Approximating the Best—Fit Tree Under L,
Norms

Boulos Harb*, Sampath Kannan**, and Andrew McGregor* * *

Department of Computer and Information Science, University of Pennsylvania,
Philadelphia, PA 19104, USA

{boulos,andrewn,kannan}@cis.upenn.edu

Abstract. We consider the problem of fitting an n x n distance ma-
trix M by a tree metric T. We give a factor O(min{n'/?, (klogn)'/?})
approximation algorithm for finding the closest ultrametric 7" under the
L, norm, i.e. T minimizes || T, M||p. Here, k is the number of distinct
distances in M. Combined with the results of [1], our algorithms imply
the same factor approximation for finding the closest tree metric under
the same norm. In [1], Agarwala et al. present the first approximation
algorithm for this problem under Lo. Ma et al. [2] present approxima-
tion algorithms under the L, norm when the original distances are not
allowed to contract and the output is an ultrametric. This paper presents
the first algorithms with performance guarantees under L, (p < o) in
the general setting.

We also consider the problem of finding an ultrametric 7" that minimizes
Lyclative: the sum of the factors by which each input distance is stretched.
For the latter problem, we give a factor O(log® n) approximation.

1 Introduction

An evolutionary tree for a species set S is a rooted tree in which the leaves
represent the species in S, and the internal nodes represent ancestors. The goal
of reconstructing the evolutionary tree is of fundamental scientific importance.
Given the increasing availability of molecular sequence data for a diverse set of
organisms and our understanding of evolution as a stochastic process, the nat-
ural formulation of the tree reconstruction problem is as a maximum likelihood
problem — estimate parameters of the evolutionary process that are most likely
to have generated the observed sequence data. Here, the parameters include not
only rates of mutation on each branch of the tree, but also the topology of the
tree itself. It is assumed (although this assumption is not always easy to meet)
that the sequences observed at the leaves have been multiply aligned so that each
position in a sequence has corresponding positions in the other sequences. It is
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also assumed for tractability, that each position evolves according to an inde-
pendent identically distributed process. Even with these assumptions, estimating
the most likely tree is a computationally difficult problem.

Recently, approzimately most likely trees have been found for simple stochas-
tic processes using distance-based methods as subroutines [3, 4].

For a distance-based method the input is an n X n distance matrix M where
MTi, j] is the observed distance between species i and j. Given such a matrix,
the objective is to find an edge-weighted tree T with leaves labeled 1 through n
which minimizes the L, distance from M where various choices of p correspond
to various norms. The tree T is said to fit M. When it is possible to define
T so that ||T, M|, = 0, then the distance matrix is said to be additive. An
O(n?) time algorithm for reconstructing trees from additive distances was given
by Waterman et al. [5], who proved in addition that at most one tree can exist.
However, real data is rarely additive and we need to solve the norm minimization
problem above to find the best tree. Day [6] showed that the problem is NP-hard
forp=1,2.

For the case of p = 0o, referred to as the Lo, norm, [7] showed how the optimal
ultrametric tree could be found efficiently and [1] showed how this could be used
to find a tree T' (not necessarily ultrametric) such that || T, M||, < 3||[TopT, M|,
where Topr is the optimal tree. The algorithm of [1] is the one that is used in
[3] and [4] for approximate maximum likelihood reconstruction.

In this paper we explore approximation algorithms under other norms such
as L1 and Ly. We also consider a variant, Lielative, Of the best-fit objective
mentioned above where we seek to minimize the sum of the factors by which
each input distance is stretched. The study of L; and L, norms is motivated
by the fact that these are often better measures of fit than L., and the idea
that using these methods as subroutines may yield better maximum likelihood
algorithms.

1.1 Our Results
We prove the following results:

- We can find an ultrametric tree whose Ly-error is within a factor of
O(min{n'/? (klogn)'/P}) of the optimum, where k is the number of distinct
distances in the input matrix.

- We can find an ultrametric tree 7" whose Ly cjative-€rror is within a factor of
O(log® n) of the optimum.

Our algorithms also solve the problem of finding non-contracting ultramet-
rics, i.e. when T7i, j] is required to be at least M[i, j] for all ¢, j. More generally,
we can require that each output distance is lower bounded by some arbitrary
positive value. This generalization allows us to also find additive metrics whose
Ly-error is within a factor of O(min{n'/?, (klogn)!/P}) of the optimum by ap-
pealing to work in [1].



1.2 Related Work

Aside from the aforementioned L., result given in [1], Ma et al. [2] present an
O(n'/?) approximation algorithm for finding non-contracting ultrametrics under
Lp<oo- Prior to our results, however, no algorithms with provable approximation
guarantees existed for fitting distances by additive metrics under L)< in the
general setting.

Some of our results rely on the recent approximation algorithms for the prob-
lem of correlation clustering and related problems [8-11]. One of our algorithms
can be viewed as performing a hierarchical version of correlation clustering.

Finally, we should mention some recent work that address special cases of our
problem. In [12] an algorithm is given that finds a line-embedding of a metric
whose Lj-error is O(logn) away from optimal. If the embedding is further re-
stricted to be a non-contracting line-embedding, then [13] presents an algorithm
whose approximation factor is constant.

2 Preliminaries

An wltrametric T on a set [n] is a metric that satisfies the following three-point
condition:
Ve,y,z € [n] Tle,y] < max{T[z, 2], T[z,y]} -

That is, in an ultrametric, triangles are isosceles with the equal sides being
longest. An ultrametric is a special kind of tree metric where the distance from
the root to all points in [n] (the leaves) is the same. Recall that a tree metric
(equivalently an additive metric) A on [n] is a metric that satisfies the four-point
condition:

Yw,x,y,z € [n] Alw,z] + Aly, z] < max{A[w,y] + Alz, 2], Alw, z] + Alz,y]} .

Given an n x n distance matrix M where M[i, j] is the observed distance
between objects i and j, our initial objective is to find an edge-weighted ultra-
metric 7" with leaves labeled 1 through n which minimizes the L, distance from
M, i.e. T minimizes

IT. My = o 301705 = MG )

We will also look at finding an edge-weighted ultrametric T° which minimizes
the average stretch of the distances in M, i.e. T' minimizes

Tli,j] Mli,j
||T, MHrclativc = ; max { M[[Zi]]] ’ T[[Z,j]] } (2)

The entry T'[i, j] is the distance between the leaves i and j, which is defined
to be the sum of the edge weights on the path between i and j in T'. We will also



refer to the splitting distance of an internal node v of T" as the distance between
two leaves whose least common ancestor is v. Because T is an ultrametric, the
splitting distance of v is simply twice the height of v.

We will assume that the input distances in M are non-negative integers such
that

-  Mlz,y] = Mly, x]; and,
— Mlny =0 <> z—y.

That is, we will not assume that the distances in M satisfy the triangle
inequality. We denote the distinct distances in M by,

di >dp_1>...>dy>dy .

Relationship to Correlation Clustering. The problem of finding an optimal
ultrametric 7' minimizing ||T, M ||; is closely related to the problem of correlation
clustering introduced in [10]. We are interested in the minimization version of
correlation clustering which is defined as follows: given a graph G whose edges are
labeled “4” (similar) or “~” (dissimilar), cluster the vertices so as to minimize
the number of pairs incorrectly classified with respect to the input labeling.
That is, minimize the number of “~” edges within clusters plus the number of
“+” edges between clusters. We will simply refer to this problem as correlation
clustering. Note that the number of clusters is not specified in the input.

In fact, when G is complete, correlation clustering is equivalent to the prob-
lem of finding an optimal ultrametric under the L; norm when the input dis-
tances in M are restricted to 1 and 2. An edge (4,5) in the graph labeled “+4”
(resp. “—7) is equivalent to the entry MT[i, j| being 1 (resp. 2). It is clear that an
optimal ultrametric is an optimal clustering, and vice versa. Hence, the APX-
hardness of finding an optimal ultrametric under the L; norm follows directly
from [11, Theorem 11].

In [11], Charikar, Guruswami and Wirth give a factor O(log n) approximation
to correlation clustering on general weighted graphs using linear programming.
In an instance of correlation clustering that is weighted, each edge e has a weight
w, which can be either positive or negative. The objective is then to minimize

> (lwe| if e is split) + Y (Jwel if e is not split) .

e:we >0 e:we <0

The bound for the LP relaxation is established via an application of the region
growing procedure of Garg, Vazirani and Yannakakis [14]. We will state their
theorem below for reference as our algorithm in section 3.1 uses their algorithm
as a sub-procedure.

Theorem 1 ([11, Theorem 1]). There is a polynomial time algorithm that
achieves an O(logn) approzimation for correlation clustering on general weighted
graphs.



3 Main Results

Both our algorithms take as input a set of splitting distances we call S that
depends on the error norm. The distances in the constructed ultrametrics will
be a subset of the given set S. The following lemma quantifies the affect of
restricting the output distances to certain sets.

Lemma 1. (a) There exists an ultrametric T with T|i,j] € {d1,da,...,d} for
all i,j that is optimal under the Ly norm.
(b) There exists an ultrametric T with T[i, j| € {d1,da,...,di} for alli,j such
that
1T, M|lp < 2| Topr, Mllp

forp>2.
(¢) Assuming dy = O(poly(n)), there exists an ultrametric T that uses O(log, . n)
distances such that

||T7M||re1ative < (1+€)||TOPT7M||re1ative ;

where € > 0.

Proof. (a) Say an internal node v is undesirable if its distance h(v) to any of
its leaves satisfies 2h(v) & {di,ds,...,dr}. Suppose Topr is an optimal
ultrametric with undesirable nodes. We will modify Topt so that it has one
less undesirable node. Let v be the lowest undesirable node in Topr and let
d = 2h(v) € (dg,dgy1) for some 1 < ¢ < k — 1. Define the following two
multisets:

D, ={Mla,b] : a,b are in different subtrees of v and MJa,b] < d,} ,
Dyi1 = {Mla,b] : a,b are in different subtrees of v and M|a,b] > dp41}.
Then the contribution of the distances in Dy U Dy4q to || Topr, M||1 is

dd—a)+ > (B-d) .

aEeDy BED41

The expression above is linear in d. If its slope > 0 then set h(v) = d;/2, and
if the slope < 0 then set h(v) = min{dy+1/2, h(v')} where v’ is the parent of
v. Such a change can only improve the cost of the tree.

(b) For p > 2, let Topr be an optimal ultrametric with undesirable nodes. We
will transform TopT to an ultrametric 7' with no undesirable nodes such
that HT, M”P < 2||TOPTa MHp Let,

[ Topr, MI[5 =) gu(2h(u))

where the sum is over the internal nodes of Topr and g,(z) is the cost of
setting the splitting distance of node u to x. Again, let v be the lowest un-
desirable node and define D, and Dy 1 as above. Fix d = 2h(v) € (d¢, dpt1)-
We claim that min{g,(dr), g»(de+1)} < 2Pg,(d).



If d < (d¢ 4 dey1)/2, then we can set h(v) = dp/2 since for all o € Dy,
dy —a < d—aand for all 8 € Dyyq, f—de < 2(8 — d). Otherwise, we
set h(v) = dgy1/2. We are assuming w.l.0.g. that v has no parent in the re-
gion (dg, dg+1) since if such a parent v’ exists, h(v') will also be set to dg41/2.

(c) Let D(Topr) be the set of distances in an optimal ultrametric that minimizes
IT, M || elative- Group the distances in D(Topr) geometrically, i.e. for some
€ > 0, group the distances into the following buckets:

[1,1+¢], (1—|—e,(1—|—e)2],..., ((1+6)S_1,(1+6)5]

Let t be the largest distance in D(Topr). Clearly, ¢ < di = O(poly(n)).
Hence, the number of buckets s = log,, t = O(log;, . n). Now consider an
ultrametric T” that sets T'[i,j] = (1 + €)* if the optimal T[i,j] € ((1 +
9L, (1+ )],

i) M)
T/a M relative — max { .’ ER) .’ .
| e ZJ Mli, j]" T"[i, j]

< (1 + G)HTOPTv M”relative .

For ease of notation, we adopt the following conventions. Let G = (V, E) be
the graph representing M in the natural way. For an edge e = (7, ) denote its
input distance M[i, j] by m. and its output distance T'[i, j] by t.. As described
in section 2, w, will code for the label and the weight |w.| on the edge passed to
the correlation clustering algorithm. The lower bound on e, A., is the minimum
value e can contract, i.e. to > ..

Supplying our algorithm with an edge lower bounds matrix A allows us, for
example, to solve non-contracting versions of the objective functions we seek
to minimize where for all e, t, > m, by simply setting A = M. We will also
use these lower bounds in section 4 when constructing general additive metrics
under L, norms.

In the following two subsections we present algorithms for our problem. The
first algorithm is suitable if the number of distinct distances, k, in M is small.
Otherwise, the second algorithm is more suitable.

3.1 Algorithm 1

Our algorithm takes as input a set of splitting distances S. Each distance in the
constructed tree will belong to this set. Let |S| = x and number the splitting
distances in ascending order s; < So < ... < s,. The algorithm considers the
splitting distances in descending order, and when considering s; it may set some
distances T[i,j] = s;. If a distance of the tree is not set at this point, it will
later be set to < s;_1. The decision of which distances to set to s; and which
distances to set to < s;_1 will be made using correlation clustering. See Fig. 1
for the description of the algorithm.



Algorithm Correlation-Clustering-Splitting(G, S, A)
(+ Uses correlation clustering to decide how to split *)
1. Let all edges be “unset”
2. forl=ktol:
3. do Do correlation clustering on the graph induced by the unset edges
with weights:
-If me > s; and Ae < s then,
We = _(f(me’slfl) - f(me,Sz))

-If Ae = 5; then we = —0

-If me = 55 < s then we = f(s3, 81)
4. for For each unset edge e split between different clusters:
5. do t. < s; and mark e as “set”

Fig. 1. Algorithm 1 (The function f is defined in Thm. 2)

Theorem 2. Algorithm 1 can be used to find an ultrametric T such that any

one of the following holds:

1. |7, M|, < O((klogn)l/p)HTopT,MHp if S ={di,...,dr} and f(me,t.) =
|me — te|P.

2. HTvM”relative < 0(10g2n)”TOPT;MHrelative Zf S = {(]- + E)’L : 0 < )

]'Og1+€ dk} and f(m67te) = max{ Le %}

me? te

IN

Proof. Our algorithm produces an ultrametric 7' where the splitting distance of
each node is restricted to be from the set S, i.e. t. € S for all e. The proof below
shows that the algorithm gives a O(|S|logn)-approximation to >, f(m.,t.)
where T" is the optimal ultrametric satisfying ¢/, € S for all e. The results in the
theorem will then follow by appealing to Lemma 1.

Consider the correlation clustering instance performed in iteration [ of the
algorithm. Let costopr(l) be the optimal value for this instance and let cost(l)
be the cost of our solution.

Claim 1: ), cost(l) = >, f(me,te).
Consider each edge e in turn. Let ¢, = s;. If ; > m,, then in the [th iteration
we pay f(me, s;) for this edge. If s; < m, = sy, then in each iteration i, I’ > ¢ > I,

we pay f(si,si-1) — f(su,5:); hence, in total we pay f(si,s1) = f(me,t.).

Claim 2: costopr(l) < >, f(me,t.)

Consider the following solution to the correlation clustering problem at iter-
ation ! induced by T”: for all unset edges e if t, > s; we split e and if t/, < s; we
don’t split e. We claim that the cost of this solution for the correlation clustering
problem is less that ) f(m.,t.). Consider each edge e in turn.

—t. < s; and m, < s;: Not splitting this edge contributes nothing to the
correlation clustering objective.



— t, > s; and m, < s;: Splitting this edge contributes f(s;,m.) to the correla-
tion clustering objective but contributes f(t.,me) > f(s1,me) to Y-, f(me,t.).

— 1, < s and m. > s;: Not splitting this edge contributes f(me,s;—1) —
f(me, s;) to the correlation clustering objective but contributes f(m.,t.) >
f(me,s1-1) > f(me,s1-1) — f(me, s1) to Y-, f(me,tr,).

— t. > s;and m, > s;: Splitting this edge contributes nothing to the correlation
clustering objective.

Summing over all edges, the contributions to both objective functions gives the
second claim.

Combining the above claims with Thm. 1, the tree we construct has the
following property,

Zf(te,me): Z cost(l) < O(/flogn)Zf(me,t’e) .

1<i<k

The theorem follows.

3.2 Algorithm 2

Our second algorithm also takes as input a set of splitting distances S and,
as before, each distance in the constructed tree belongs to this set. However
while the approximation guarantee of the first algorithm depended on |S|, the
approximation guarantee of the second algorithm depends only on n. At each
step the first algorithm decided whether or not to place internal nodes at height
sy, and, if it did, how to partition the nodes below. In our second algorithm, at
each step we instead decide the height at which we should place the next internal
node and its partition. See Fig. 2 for the description of the algorithm. The first
call to the algorithm sets s;« = sy,

Theorem 3. Algorithm 2 can be used to find an ultrametric T such that any
one of the following holds:

1. HT,MHl < n||TopT,M||1 if S = {dl, R 7dk}.
2. Forp>2, ||T,M|, < 2n'/?|Topt, M||, if S = {di,...,di}.

Proof. Our algorithm produces a ultrametric 1" where the splitting distance of
each node is restricted to be from the set S, i.e. t, € S for all e. The proof below
shows that the algorithm gives an n—approximation to || 7", M|} where T" is the
optimal ultrametric satisfying ¢/, € S for all e. The results in the theorem will
then follow by appealing to Lemma 1.

Claim 1: The sum of Min-Split-Cost over all recursive calls of Min-Cut-
Splitting equals ||T', M||b.

Consider an edge e = (4, 7) and let v be the lowest common ancestor of ¢ and
jin T.If me <t. then we paid (t. — m.)P for this edge in the Cut-Cost when
splitting at v. If m, > t., consider the internal nodes on the path from root to



Algorithm Min-Cut-Splitting(G, S, si=, A)
(* Uses min cuts to work out splits )
1. 1« I*+1
2. Min-Split-Cost« oo
3. repeat
4. l—1—-1
5. Push-Down-Cost < __(max{0, me — s:})? — (max{0, me — 51+ })?
6. if there exists an edge e = (s,t) such that A\e = s;
7 then Find min-(s,t) cut C in G with edge weights
we = (max{0, s; — me})?
8. else Find min-cut C' in G with edge weights
we = (max{0,s; — me})?
9. Cut-Cost « the cost of the cut
10. if Cut-Cost+Push-Down-Cost < Min-Split-Cost
11. then Best-Cut«— C
12. Best-Splitting-Point« s;
13. Min-Split-Cost «— Cut-Cost+Push-Down-Cost
14. wuntil [ = 0 or there exists an edge e with Ae = s;
15. for all edges e in Best-Cut:

16. do t. <+ Best-Splitting-Point
17. for each connected component of G' € (V, E \ Best-Cut):
18. do Min-Cut-Splitting(G’, S,Best-Splitting-Point, A)

Fig. 2. Algorithm 2

v that have splitting distances < me, me > s;; > 84, > ... 8;; = te. We paid a
total of

(me - siz)p + [(me — Sig )p - (me - Siz)p] +.o.t [(me — Si; )p - (me - Sij—l)p:l

= (me — te)p
for this edge as Push-Down-Costs.

Claim 2: The Min-Split-Cost of each call is at most ||7", M|}

Consider a call Min—C’ut—Splitting(CA? = (17, E), -, 81, ). If there exists an e € E
such that #/ > s;, then {e € E : ¢/, > s/} contains at least one cut of which let
C be the cut of minimum weight. For edges e € C the cost of cutting e is
(max{0, s; —me})P < |t, — me[P. Hence the Cut-Cost is < ||7", M|[5. The Push-
Down-Cost is 0 since we are cutting in the first iteration of the loop; therefore,

Min-Split-Cost < ||T7, M||? .



If all e € E satisfy t, < s; then let the splitting point be s;; = max__z{t.}. The
Push-Down-Cost is then at most

Z(maX{O, me — sp})P < Z (me —tL)P .

EEE eEE:’me>t’e

Now the set of edges {e € E : t, = sy} contains at least one cut and, as
before, choosing the minimum weight cut, call it C, results in the Cut-Cost

eing equal to maxq0, sp — me})P = i — me.)P. Hence,
bei 1 ecC 0 P ecC:t, >me t/e P H

Min-Spilt-Cost < Z (me —tL)P + Z (t, —me)? < ||T", M|P .

eGE:m€>t’e eeC:t;>m.

The number of recursive calls of Min-Cut-Splitting is n — 1 because each call
fixes an internal node of the tree being constructed and the tree has n leaves.

Therefore, | T, M|} < (n —1)[|T', M|5 and the theorem follows. Note that
while a slightly better analysis gives that ||T, M||} < D||T", M||} where D is the
depth of the recursion tree, D can be as much as n — 1.

4 Extension to Additive Trees

In this section, we will generalize our results to approximating the input matrix
M by general additive metrics under any L, norm. Our generalization depends
on the following theorem from [1],

Theorem 4 (see [1, Theorem 6.2]). If G(M) is an algorithm which achieves
an a-approximation to the optimal a-restricted ultrametric under the L, norm,
then there is an algorithm F(M) which achieves a 3a-approzimation to the op-
timal additive metric under the same norm.

We will show how our algorithms from section 3 can be used to produce a-
restricted ultrametrics. We start with the definition of an a-restricted ultrametric
from [1].

Definition 1. For a point a, an ultrametric T® is a-restricted with respect to a
distance matriz M if

(1) T*[a,t] = 2uq for all i # a,

(2) 2/1%1 > Ta[iaj} > 2 (,U,a - min{M[aai]a M[Uﬂ]]}) fO'I‘ all i J

where p, = max; Mla, 1.

The definition of an a-restricted ultrametric immediately implies a procedure
for approximating the distance ||T§py, M|, between an optimal T§p and M.
For a point a, let M* be the matrix M with row a and column a deleted. And
let A* be the n — 1 x n — 1 edge lower bounds matrix where

Aa[ivj] = 2(:ua - min{M[avi]’M[avj]}) >



for all 4,5 € [n] \ {a}, i # j. Given G®, the graph representing M*, and A® our
algorithms now find an a-restricted ultrametric 7% such that

|17, M|, < O(min{n'/?, (klogn)"/?}) |T&pr, M||, -

Appealing to Thm. 4, we have a O(min{n'/?, (klogn)!/P})-approximation to the
optimal additive metric under L,,.

5 Conclusions and Further Work

In this paper we have looked at embedding metrics into additive trees and ul-
trametrics. We have presented two algorithms, one suitable when the number
of distinct distances in the metric is small, and one suitable when the number
of distinct distances is large. Both algorithms are intrinsically greedy; they con-
struct trees in a top-down fashion, establishing each internal node in turn by
considering the immediate cost of the split it defines. Using these algorithms we
provide the first approximation guarantees for this problem; however, there is
scope for improving those guarantees.

Addendum: We recently learned that, independent of our work, Ailon and
Charikar [15] have obtained improved results. They use ideas similar to those in
our work.
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