
More on Reconstructing Strings from Random
Traces: Insertions and Deletions

Sampath Kannan
Dept. Computer and Information Science

University of Pennsylvania
Philadelphia PA 19104, USA
Email: kannan@cis.upenn.edu

Andrew McGregor
Dept. Computer and Information Science

University of Pennsylvania
Philadelphia PA 19104, USA

Email: andrewm@cis.upenn.edu

Abstract— We are given a collection of m received strings
or traces that have been independently generated by randomly
inserting and deleting bits from a common string t of length
n. Our goal is to reconstruct the string t from these observed
traces. This paper considers both the algorithms for doing
this reconstruction and seeks to understand the error rates at
which reconstruction is possible. Note the difference from the
typical coding theory scenario - rather than trying to infer a
codeword from a single received word, we are interested in
inferring an arbitrary (or near arbitrary) word from multiple,
independently generated received words. We present two main
results. Firstly we show that for almost all transmitted strings, if
the deletion/insertion error probability is O(1/ log2 n) then with
m = O(log n) traces we can exactly reconstruct the transmitted
string with high probability. Furthermore we can still reconstruct
in the presence of additional noise that flips each bit with
constant probability. Secondly, for arbitrary strings (with no
run of length > nε) we show that with a constant number of
received strings we can reconstruct when the deletion/insertion
probability is O(1/n1/2+ε). This paper continues work initiated
in Batu et. al. (2004) which considered only deletion errors.

Our setting can be viewed as the study of an idealized biolog-
ical evolutionary process where the DNA string undergoes point
mutations, deletions and insertions. Our goal is to understand at
what mutation rates, a small number of observed samples can
be correctly aligned to reconstruct the parent string.

I. INTRODUCTION

Let t = t1t2 . . . tn be a length n binary string. Suppose
we transmit this string over a channel that randomly distorts t
such that at each step, either a random bit is received with
probability q, the next bit of t is deleted with probability
q or the next bit of t is received (possibly being flipped
with probability p). An exact specification of this probabilistic
channel is given in the next section. We do m such independent
transmissions and generate m strings, r1, . . . rm. How do we
reconstruct t from r1, . . . rm and how big does m need to
be to ensure that we can correctly reconstruct t with high1

probability?
When communicating a bit string the sender usually has

the option of encoding her information in a code designed
to be resilient to the errors that will be introduced by the
channel. While the majority of the theory of binary codes
have been concerned with the binary symmetric channel, there

1Here, and throughout this paper, high probability means that the probability
can be made arbitrarily close to 1 for sufficiently large values of n.

have been codes designed for other channels. For example
various error correcting codes for the deletion channel have
been studied (e.g., [6], [5], [7], [10]). Such codes allow one to
reconstruct the transmitted string (from a single observation)
when the transmitted string is actually a codeword. So, a
decoding algorithm for such an error correcting code can be
viewed as an algorithm to solve the problem stated above when
t is restricted to belonging to a particular (and exponentially
small) subset of all possible length n binary strings. In the
problem above, however, we wish to successfully reconstruct
any transmitted string.

For some channels, or error models, our problem is easy.
For example, if only bit flips occur then the ith bit of the
transmitted string t can be deduced by taking the majority
of the ith bits of the received strings. Even for constant
bit flip probability, O(log n) transmissions suffices with high
probability. A similar approach works when the received
strings are generated by the erasure channel. However, when
the channel can insert and delete bits, as is possible in the our
channel, it is no longer clear which bits in the received string
should be used to deduce the ith bit of the transmitted string.

There have been numerous similar problems considered in
the literature but almost all of these consider received strings
generated by combinatorial channels defined by the maximum
number of errors of a given type that they can introduce. These
include [8], [9] which considers how many distinct traces
are necessary to uniquely infer the original string and [3] in
which we start with all the substrings (of a given length) and
their multiplicities. We are, however, interested probabilistic
channels and how many transmissions are required such that,
with high probability, we can reconstruct the transmitted
string. Note that probabilistic channels are considered in a
section of [9] but that the channels considered do not include
the on described above.

Firstly we show that for almost all transmitted strings, if
the deletion/insertion error probability is q = O(1/ log2 n)
then with m = O(log n) traces we can exactly reconstruct the
transmitted string with high probability. Furthermore we can
still reconstruct in the presence of additional noise that flips
each bit with constant probability p. Secondly, for arbitrary
strings (with no run of length > nε) we show that with a
constant number of received strings we can reconstruct when

the deletion/insertion probability is q = O(1/n1/2+ε). This
paper continues work initiated in [2] which considered only
deletion errors. The results presented in the following theorem.

Theorem 1.1 ([2]): There exist algorithms such that
1) For all but a polynomially small fraction of possible

strings t, reconstruct the string t from m = O(log n) re-
ceived strings if the deletion probability q = O(1/ log n)
(with high probability.)

2) For an arbitrary strings t, reconstruct a string that has
identical structure to t from m = O(1/ε) received
strings if the deletion probability q = O(1/n1/2+ε)
(with high probability.)

There are numerous rationales for our setting in which the
information represented by t is not encoded before errors are
introduced by the channel. For example our setting can be
viewed as the study of an idealized biological evolutionary
process where the DNA string undergoes point mutations,
deletions and insertions. We would like to understand at what
mutation rates, a small number of observed samples can be
correctly aligned to reconstruct the parent string.

A primary motivation for our problem comes from com-
putational biology, in particular, the multiple sequence align-
ment problem. In a typical biological scenario, we observe
related DNA or protein sequences from different organisms.
These sequences are the product of a random process of
evolution that inserts, deletes, and substitutes characters in
the sequences. The multiple sequence alignment problem is
commonly used to deduce conserved subpatterns from a set
of sequences known to be biologically related [4]. In particular,
one would like to deduce the common ancestor of these related
sequences. In reality, each of the observed sequences is not
produced independently by this evolution process. Sequences
from organisms that are evolutionarily very closely related
undergo common evolution (identical changes) for the most
part and only diverge and undergo independent evolution for
a small period of time.

The multiple sequence alignment problem is one of the most
important problems in computational biology and is known to
be NP-hard. An alignment of k strings is obtained by inserting
spaces into (or at either end of) each string so that the resulting
strings have same length, say, l. Then, the strings are put in
an array with k rows of l columns each. Typically, a score
is assigned to an alignment to measure its quality. Different
scoring schemes are proposed in the literature. In one common
family of schemes, the score of an alignment is taken to be
the sum of the scores of the columns; the score of a column
is defined as some function of the symbols in the column. In
standard versions, this function has a high value when all the
symbols in the column agree and its value drops off as there
is greater and greater variation in the column. The objective
is to find an alignment with the maximum score. Note that
in the case of related sequences, it is not clear how these
scoring schemes serve the purpose of discovering the common
ancestor, from which each sequence is generated. In fact, it is
easy to construct examples where the optimum alignment will
not produce the common ancestor.

Note: We assume that the transmitted string is a binary
string because strings from a larger alphabet can actually be
inferred more easily. Specifically, if the actual transmitted
string comes from an alphabet Σ, one can consider |Σ| differ-
ent mappings from Σ to {0, 1}, each of which maps exactly
one letter in Σ to 1, solve the induced inference problems
on {0, 1}-sequences and from these solutions reconstruct the
solution for the original problem.

II. PROBLEM AND DEFINITIONS

We start with a length n binary transmitted string t. We
transmit this string m times over a channel C that introduces
errors. In this way we generate m received strings r1, . . . rm.
The channel we consider is a binary channel with acts on each
bit independently as follows:

C : F2 → ∪0≤vFv
2

b → Sg(b)

where S a random binary string of length k, k is a random
variable distributed as a Geometric random variable with
parameter q2, and

g(b) =




b with probability 1 − p − q1 − pq1

b̄ with probability p(1 − q1)
∅ with probability q1

where ∅ donates the empty string and b̄ denotes bit-flipping,
i.e. 0̄ = 1 and 1̄ = 0. Note that q1 = q2 = 0 corresponds to
the channel BSCp and q2 = p = 0 corresponds to a deletion
channel with deletion probability q1. In what follows q1 = q2

so we will denote q := q1 = q2. Let fi(s) be the binary string
output by the channel on the ith transmission of a substring s
of t.2 In particular ri = fi(t).

III. ALMOST ALL TRANSMITTED STRINGS

In this section we consider the error probabilities 0 ≤ p <
1/2 and q = O(1/ log2 n). We wish to show that for all but an
arbitrary small fraction of transmitted strings t, m = O(log n)
transmissions is sufficient to exactly reconstruct t (with high
probability.) To prove this our analysis will assume that t is
chosen at random for all length n binary strings. Then, we
show that probability (over the random choice of t and the
random noise introduced by the channel) of not reconstructing
t exactly can be made arbitrarily small by ensuring that q is
less than some small constant fraction of 1/ log2 n and that m
is bigger than some large constant multiple of log n. Integral
to our analysis is that fact that, because t can be viewed as
a random string, all substrings of length longer that Ω(log n)
have large Hamming distance from each other. In what follows
we show that they can therefore be used to help align the
received strings. We start with some necessary definitions.

Definition 3.1: We say two strings of equal length are a
semi-match if the Hamming distance between them is less

2We use the convention throughout the paper that a substring of a string
is a subsequence of t in which all the bits are contiguous. Furthermore we
denote as t[i, j], the substring of a string t starting in position i of t and
ending at position j of t.

than p− p2 + 1/4. Imagine that the bits of the original string
t are tagged with indices 1 through n. We say that a length
l substring s of ri and a length l substring s′ of rj are non-
overlapping if there does not exist a k, 1 ≤ k ≤ l such that
the kth bit of s has the same tag as the kth bit of s′.

Our algorithm works by first finding a length l substring a
of r1 with the following properties:

1) There exists a length l substring tm of t, ie. t = t1tmt2

such that a = f1(tm).
2) Each received string ri can be split into ri = r1

i mir
2
i

where r1
i = gr(fi(t1)) where mi is a semi-match to a

and gr is function that inserts or deletes at most l bits
from the right side. Unless gr is the identity function,
we call the right end of r1

i a dirty end. Similarly with
r2
i = gl(fi(t2)).

3) tm = average of (mi)2≤i≤m and a. (By “average” we
mean the string whose jth bit takes the same value as
the majority of the jth bits of the strings (mi)2≤i≤m

and a.)
We call such a string an anchor. Once an anchor has been

found we recurse on the strings either side of the anchor, ie. we
now try to deduce t1 from r1

1, . . . r
1
m and t2 from r2

1, . . . r
2
m.

To find an anchor we consider the middle kl bits of r = r1.
This middle section consists of k potential length l anchors,
a1, ...ak.

Lemma 3.1 (Anchors can be reliably located): The proba-
bility that there exists an ai that is falsely identified as an
anchor is less than kne−l(1/2−2p+2p2)/4. The probability that
none of the ai are anchors is less than,(

mql + m

[
eδ

(1 + δ)1+δ

](2p−2p2)l
)k

,

where δ = 1
2 − 1

8(p−p2) .
Proof: The probability that ai is falsely identified as an

anchor is bounded above by the probability that ai has a semi-
match with a non-overlapping substring in rj for some j �= 1.
Since the strings are non-overlapping, the probability of them
being a semi-match is < e−l(1/2−2p+2p2)/4 by an application
of the Chernoff bound. Applying the union bound gives the
first result.

The probability that ai is an anchor is at least the probability
that the following both hold true,

1) no insertion/deletion errors occured in the m transmis-
sions of f−1(ai)

2) no more than p − p2 + 1/4 bit-flip errors occurred in
each of the m transmissions of f−1(ai)

The probability that an insertion or deletion error occurred
among the m transmissions of f−1(ai) is less than qml. Using
the Chernoff bound, the probability that more than p − p2 +
1/4 bit-flip errors occurred in any of the m transmissions of
f−1(ai) can be bounded above by

[
eδ

(1 + δ)1+δ

](2p−2p2)l

, where δ = 1
2 − 1

8(p−p2) . Hence, the probability that there
does not exist an anchor among the k possible anchors is

(mql +m
[

eδ

(1+δ)1+δ

](2p−2p2)l

)k as the event of each ai being
an anchor is independent.

We recurse until the strings are of length 3kl. The proba-
bility that we have erred up until this point when identifying
anchors is less than,

n max
{(

mql + m

[
eδ

(1 + δ)1+δ

](2p−2p2)l
)k

,

kne−l(1/2−2p+2p2)/4
}

,

where δ = 1
2 − 1

8(p−p2) . We can make this quantity arbitrarily
small by setting l = O(log n), k = O(log n) and q =
O(1/ log2 n) and choosing the constants appropriately

We now argue that for each segment ti of t, the majority
of the strings being used to infer ti differ from ti only as a
result of bit-flips. First note that,

1) Dirty ends are rare, ie. the probability that a given string
has a dirty end is bounded above by 2q

2) Each string has a probability 3klq of actually having had
bits deleted or inserted by the channel

and that each of these probabilities is a small constant for
our chosen values of l, k and q. Hence, since m = O(log n),
using the Chernoff bound we can show that with probability
≥ 1 − 1

n2 , the majority of the corrupted strings being used
to deduce a given segment of t are only corrupted by bit-flip
errors. We therefore conclude that this is that case for all the
O(n) segments of t.

We have now proved the main theorem of this section.
Theorem 3.1: For all but an arbitrarily small fraction of

possible strings t, reconstructing the string t from m =
O(log n) received strings if the probability of insertion or
deletion is q = O(1/ log2 n) (with high probability.)

IV. ARBITRARY (NO LONG RUNS) TRANSMITTED STRINGS

The technique for reconstructing arbitrary strings will be to
find a set of promises that will be kept with high probability
during the transmission of the m strings. Given these promises,
we embark on a case analysis to verify that the transmitted
string will be correctly reconstructed given these promises.
Now we consider the error probabilities p = 0 and q =
O(1/n1/2+ε). We start with some definitions.

Definition 4.1 (Runs and Alternating Sequences): A run of
1’s (also called a 1-run) in a string t is a maximal substring of
consecutive 1’s. A run of 0’s is defined analogously. We denote
the ith run of string t by Li and the length of Li by li. A run
is called long if its length is at least nε and is short otherwise.
An alternating sequence in a string is a sequence of length
at least two such that each run in the sequence has length 1
(e.g., 010101 . . .). A bit is called the first bit of an alternating
sequence if it is a run of length 1 that either follows a run
of length greater than 1 or it is the first bit in the transmitted
string. A delimiting run for an alternating sequence is the first
run of length at least two that follows the alternating sequence.

It should be noted that it is not possible to reconstruct some
transmitted strings with only a small number of transmissions.
It was noted in [2] that distinguishing between two strings,
one that starts with n/2 1’s followed by n/2 0’s and one that
starts with n/2 + 1 1’s followed by n/2 − 1 0’s, requires
Ω(nq(1 − q)) transmissions even if there are only deletions.
When there were only deletions, most strings that necessitate
many transmissions did so because they had long runs. When
there are both insertions and deletions, alternating sequences
can also cause trouble. In what follows we make one restriction
about how arbitrary a transmitted string may be - it must not
contain any long runs. We also will only estimate the length
of alternating sequences that are longer that

√
n.

We now list the promises that we will assume are kept in
the course of the transmissions. The proof of this lemma is
largely straight forward.

Lemma 4.1 (Transmission Promises Lemma): A collection
of m = O(1) received strings generated by deleting and
inserting from t with probability q, with high probability
satisfies the following:
(P1) The first bit in the transmitted string is the first bit in

each received string.
(P2) Among all the m transmissions, at most 1 error occurred

in the transmission of any 4 consecutive runs. (In par-
ticular, no two consecutive bits are inserted or deleted.)

(P3) For all maximal alternating sequence of length l >
√

n,
if an error occurs at the start of the alternating sequence
(in any of the m transmissions) then in all the m
transmissions, there are no errors during the transmission
of the final log n

√
l bits of the maximal alternating

sequence and the next two bits of the delimiting run.
(P4) For all maximal alternating sequence, if an error occurs

at the start of the alternating sequence (in any of the
m transmissions) then in all the m transmissions, there
are no errors during the transmission of the final nε

(or the rest of the alternating sequence if the length
of the alternating sequence is less than nε) bits of the
maximal alternating sequence and the next two bits of
the delimiting run.

(P5) For each
√

n substring x of t,

{i ∈ [m] : fi(x) = x} > m/2

i.e. in the majority of transmissions, x is transmitted
without errors.

(P6) For each substring x of t of length > nε, for each i, there
are fewer than q|x| log n errors in the ith transmission
of |x|.

Our algorithm for determining the transmitted string pro-
cesses the received strings from left to right and will maintain
a pointer pi to a bit in each of received string ri. Let r∗i =
ri[pi, |ri|], the suffix of ri starting with the bit pointed to by pi.
Initially the pointers point to the first bit of their respective
received strings, ie. initially r∗i = ri. There will exist the
following invariant regarding the positions of each pointer:

Invariant: In each received string we are pointing to the
first bit transmitted from the same run, ie. for some j, all pi

point to the left most bit of fi(Lj).
In what follows we assume that the transmission promises

listed in the above lemma are kept. By P1, we start with the
invariant holding true. Assume that the invariant holds and that
each pointer points to the first bit of fi(Lj). Consider the next√

n bits to the right of each pointer. By P5, the majority of
these are equal and correspond to the length

√
n substring of

t starting with the jth run. Call this substring t′. We therefore
learn the length of the runs in the next

√
n bits of t. What

we have to do now is update the pointers to ensure that we
maintain the invariant. Without loss of generality let the first
bit of t′ be 1. Let the length of the first run be y. Now consider
r∗i and let xi be the length of the first run assuming it is a
1-run (and xi = 0 otherwise.) Making considerable use of P2,
we can make various deductions about the transmissions

1) If xi = y, we conclude that no errors have occurred in
the ith transmission of Lj .

2) If xi = y + 1, we conclude that either one “1” was
inserted in the ith transmission of Lj or that, on the
condition that lj+1 = lj+2 = 1, one “0” was deleted
from Lj+1.

3) If xi > y + 1, we conclude that one “0” was deleted in
the ith transmission of Lj+1.

4) If xi = y − 1, we conclude that either one “1” was
deleted in the ith transmission of Lj or that, on the
condition that lj+1 = lj+2 = 1, one “0” was inserted
before the last bit of Lj was transmitted.

5) If xi < y − 1, we conclude that one “0” was inserted
into Lj .

If, xi = y for all received strings, then we move the pointers
in each received string y positions to the right. Note that there
can be at most one received string rerror such that xerror �= y.
If xerror > y + 1, we also move the pointer in each received
string y positions to the right. If xerror < y − 1, we more the
pointer in rerror, y + 1 positions to the right and for all other
received strings, we move the pointer y positions to the right.

The two remaining cases, xerror = y − 1 or y + 1 are
more tricky. As we noted earlier, these cases can only arise if
lj+1 = lj+2 = 1, ie. if there is an alternating sequence. We
will attempt to update the pointers pi to point to fi(Lk) where
Lk is the delimiting run of the alternating sequence.

From t′ we know that either the length of this alternating
sequence is either <

√
n or ≥ √

n. We consider each case in
turn and conclude that we can correctly update the pointers.
Firstly if the length is ≥ √

n then we know by P3 that in each
received string, there exists a length ≥ 2 run corresponding
to the delimiting run. Further more, by P3 and P6 we can
ensure that we do not incorrectly identify the delimiting run
in a received string by requiring that the identified runs lie
in close proximity in the received strings. We can bound the
area in which we expect to see the delimiter and guarantee
that no other errors occur in this region that might result in a
substring in the received string that could be mistaken for the
delimiter.

Secondly if the length is <
√

n then we know by P4 that
if there are any errors in the transmission of the alternating

sequence, then there are no errors during the transmission of
the last bit of the alternating sequence and the next run. Hence
in rerror the delimiter is transmitted intact. Again, appealing
to P6 ensures that we do not incorrectly identify the delimiter
because we can bound the region where we expect to find
this delimiter (by bounding the number of errors we expect to
see in the alternating sequence) and guarantee that no other
errors occur in this region that might result in a substring in
the received string that could be mistaken for the delimiter.

We have now proved the main theorem of this section.
Theorem 4.1: If all runs are of length < nε, we can

reconstruct t from m = O(1) received strings if the probability
of insertion or deletion is q = O(1/n1/2+ε) (with high
probability.)

V. CONCLUSION AND FUTURE WORK

We have considered the problem of reconstructing strings
from traces generated by a probabilistic channel. Note that
while the majority of strings are very easy to reconstruct, we
still do not have a good technique for reconstructing arbitrary
strings and this clearly merits further work. Even for the
majority of “easy” strings, we have thus far only considered
error rates that decrease as n increases. It would be desirable
to be able to cope with constant deletion and insertion rates.
Finally, in regard to some of the biological motivation for
this problem, being able to relax the assumption of total
independence in the generation of the received strings would
have benefits when it came to applying this work in practice.

ACKNOWLEDGMENTS

Sampath Kannan was supported by NSF CCR98-20885 and
NSF CCR01-05337. Andrew McGregor was supported by NSF
ITR02-05456.

REFERENCES

[1] N. Alon, J. Edmonds, and M. Luby, Linear time erasure codes with nearly
optimal recovery, 36th Annual Symposium on Foundations of Computer
Science, 1995, pp. 512–519.

[2] T. Batu, S. Kannan, S. Khanna, and A. McGregor, Reconstructing strings
from random traces, Proc. of SODA 2004 (2004), 903–911.

[3] M. Dudik and L. J. Shulman, Reconstruction from subsequences, J.
Combinatorial Theory Series A (2003), no. 103, 337–348.

[4] D. Gusfield, Algorithms on strings, trees, and sequences, Algorithms on
Strings, Trees, and Sequences, 1997.

[5] V. I. Levenshtein, Binary codes capable of correcting spurious insertions
and deletions of ones, Problems of Information Transmission 1 (1965),
no. 1, 8–17.

[6] , Binary codes capable of correcting deletions, insertions and
reversals, Soviet Physics Dokl. 10 (1966), no. 8, 707–710.

[7] , On perfect codes in the deletion/insertion metric, Discrete
Mathematics and Applications 3 (1992), no. 1, 241–258.

[8] , Efficient reconstruction of sequences from their subsequences
and supersequences, J. Combinatorial Theory Series A (2001), no. 93,
310–332.

[9] , Efficient reconstruction of sequences, IEEE Trans. Inform.
Theory 47 (2001), no. 1, 2–22.

[10] L. J. Shulman and D. Zuckerman, Asymptotically good codes correction
insertions, deletions and transpositions, Proceedings of the eighth annual
ACM-SIAM symposium on Discrete algorithms 45 (1999), no. 7, 2552–
2557.

