 = argminm−w<i≤m t j for w < W . We maintain a second set of

tuples.

S1 := {( j, a j , t j , r j ) : j = argmin
m−w<i≤m

i 
= jw
0

t j , r j = |{k : ak = a j , k ≥ j}|, w < W }

and this set defines jw
1 = argminm−w<i≤m t j for w < W . Note that it is straightfor-

ward to maintain S0 and S1. Then, for any w < W , we set

(sw
0 , rw

0 ) ← (a jw
0
, r jw

0
) and (sw

1 , rw
1 ) ← (a jw

1
, r jw

1
) .

We now bound the sizes of S0 and S1, based on the following fact.

FACT 3.2. Let t = t1 . . . tW be a sequence of W integer labels, each drawn
uniformly at random such that there are no duplicate values. Define a sequence
of values Ti such that T0 = arg mini {ti } and Tj = arg mini>Tj−1{ti }. This sequence
terminates when Tj = W . For k such that Tk = W , we have k = O(log W ) with
high probability.
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This fact follows from an analysis due to Babcock et al. [2002]: the insight is
that if we build a treap over the sequence t and heapify by the labels, the sequence
T0 . . . Tk gives precisely the right spine of the treap. This approach yields a strong
bound on k, since with high probability the height of a treap with randomly chosen
priorities such as these (i.e., a random binary search tree) is logarithmic.

This fact immediately implies a bound on the size of S0, since S0 exactly cor-
responds to such a derived sequence Ti . Further, we can extend this analysis
by observing that members of S1 correspond to nodes in the treap that are also
on the right spine, are left children of members of S0, or the right descendants
of left children. Thus, if the treap has height h, the size of S1 is O(h2). For
windows of size at most W , the implicit treap has height O(log W ) with high
probability.

So with high probability, we need to store a factor of O(log2 W ) more infor-
mation for each instance of the basic estimator. The total space bound is therefore
O(ε−2 log(δ−1) log3 W (log m + log n)) bits, since now the estimator is bounded by
log W rather than log m.

3.2. EFFICIENT IMPLEMENTATION. Observe that a direct implementation of the
central algorithm as described in Section 2 has a high cost per token, in terms of
processing time: we track a number c of independent samples, and for each new
token in the stream we test whether it is sampled by any copy of the estimator,
taking time O(c). However, also note that as the stream increases in length, it is
increasingly unlikely that a new item will be sampled: over the whole stream, each
estimator updates its primary sample O(log m) times with high probability. This
follows by applying Fact 3.2 from before over a stream indexed in reverse order: for
a stream of length m, each chosen sample has a smaller label than every prior label.
So, for the overwhelming majority of tuples, the decision to sample is negative.
In this section, we describe a faster implementation of our main algorithm that
capitalizes on these observations.

3.2.1. Sampling. We adapt an idea from reservoir sampling [Vitter 1985]: when
choosing to sample an item, also determine when the next item will be sampled.
Suppose the random label assigned to an item which is sampled is t . Then for
each new item, we are effectively throwing a biased coin so that with probability
(t − 1)/m3 we choose to sample that item. Thus, the number of tosses (tuples)
before we choose a new item to sample is given by the geometric distribution. So
we can directly draw from this distribution to determine how many items to “skip”
before picking the next. The new label t ′ is a uniform random variable over the
range of the random labels, but conditioned on the fact that t ′ < t . So t ′ can be
chosen uniformly at random from the set [t − 1].

For a “backup sample,” s1, there are two ways that it can be replaced. Either
we sample a new primary item s0, and the old primary item replaces the backup
sample, or else we observe an item not equal to s0 whose random label t satisfies
t0 < t < t1, where t0 and t1 are the tags of the current primary and backup samples,
respectively. The first case can be taken care of whenever the primary sample is
replaced, as outlined earlier. The second case can be handled by similar logic: at
each drawing, the probability of the event of the backup sample being replaced is
(t1 − t0 − 1)/m3, and so we can draw from an appropriate geometric distribution
to determine the number of input items not equal to the primary sample that must
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be observed before replacing the backup sample, and also draw a new value of the
label.

3.2.2. Fast Data Structure Maintenance. We next show that we can use these
“waiting times” to more efficiently process the stream. We extend the information
kept about each estimator, so instead of (s, t, r ) triples, we now keep (s, t, r, u),
where u is used to track when to update the sample. Firstly, we must maintain
the counts of the sampled items. Note that the same token, a, may be sampled by
multiple independent estimators at different points in the stream. To ensure that
the cost per item in the stream is independent of the number of estimators which
are currently sampling the same item, we keep some additional data structures. We
maintain the set of items that are currently being sampled by any estimator in an
appropriate dictionary structure, along with a counter associated with that item, ca .
When an estimator chooses to sample an item a that is not currently sampled, it is
added to the set, and the counter ca is set to 1. Whenever an estimator chooses to
replace its current sample with an item already in the set, instead of setting its r
value to 1, it sets a variable r ′ to the current counter for that item, ca . Whenever an
item a is seen in the stream, we test whether it is in the set of monitored items, and
if so, increment the counter ca . When we come to make an estimate of the entropy,
we can form the value r for each estimate by computing the difference between
the current value of ca and the value r ′ of ca when the estimator sampled a. To
maintain space bounds, when a is no longer tracked by any estimator, we remove
a and ca from the dictionary structure.

In order to determine when the waiting time for a particular estimator is met
and we must use the current item in the stream as the new sample, we make use
of heap structures, one for the primary samples, and one for the backup samples.
The primary sample case is the more straightforward: using the previous analysis,
we compute the position in the input of the next item to sample for each estimator,
and store these in a heap ordered by times u. At each time-step, we test whether
the current item number is equal to the smallest position in the heap. If so, we
update the estimator information (sampled item, random label, count, and time to
resample) and heapify. This is repeated, if necessary, until the smallest position in
the heap exceeds the current item number.

To maintain the backup samples, things become more involved. We keep a heap
which contains only one entry for each distinct token a that is a primary sampled
item. The heap key associated with this item is the smallest position at which we
would sample a backup item associated with the primary item, assuming that all
the intermediate items are not equal to that primary item. Thus, when we see an
item a in the stream, we first find if a is in the backup heap, and if so, delay the time
to sampling by one time-step (and then heapify). We make use of ca , the number
of copies of a seen in the input while a has been monitored by any estimator
to derive a modified time-step for the stream A \ a, which has all copies of a
removed. For each a in the backup heap, we also store a secondary heap consisting
of all backup items whose primary item is a, ordered by their “resampling” time
within A \ a.

The secondary heap of backup samples associated with a gets modified in
various ways: (1) when the resampling time of a backup sample, u, matches the
timestamp within A \ a, we remove the minimum value from the heap, reheapify
both the secondary heap for a and the whole backup heap of heaps (and repeat the
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FIG. 2. Efficient implementation of the sampling procedure.

resampling procedure if multiple backup items have the same resampling time);
(2) when an estimator whose primary sample is a chooses a new backup sample,
its resampling time u is drawn from the appropriate distribution, the appropriate
offset in A \ a is calculated, and a record is inserted into the heap; (3) an item is
removed from the heap, because a primary sample is replaced and the previous
primary sample becomes the new backup sample. In this case, we simply remove
the corresponding entry from the backup heap, and heapify. To ensure space bounds
are met, if due to resampling a secondary heap for a is empty, we delete the empty
heap and any related data. We illustrate this in pseudocode in Figure 2 (we omit
for clarity the details of garbage collecting from the data structure that is needed
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to ensure the space bounds.). Here, Geom(p) denotes a sample from a geometric
distribution with probability p.

We claim that this whole procedure still ensures that the algorithm is executed
correctly: if the original version of the algorithm were implemented in parallel, and
made the same decisions about which items to sample, then the same information
(samples and counts) would be computed by both versions. The estimation proce-
dure is as before, however, for our estimators, we derive the correct count of each
sampled token s by taking the stored r value and subtracting cs . Next we argue that
the time cost of this implementation is much less than for the original version.

3.2.3. Analysis. The asymptotic space cost is unchanged, since within the var-
ious heaps, each estimator is represented at most a constant number of times, so
the amount of space required is still

O(ε−2 log(δ−1) log m(log m + log n)) bits.

The cost to reflect each update in the sampled token counts is a constant num-
ber of dictionary lookups to determine whether a is sampled by any primary or
backup samplers, and then a constant amount of work to update counts. This is
a total of O(1) time (expected) if we implement the dictionary structures with
hash tables, plus a heap operation to ensure that the heap condition is met. Over
the course of the execution of algorithm we can bound the total number of times
each estimator updates its primary and backup samples: using a similar argument
to the sliding-window analysis earlier the primary sample is replaced O(log m)
times with high probability; similarly, the corresponding backup sample is re-
placed O(log2 m) times. Each heap operation takes time at most logarithmic in the
number of items stored in a heap, which is bounded by the number of samples, set
to c = O(ε−2 log(δ−1) log m). Hence, we have proved the following theorem.

THEOREM 3.3. Algorithm 2 can be implemented such that a length m stream
can be processed in O((m+log3 mε−2 log(δ−1))(log ε−1+log log δ−1+log log m))
time.

Observe that even for short streams, the term in log m is dominated by the term
in m, and so we simplify the bound to O(log ε−1 + log log δ−1 + log log m)) per
token in the stream. The interested reader is referred to http://dimax.rutgers.
edu/~jthaler/implementation for code of this implementation due to Justin
Thaler. Experiments using this code demonstrate that these asymptotic bounds
translate into high throughput (millions of tokens processed per second), and small
space. They also demonstrate small relative error over a range of entropy values,
in comparison to prior algorithms which incur higher error when H (p) is small.

3.3. EXTENSIONS TO THE TECHNIQUE. We observe that the method we have
introduced here, of allowing a sample to be drawn from a modified stream with
an item removed, may have other applications. The method naturally extends to
allowing us to specify a set of k items to remove from the stream after the fact, by
keeping the k + 1 distinct items achieving the smallest label values. In particular,
Lemma 2.4 can be extended to give the following.

LEMMA 3.4. There exists an algorithm using O(k) space, that returns k pairs
(si , ri )i∈[k+1] such that si is picked uniformly at random from A \ {s1, . . . , si−1} and
r ∼ D(A \ {s1, . . . , si−1}). Consequently, given a set S of size less than k and the
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output of A it is possible to sample (s, r ) such that s is picked uniformly at random
from A \ S and r ∼ D(A \ S).

This may be of use in applications where we can independently identify “junk”
items or other undesirable values which would dominate the stream if not re-
moved, for example, in the case in which we wish to compute the quantiles of
a distribution after removing the k most frequent items from the distribution.
Additionally, the procedure may have utility in situations where a small frac-
tion of values in the stream can significantly contribute to the variance of other
estimators.

3.4. NEAR-OPTIMALITY: A LOWER BOUND. We now show that the dependence
of the aforesaid space bound on ε is nearly tight. To be precise, we prove the
following theorem.

THEOREM 3.5. Any one-pass randomized (ε, 1/4)-approximation for H (p)
requires �(ε−2/ log2(ε−1)) bits of space.

PROOF. Let GAP-HAMDIST denote the following (one-way) communication
problem. Alice receives x ∈ {0, 1}N and Bob receives y ∈ {0, 1}N . Alice must
send a message to Bob after which Bob must answer “near” if the Hamming
distance ‖x − y‖1 ≤ N/2 and “far” if ‖x − y‖1 ≥ N/2 + √

N . They may an-
swer arbitrarily if neither of these two cases hold. The two players may follow
a randomized protocol that must work correctly with probability at least 3

4 . It is
known [Indyk and Woodruff 2003; Woodruff 2004] that GAP-HAMDIST has one-way
communication complexity �(N ).

We now reduce GAP-HAMDIST to the problem of approximating H (p). Suppose
A is a one-pass algorithm that (ε, δ)-approximates H (p). Let N be chosen such
that ε−1 = 3

√
N (lg N + 1/2) and assume, without loss of generality, that N is an

integer. Alice and Bob will runA on a stream of tokens from [N ]×{0, 1} as follows.
Alice feeds the stream2 〈(i, xi )〉N

i=1 into A and then sends over the memory contents
of A to Bob who then continues the run by feeding in the stream 〈(i, yi )〉N

i=1. Bob
then looks at the output out(A) and answers “near” if

out(A) < lg N + 1

2
+ 1

2
√

N

and answers “far” otherwise. We now prove the correctness of this protocol.
Let d := ‖x − y‖1. Note that the stream constructed by Alice and Bob in

the protocol will have N − d tokens with frequency 2 each and 2d tokens with
frequency 1 each. Therefore,

H (p) = (N − d) · 2

2N
lg

2N

2
+ 2d · 1

2N
lg

2N

1
= lg N + d

N
.

2 Note that in the definition of a stream we considered elements to come from universe [n]. This
definition, and the definition of entropy, trivially extend to other alphabets, in the case [N ] × {0, 1}.
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Therefore, if d ≤ N/2, then H (p) ≤ lg N + 1
2 whence, with probability at least 3

4 ,
we will have

out(A) ≤ (1 + ε)H (p)

≤
(

1 + 1

3
√

N (lg N + 1/2)

) (
lg N + 1

2

)
< lg N + 1

2
+ 1

2
√

N

and Bob will correctly answer “near.” A similar calculation shows that if d ≥
N/2 + √

N then, with probability at least 3
4 , Bob will correctly answer “far.”

Therefore the protocol is correct and the communication complexity lower bound
implies that A must use space at least �(N ) = �(ε−2/ log2(ε−1)).

4. Higher-Order Entropy

The kth-order entropy is a quantity defined on a sequence that quantifies how easy
it is to predict a character of the sequence given the previous k characters. We start
with a formal definition.

Definition 4.1. For a data stream A = 〈a1, a2, . . . , am〉, with each token a j ∈
[n], we define

mi1i2...it := |{ j ≤ m − k : a j−1+l = il for l ∈ [t]}|; pit |i1,i2,...,it−1 := mi1i2...it

mi1i2...it−1

,

for t ∈ [k + 1], i1, i2, . . . , it ∈ [n]. The (empirical) kth-order entropy of A is
defined as

Hk(A) := −
∑

i1

pi1

∑
i2

pi2|i1 . . .
∑
ik+1

pik+1|i1...ik lg pik+1|i1...ik .

For example, consider the stream A = 〈1, 2, 1, 2, 3, 2〉 and H1. Then

p1 = 2/5; p2 = 2/5; p3 = 1/5; p1|2 = 1/2; p2|1 = 1; p3|2 = 1/2; p2|3 = 1,

and p1|1 = p2|2 = p3|3 = p3|1 = p1|3 = 0. Hence,

H1(A) = −2/5 × 0 − 2/5 × (−1) − 1/5 × 0 = 2/5.

Unfortunately, unlike empirical entropy, H0, there is no small space algorithm for
multiplicatively approximating Hk . This is even the case for H1 as substantiated in
the following theorem.

THEOREM 4.2. Approximating H1(A) up to any multiplicative error requires
�(m/ log m) space.

PROOF. Let PREFIX denote the following (one-way) communication problem.
Alice has a string x ∈ {0, 1}N and Bob has a string y ∈ {0, 1}N ′

with N ′ ≤ N .
Alice must send a message to Bob, and Bob must answer “yes” if y is a prefix
of x , and “no” otherwise. The one-way probabilistic communication complexity
of PREFIX is �(N/ log N ), as the following argument shows. Suppose we could
solve PREFIX using C bits of communication. Repeating such a protocol O(log N )
times in parallel reduces the probability of failure from constant to O(1/N ). But by
posing O(N ) PREFIX queries in response to Alice’s message in this latter protocol,
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Bob could learn x with failure probability at most a constant. Therefore, we must
have C log N = �(N ).

Consider an instance (x, y) of PREFIX. Let Alice and Bob jointly construct the
stream over universe [N ] × {0, 1},

A = 〈a1, a2, . . . , aN , b1, b2, . . . , bN ′ 〉,
where ai = (i, xi ) for i ∈ [N ] and bi = (i, yi ) for i ∈ [N ′]. Note that

H1(A) = −
∑

i

pi

∑
j

p j |i lg p j |i = 0

if x is a prefix of y. But H1(A) 
= 0 if x is not a prefix of y. This reduction proves
that any multiplicative approximation to H1 requires �(N/ log N ) space, using the
same logic as that in the conclusion of the proof of Theorem 3.5. Since the stream
length m = N + N ′ = �(N ), this translates to an �(m/ log m) lower bound.

Since the preceding theorem effectively rules out efficient multiplicative approx-
imation, we now turn our attention to additive approximation. The next theorem
(and its proof) shows how the algorithm in Section 2 gives rise to an efficient
algorithm that additively approximates the kth-order entropy.

THEOREM 4.3. There exists an O(k2ε−2 log(δ−1) log2 n log2 m)-space algo-
rithm that returns an estimate H̃k such that |H̃k − Hk(A)| ≤ ε with probability at
least 1 − δ.

PROOF. We first rewrite the kth-order entropy as follows. We have

Hk(A) = −
∑

i1,i2,...,ik+1

pi1 pi2|i1 . . . pik+1|i1i2...ik lg pik+1|i1i2...ik

=
∑

i1,i2,...,ik+1

mi1...ik+1

m − k
lg

mi1...ik

mi1...ik+1

= −
∑

i1,i2,...,ik

mi1...ik

m − k
lg

m − k

mi1...ik

+
∑

i1,i2,...,ik+1

mi1...ik+1

m − k
lg

m − k

mi1...ik+1

= H (pk+1) − H (pk)

where pk is the distribution over nk points with pk
i1i2...ik

= mi1i2...ik /(m − k) and
pk+1 is the distribution over nk+1 points with pk

i1i2...ik+1
= mi1i2...ik+1/(m − k). Since

H (pk) is less than k lg n, if we approximate it to a multiplicative factor of at
most (1 + ε/(2k lg n)) then we have an additive ε/2 approximation. Appealing
to Theorem 2.5 this can be done in O(k2ε−2 log(δ−1) log2(n) log(m)) space. We
can deal with H (pk+1) similarly and hence we get an ε additive approximation
for Hk(A). Directly implementing these algorithms, we need to store strings of k
characters from the input stream as a single kth-order character; for large k, we can
hash these strings onto the range [m3]. Since there are only m − k substrings of
length k, then there are no collisions in this hashing with high probability, and the
space needed is only O(log m) bits for each stored item or counter.
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5. Entropy of a Random Walk

In Theorem 4.2, we showed that it was impossible to multiplicatively approximate
the first-order entropy, H1, of a stream in sublinear space. In this section we consider
a related quantity HG , the unbiased random walk entropy. This quantity is identified
as a stochastic process of interest [Cover and Thomas 1991]. We will discuss the
nature of the relationship of this entropy to other notions of entropy after a formal
definition.

Definition 5.1. For a data stream A = 〈a1, a2, . . . , am〉, with each token a j ∈
[n], we define an undirected graph G(V, E) on n vertices, where V = [n] and

E = {{u, v} ∈ [n]2 : u = a j , v = a j+1 for some j ∈ [m − 1]}.
Let di be the degree of node i . Then the unbiased random walk entropy of A is
defined as

HG := 1

2|E |
∑
i∈[n]

di lg di .

Consider a stream formed by an unbiased random walk on an undirected graph
G, that is, if ai = j then ai+1 is uniformally chosen from the d j neighbors of j .
Then HG is the limit of H1(A) as the length of this random walk tends to infinity

HG = 1

2|E |
∑
i∈[n]

di lg di

= lim
m→∞

∑
i∈[n]

mi

m

∑
j∈[n]

mi j

mi
lg

mi

mi j

= lim
m→∞ H1(〈a1, a2, . . . , am〉),

since limm→∞(mi j/mi ) = 1/di and limm→∞(mi/m) = di/(2|E |) as the stationary
distribution of a random walk on an undirected graph is (d1/(2|E |), . . . , dn/(2|E |)).
See Section 4.3 of Cover and Thomas [1991], for example, for more context. We
focus on computing HG rather than on computing the entropy of a sample walk,
since this gives greater flexibility: it can be computed on arbitrary permutations
of the edges, for example, and only requires that each edge be observed at least
once.

For the rest of this section it will be convenient to reason about a stream E ′ that
can be easily transduced from A. E ′ will consist of m − 1, not necessarily distinct,
edges on the set of nodes V = [n], E ′ = 〈e1, e2, . . . , em−1〉 where ei = (ai , ai+1).
We assume that the random walk is long enough to ensure that every edge is
visited at least once, so that E is the set produced by removing all duplicate edges
in E ′.

5.1. OVERVIEW OF THE ALGORITHM. Our algorithm uses the standard AMS-
estimator as described in Section 2. However, because E ′ includes duplicate items
which we wish to disregard, our basic estimator is necessarily more complicated.
The algorithm combines ideas from multigraph streaming [Cormode and Muthukr-
ishnan 2005b] and entropy-norm estimation [Chakrabarti et al. 2006] and uses
min-wise hashing [Indyk 2001] and distinct element estimators [Bar-Yossef et al.
2002a].
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Ideally the basic estimator would sample a node w uniformly from the multi-
set in which each node u occurs du times. Then let r be uniformly chosen from
{1, . . . , dw }. If the basic estimator were to return g(r ) = f (r ) − f (r − 1) where
f (x) = x lg x then the estimator would be correct in expectation.

∑
w∈[n]

dw

2|E |
∑

r∈[dw ]

1

dw
( f (r ) − f (r − 1)) = 1

2|E |
∑

w∈[n]

dw lg dw

To mimic this sampling procedure we use an ε-min-wise hash function h [Indyk
2001] to map the distinct edges in E ′ into [m]. It allows us to pick an edge e = (u, v)
(almost) uniformly at random from E by finding the edge e that minimizes h(e).
We pick w uniformly from {u, v}. Note that w has been chosen with probability
proportional to (1 ± ε)dw/(2|E |). Let i = max{ j : e j = e} and consider the r
distinct edges among {ei , . . . , em} that are incident on w . Let e1, . . . , edw be the dw
edges that are incident on w and let ik = max{ j : e j = ek} for k ∈ [dw ]. Then
r is distributed as |{k : ik ≥ i}| and hence takes a value from {1, . . . , dw } with
probability (1 ± ε)/dw .

Unfortunately we cannot compute r exactly unless it is small. If r ≤ ε−2 then
we maintain an exact count, by keeping the set of distinct edges. Otherwise we
compute an (ε, δ)-approximation of r using a distinct element estimation algorithm,
for example, Bar-Yossef et al. [2002a]. Note that if this is greater than n we replace
the estimate by n to get a better bound. This will be important when bounding the
maximum value of the estimator. Either way, let this (approximate) count be r̃ .
We then return g(r̃ ). The next lemma demonstrates that using g(r̃ ) rather than g(r )
only incurs a small amount of additional error.

LEMMA 5.2. Assuming ε < 1/4, |g(r ) − g(r̃ )| ≤ O(ε)g(r ) with probability
at least 1 − δ.

PROOF. If r ≤ ε−2, then r = r̃ , and the claim follows immediately. Therefore
we focus on the case where r > ε−2. Let r̃ = (1 + γ )r where |γ | ≤ ε. We write
g(r ) as the sum of the two positive terms

g(r ) = lg(r − 1) + r lg(1 + 1/(r − 1))

and will consider the two terms in the preceding expression separately.
Note that for r ≥ 2, r̃−1

r−1 = 1 ± 2ε. Hence, for the first term, and providing the
distinct element estimation succeeds with its accuracy bounds,

| lg(r̃ − 1) − lg(r − 1)| =∣∣∣∣lg r̃ − 1

r − 1

∣∣∣∣ = O(ε) ≤ O(ε) lg(r − 1)

where the last inequality follows since r > ε−2, ε < 1/4, and hence lg(r − 1) > 1.
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Note that for r ≥ 2, r lg
(
1 + 1

r−1

) ≥ 1. For the second term,∣∣∣∣r lg

(
1 + 1

r − 1

)
− r̃ lg

(
1 + 1

r̃ − 1

)∣∣∣∣ ≤ |r − r̃ | lg

(
1 + 1

r̃ − 1

)

+ r

∣∣∣∣∣lg
(

1 + 1
r−1

1 + 1
r̃−1

)∣∣∣∣∣
≤ O(ε) + O(ε)

≤ O(ε)r lg

(
1 + 1

r − 1

)
.

Hence |g(r ) − g(r̃ )| ≤ O(ε)g(r ) as required.

THEOREM 5.3. There exists an (ε, δ)-approximation algorithm for HG using3

O(ε−4 log2 n log2 δ−1) space.

PROOF. Consider the expectation of the basic estimator.

E[X ] =
∑

w∈[n]

(1 ± O(ε))dw

2|E |
∑

r∈[dw ]

1 ± O(ε)

dw
( f (r ) − f (r − 1))

= 1 ± O(ε)

2|E |
∑

w∈[n]

dw lg dw

Note that since the graph G is revealed by a random walk, this graph must be
connected. Hence |E | ≥ n − 1 and dw ≥ 1 for all w ∈ V . But then

∑
w dw =

2|E | ≥ 2(n − 1) and therefore,

1

2|E |
∑

w∈[n]

dw lg dw ≥ lg
2|E |

n
≥ lg 2(1 − 1/n).

The maximum value taken by the basic estimator is

max[X ] ≤ max
1≤r≤n

( f (r ) − f (r − 1)) ≤
(

n lg
n

n − 1
+ lg(n − 1)

)
< (2 + lg n).

Therefore, by appealing to Lemma 2.2, we know that if we take c ≥ 6ε−2(2 +
lg n) ln(2δ−1)/(lg 2(1 − 1/n)) independent copies of this estimator we can get a
(ε, δ)-approximation to E[X ]. Hence with probability 1 − O(δ), the value returned
is (1 ± O(ε))HG .

The space bound follows because for each of the O(ε−2 log n log δ−1) basic esti-
mators we require an ε min-wise hash function using O(log n log ε−1) space [Indyk
2001] and a distinct element counter using

O((ε−2 log log n + log n) log δ−1
1 )

space [Bar-Yossef et al. 2002a] where δ−1
1 = O(cδ−1). Hence, rescaling ε and δ

yields the required result.

3 Ignoring factors of log log n and log ε−1.
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Our bounds are independent of the length of the stream, m, since there are only
n2 distinct edges, and our algorithms are not affected by multiple copies of the
same edge.

Finally, note that our algorithm is actually correct if the multiset of edges E ′
arrives in any order, that is, it is not necessary that (u, v) is followed by (v, w) for
some w . Hence our algorithm also fits into the adversarial ordered graph streaming
paradigm, for example, Bar-Yossef et al. [2002b], Feigenbaum et al. [2005], and
Cormode and Muthukrishnan [2005b].
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