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Abstract

We are given a collection of m random subsequences
(traces) of a string t of length n where each trace is
obtained by deleting each bit in the string with prob-
ability q. Our goal is to exactly reconstruct the string
t from these observed traces. We initiate here a study
of deletion rates for which we can successfully recon-
struct the original string using a small number of sam-
ples. We investigate a simple reconstruction algorithm
called Bitwise Majority Alignment that uses majority
voting (with suitable shifts) to determine each bit of
the original string. We show that for random strings
t, we can reconstruct the original string (w.h.p.) for
q = O(1/ log n) using only O(log n) samples. For arbi-
trary strings t, we show that a simple modification of
Bitwise Majority Alignment reconstructs a string that
has identical structure to the original string (w.h.p.) for
q = O(1/n1/2+ε) using O(1) samples. In this case, us-
ing O(n log n) samples, we can reconstruct the original
string exactly. Our setting can be viewed as the study
of an idealized biological evolutionary process where the
only possible mutations are random deletions. Our goal
is to understand at what mutation rates, a small number
of observed samples can be correctly aligned to recon-
struct the parent string.

In the process of establishing these results, we show
that Bitwise Majority Alignment has an interesting self-
correcting property whereby local distortions in the
traces do not generate errors in the reconstruction and
eventually get corrected.

1 Introduction

Let t = t1t2 . . . tn be a string over an alphabet Σ. Sup-
pose we are given a collection of random subsequences
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(traces) of t where each random subsequence is obtained
independently as follows: For each i, the symbol ti is
deleted independently with probability q. The surviving
symbols are concatenated to produce the subsequence.
How many observations do we need to reconstruct t with
high probability?

A deletion channel, which can model the generation
process above, is a communication channel that drops
each symbol in a transmission independently with prob-
ability q. We use the terminology of a deletion channel
and talk about t as the “transmitted string” and each
random subsequence as the “received string.” In the lit-
erature, various error correcting codes for the deletion
channel are studied (cf., [3, 4, 5, 7]). Such codes allow
one to reconstruct the transmitted string (from a single
observation) when the transmitted string is actually a
codeword. So, a decoding algorithm for such an error
correcting code can be viewed as an algorithm to solve
the problem stated above for a particular (and small)
subset of all possible strings. We also would like to note
that another class of error correcting codes called era-
sure codes [1] is resilient against dropped packets dur-
ing the transmission. But in this model, one can take
considerable advantage of the fact that we know the
location of bits that were deleted. We would like to em-
phasize that in the problem that we study differs from
these in two important respects: (i) we wish to success-
fully reconstruct any transmitted string (and not only
codewords), and (ii) we have no information about the
locations of deletions.

The central motivation for our problem comes from
computational biology, in particular, the multiple se-
quence alignment problem. In a typical biological sce-
nario, we observe related DNA or protein sequences
from different organisms. These sequences are the
product of a random process of evolution that inserts,
deletes, and substitutes characters in the sequences.
The multiple sequence alignment problem is commonly
used to deduce conserved subpatterns from a set of se-
quences known to be biologically related [2]. In partic-
ular, one would like to deduce the common ancestor of
these related sequences. In reality, each of the observed
sequences is not produced independently by this evolu-
tion process. Sequences from organisms that are evolu-
tionarily very closely related undergo common evolution



(identical changes) for the most part and only diverge
and undergo independent evolution for a small period
of time.

The multiple sequence alignment problem is one of
the most important problems in computational biology
and is known to be NP-hard. An alignment of k strings
is obtained by inserting spaces into (or at either end
of) each string so that the resulting strings have same
length, say, l. Then, the strings are put in an array with
k rows of l columns each. Typically, a score is assigned
to an alignment to measure its quality. Different scoring
schemes are proposed in the literature. In one common
family of schemes, the score of an alignment is taken to
be the sum of the scores of the columns; the score of a
column is defined as some function of the symbols in the
column. In standard versions, this function has a high
value when all the symbols in the column agree and its
value drops off as there is greater and greater variation
in the column. The objective is to find an alignment
with the maximum score. Note that in the case of
related sequences, it is not clear how these scoring
schemes serve the purpose of discovering the common
ancestor, from which each sequence is generated. In
fact, it is easy to construct examples where the optimum
alignment will not produce the common ancestor.

In this paper, we initiate a study of a string
reconstruction problem in an idealized evolutionary
model where the only possible mutations are restricted
to random deletions. Our goal is to understand for
what parameter values (evolutionary rates and number
of sequences), enough information is retained such that
we can completely recover the original string by suitably
“aligning” the observed samples.

For the rest of the paper, we assume that the
alphabet is {0, 1}, because sequences from a larger
alphabet can be inferred more easily. Specifically, if
the actual transmitted string comes from an alphabet
Σ, one can consider |Σ| different mappings from Σ to
{0, 1}, each of which maps exactly one letter in Σ to 1,
solve the induced inference problems on {0, 1}-sequences
and from these solutions reconstruct the solution for the
original problem.

1.1 Our Techniques and Results: We in-
vestigate a natural alignment algorithm, called,
Bitwise Majority Alignment. The idea behind this
algorithm is to recover each bit of the transmitted
string by simply considering a majority vote from
the received strings. As the algorithm progresses,
while recovering the bit i in the transmitted string,
it may be positioned at completely different positions
in the received strings. Our first main result is that
for all but a vanishingly small fraction of length-n

strings, if each symbol is deleted with probability
q = O( 1

log n ), Bitwise Majority Alignment can recon-
struct the transmitted string with high probability
using O(log n) received strings. The bound on the
number of received strings needed is essentially tight
since Ω( log n

log log n ) transmissions are necessary to merely
ensure that every bit in the transmitted string is
successfully received in at least one of the strings.
Our second main result focuses on arbitrary sequences
and we show that for deletion probability as large as
Ω(1/n1/2+ε), we can recover a very close approximation
(a string with identical structure) of the original string
by examining only O(1/ε) samples. The algorithm
used for reconstruction is a slightly modified version
of Bitwise Majority Alignment—the modification is
critical for handling long runs of 1’s or 0’s in the
transmitted string. By using O(n log n) samples,
we can exactly recover the original string with high
probability. Notice that nΩ(1) samples are necessary
for exact construction. These results are in strong
contrast to the work of Levenshtein [6] which shows
that in an adversarial model of deletions, nΩ(d) distinct
subsequences are necessary to reconstruct t when each
received string has d arbitrary deletions.

The central idea underlying our techniques is
to show that Bitwise Majority Alignment has self-
correcting behavior whereby even though locally, some
of the received strings vote incorrectly, these votes do
not overwhelm the correct majority and moreover, the
majority vote helps put these received strings back on
track. The proof of this recovery property requires look-
ing far ahead into the structure of the transmitted string
and establishing that the errors do not accumulate in
the meantime. It is an interesting phenomenon that
even though Bitwise Majority Alignment operates on a
local view of received strings, its correctness relies on
global properties of the received strings.

2 Preliminaries

We consider the following problem. A binary string t of
length n is transmitted m times over a deletion channel;
that is, the jth transmission results in a binary string rj

that is created from t by deleting each bit independently
with probability q. We seek an algorithm to correctly
reconstruct t from the received strings r1, . . . , rm with
probability at least 1 − δ, for a given error probability
δ > 0.

Definition 2.1. (Run) A run of 1’s (also called a 1-
run) in a string t is a maximal substring of consecutive
1’s. A run of 0’s is defined analogously. We denote the
ith run of string t by Li and the length of Li by li.



Note that a string t is a concatenation of runs,
alternating between runs of 1’s and runs of 0’s. After
a transmission of t, the total number of runs in the
received string may be less than the total number of
runs in t due to deletions. In the event that a run is
completely deleted, the preceding run and the following
run, which are of the same kind, get concatenated
together.

Definition 2.2. We say that runs Li and Li+2 are
merged during transmission if all the bits in run Li+1

are deleted during transmission to combine Li and Li+2.

2.1 The Bitwise Majority Alignment Algo-
rithm: In this section, we describe our basic recon-
struction algorithm. The input to the algorithm is a
m×n array R where each row corresponds to one of the
received strings. Since received strings may be (much)
shorter in length than the transmitted string, we assume
that each received string is padded at the end with spe-
cial characters so that the length of each string is ex-
actly n. Throughout the execution of the algorithm, we
maintain a pointer c[j] for each received string rj that
points to the leftmost bit in rj that has not been pro-
cessed so far. Our algorithm scans the received strings
simultaneously from left to right. For each position i,
the algorithm determines ti as the next bit of the ma-
jority of the received strings. Then the pointers for the
received strings that voted with the majority are incre-
mented by one, while other pointers remain unchanged.
Thus as the reconstruction progresses, the algorithms is
looking at different bit positions in the received strings.
Given array R of the received strings, string t is recon-
structed as follows.

Bitwise Majority Alignment(R)
Let c[j] = 1 for all j = 1, . . . ,m
For i = 1 to n

Let b be the majority over all j of R[j, c[j]]
t[i]← b.
Increment c[j] for each j such that R[j, c[j]] = b.

During this alignment process, suppose the algo-
rithm is currently reconstructing a run Li of t. At this
point, the counters in various received strings may be
pointing to bits from the earlier or later runs in t. For
example, if an entire run is deleted during the transmis-
sion, the counter may be pointing to the next run. The
next definition classifies these “misalignments” accord-
ing to how far a received string actually is from the run
being constructed.

Definition 2.3. We say that received string rj (or the
alignment for rj) is h ahead if, while determining the

bits in run Li of t, the algorithm processed all the bits of
rj coming from run Li+2h. Analogously, we say that the
received string rj is h behind when bits from an earlier
run, namely, Li−2h, are used to determine the bits of Li.
If at the ith step, the alignment of rj is 0 runs ahead,
then we say that alignment of rj is good at this step.

3 Reconstructing Random Strings

In this section, we show that for q = 1
d log n for some

suitably large constant d and m = O(log n), the
Bitwise Majority Alignment algorithm reconstructs the
transmitted string t for all but a vanishingly small
fraction of t’s in {0, 1}n with high probability. We start
with some simple properties of random strings that will
be crucial in our analysis.

Lemma 3.1. A random binary string of length n sat-
isfies the following properties with probability at least
1− (2/n):

• No run has length greater than 2 log n;

• There exist constants k, k′ with k′ ≤ k, such that
if we consider any 2k log n consecutive runs, say,
with lengths li, li+1, . . . , li−1+2k log n, then, for all
h ≤ k′ log n, there exists i′ such that i ≤ i′ ≤
i− 1 + 2k log n and li′ < li′+2h.

Proof. The probability that the length of a given run
exceeds 2 log n is at most 1/n2. Since there are at most
n runs, the probability that there exists a run of length
greater than 2 log n is at most 1/n.

Consider the probability that there do not exist
two runs in a given segment of 2k log n runs such that
they are 2h runs apart and the second run is of strictly
greater length. Let the run lengths in the segment be
li, . . . li−1+2k log n. This means that

li+∆ ≥ li+2h+∆ ≥ li+4h+∆ ≥ · · ·(3.1)

for all offsets ∆ = 0, 1, . . . , 2h − 1. The probability
that a run is greater than or equal in length to another
is 2/3 since the probability that the two runs are of
equal length is

∑
i≥1 2−2i = 1/3 and, given that the

runs are not equal in length, there is a 1/2 probability
that the second run is longer. Hence, the probability
that Inequality (3.1) holds true for all ∆ ≤ 2h − 1
is less than (2

3 )k log n. Hence, by union bounds, the
probability that there exists a segment such that for
some 1 ≤ h ≤ k′ log n, all runs 2h apart are such that
the latter run is at most as long as the earlier run is
bounded above by

nk′ log n

(
2
3

)k log n

=
k′ log n

nk(log 3−1)−1
.

With probability ≥ 1− 2/n both conditions are met.



Subsequently, consider only transmitted strings t
that satisfy the conditions of Lemma 3.1. The analysis
of the algorithm hinges on the following observation: If
the received string rj is h ahead before the beginning of
run Li and li < li+2h, then rj will have more than li bits
in the next run, provided that rj does not lose at least
li+2h− li bits of Li+2h. Thus, at the end of the run, the
pointer c[j] for rj will be advanced only li positions, thus
not using up all the bits from Li+2h. As a result, the
alignment of rj will now be at most h−1 runs ahead. In
other words, the alignment of rj is corrected by at least
one run when rj is “processing” a run longer than li. For
the t we are considering there exist many such pairs of
runs for each h ≤ k′ log n. So, for each segment of string
t with 2k log n consecutive runs, a misaligned received
string will at least partially correct its alignment with
high probability. On the other hand, the alignment of
a received string can get still further ahead due to runs
that are completely deleted during the transmission.

We model this alignment process for each received
string with a random walk on a line starting from 0. At
the end of each segment of 2k log n runs, the random
walk takes a step reflecting the change in the alignment
during this segment. For example, if the received string
was already 2 ahead before the segment and another
run in this segment is deleted, the random walk may
move from state 2 to state 3. Similarly, if an alignment
is corrected as described above, the random walk may
move from state 2 to state 1. We would like to show
that at any step in the reconstruction, the majority of
the random walks corresponding to the received strings
are at state 0 with high probability. This will ensure
a successful reconstruction since the majority of the
received strings is processing bits from the correct run.

The transition probabilities for the random walk
described above depends on the particular string t and
the segment of t that is being processed. For example, if
there are many runs of length 1 in the current segment,
then the probability of making a step in the positive
direction increases due to the higher chances of deletion
of a complete run. To simplify the analysis, we instead
use another random walk R that does not depend on the
particular string t. This new random walk is provably
more prone to drift away from state 0 than the original
one. Hence, it is a pessimistic approximation to the
original random walk and safe to use in the analysis.
The random walk R is defined with states [0,∞]. It
starts at state 0 and has transition matrix P , where

Pi,j =


αj−i for i < j & i < k′ log n

β for 0 < i < k′ log n & j = i− 1
1

1−β αj−i for i < j & i ≥ k′ log n

1−
∑

k 6=i Pi,k for i = j

for α = (2k/d) and β = e−2k/d

Lemma 3.2. The random walk R dominates the real
random walk of the alignment process.

Proof. Consider the alignment of a received string rj at
the beginning of a specific segment of t. Suppose at the
start of this segment, rj is h ≤ k′ log n ahead. We know
that there exist runs Li and Li+2h such that li < li+2h

that can fix the misalignment of rj by 1. If no runs
get completely deleted in this segment of t and Li+2h is
transmitted intact, then rj drops back to being at most
h− 1 ahead by the end of the segment as mentioned in
the discussion following Lemma 3.1. The probability
that Li+2h is intact is at least (1 − q)2 log n. The
probability that no run in this segment gets completely
deleted is at least (1− q)2k log n. Hence, the probability
that rj drops back to being at most h− 1 ahead by the
end of the segment is at least

(1− q)(2+2k) log n = (1− 1
d log n

)(2+2k) log n

≥ (1− 1
d log n

)3k log n

≥ e−2k/d.

The received string rj moves from being h runs
ahead to being j > h runs ahead only if j − h runs are
deleted. The probability of this happening is at most(

2k log n

j − h

)
qj−h(1− q)2k log n−(j−h) ≤

(
2k

d

)j−h

.

We are interested in when the alignment random
walk for a received string is in state 0 (a.k.a. good)
since this corresponds to it voting correctly in the
Bitwise Majority Alignment. To this end we use the
following lemma whose proof can be found in the
appendix.

Lemma 3.3. We can choose constants k and d such that
after any u ∈ [n] steps, the probability that random walk
R is at state 0 is at least 19/20.

Lemma 3.4. Consider m = Θ(log n) instances of the
random walk R. With high probability, for each of the
first n steps 3m/4 of the instances are at state 0.

Proof. The probability that a given instance is at
state 0 for each of these steps is at least 19/20 by
Lemma 3.3. The lemma follows by an application of
Chernoff bounds.

Lemma 3.5. If at least m′ = Θ(log n) strings are good
at the start of each segment then with high probability
at least 8m′/9 strings are good at the beginning of every
run.



Proof. The probability that a good string turns bad
during a segment is at most 2kq log n = 2k/d. The
lemma follows by an application of Chernoff bounds.

Lemma 3.6. For m = Θ(log n) received strings, with
high probability, at the start of every run, at least 2/3
fraction of the received strings are good.

Proof. This follows from Lemma 3.3, Lemma 3.4 and
Lemma 3.5.

Theorem 3.1. The Bitwise Majority Alignment algo-
rithm correctly reconstructs the string t from m =
Θ(log n) received strings for q = O(1/ log n) with high
probability.

Proof. We prove the theorem by induction on the ex-
ecution of the algorithm. Assume that we have cor-
rectly determined the bits of L1, L2, . . . , Li−1, and that
no received string has fallen behind in the alignment.
By Lemma 3.6, the majority of the received strings are
good at the start of Li. Moreover, given that li ≤ 2 log n
it can be shown by Chernoff that the majority of the
received strings have not lost any bits of Li and are
pointing to the first received bit of Li. Hence, the
Bitwise Majority Alignment will correctly deduce the
bits of Li.

4 Reconstructing Arbitrary Strings

In this section, we show that any n-bit string can be re-
constructed with high probability by using m = O(1/ε)
traces provided the deletion probability q is 1/n1/2+ε for
any ε > 0. The Bitwise Majority Alignment algorithm
can not be directly used on arbitrary strings. In par-
ticular, consider a string that starts with a long run of
1’s. Clearly, different received strings will see a different
number of 1’s for this run. While scanning from left to
right, the first location where more than m/2 strings
vote for a 0, could lead to splitting this run in the trace
that received the maximum number of 1’s. Other dif-
ficulties include recognizing when a large run absorbs
a nearby small run and the merger can not be locally
detected. In what follows, we show that even though
locally a majority of received strings may present a
misleading view to Bitwise Majority Alignment, a small
modficiation of Bitwise Majority Alignment can correct
and recover from these distortions to successfully recon-
struct the transmitted string.

A run is called long if its length is at least
√

n
and is short otherwise. An alternating sequence in a
string is a sequence of length at least two such that
each run in the sequence has length 1 (e.g., 010101 . . .).
A bit is called the first bit of an alternating sequence
if it is a run of length 1 that either follows a run

of length greater than 1 or it is the first bit in the
transmitted string. A delimiting run for an alternating
sequence is the first run of length at least two that
follows the alternating sequence. We start with a simple
lemma about properties of the received strings. We fix
m = d6/εe from here on. The lemma below follows from
elementary probability calculations that show that the
probability of violating any promise is o(1).

Lemma 4.1. A collection of m received strings gener-
ated by deleting with probability q, with high probability
satisfies the following:

(P1) The first bit in the transmitted string is not deleted
in any received string.

(P2) Bits at both ends of any long run are preserved in
all strings. Moreover, at most m/3 bits are lost
among all received strings during the first

√
n bits

of any long run.

(P3) For any two adjacent locations i, i + 1 in the trans-
mitted string, at most 1 bit is lost among all m
received strings. If a received string loses the first
bit of a run, then the first bit of each of the next
two runs is intact in all received strings.

(P4) If the bit just before or just after a short run is lost
in any of the received strings, then at most 1 bit is
lost in the run itself in all received strings.

(P5) At most m/3 bits are lost in any window of size
√

n.
Thus at least 2m/3 received strings see a short run
intact.

(P6) If the first bit of an alternating sequence is deleted
in any received string then no more bits are lost
in the alternating sequence in all received strings.
Moreover, the first two bits of its delimiting run
and the first bit of the run following it are then
preserved in all received strings.

We first show that if long runs stay intact, then
Bitwise Majority Alignment can directly reconstruct
the transmitted string.

Lemma 4.2. If all received strings obey the properties
outlined in Lemma 4.1, and all long runs are intact in
each received string, then Bitwise Majority Alignment
exactly determines the transmitted string.

Proof. Let L1L2L3 . . . Lk be the transmitted string with
Li being the ith run. We will use induction on
phases where each phase comprises of one or more
consecutive runs of the transmitted string. The first
phase starts at L1. In order to prove correctness of



Bitwise Majority Alignment, we maintain the following
invariant after each phase. Suppose the current phase
terminated with the run Li−1. Then (i) at least m − 1
strings point to the first received bit of Li, and (ii) at
most one string points either to the second received bit
in Li or to the first received bit in Li+1.

The base case clearly holds (by P1). Assume
inductively that we have successfully completed the first
z phases and the invariant holds at the begining of the
current phase. Let Li be the first run of the phase.
Assume without any loss of generality that Li is a run
of 1’s.

Suppose one of the counters is pointing to a
0-run. Then Li must be a run of length 1.
Bitwise Majority Alignment will recover this run cor-
rectly and no further deletions could have happened in
Li or Li+1 in any other received string (by P3). At the
end of this iteration, all counters once again point to the
first received bit in Li+1. We consider the current phase
over and the next phase starts at Li+1. From here on,
all strings point to a 1-run.

Now if majority says that this is a long run, it
must be true since long runs are intact by P2 and
Bitwise Majority Alignment will correctly recover this
run since the bit following it is intact in all received
strings. At the end of this, all counters point to the
first received bit in Li+1. We again consider the current
phase over and the next phase starts at Li+1.

So let us assume that each counter points to a bit
in Li and Li is a short run. By P5, a majority of
the strings sees Li intact and thus we know the exact
length of Li. Bitwise Majority Alignment will recover
Li correctly (by P4) but we need to show that at the end
of this process, the counters will be suitably positioned.
We consider the following cases:

• If in some received string, the length of the run
is less than `i, then the only possibility is that
a deletion occured in this string and furthermore,
the first bit of Li+1 must have been successfully
received in at least m − 1 strings (by P4). In
this case, the counters will indeed be positioned
correctly and a new phase can start at Li+1.

• If in some received string the length of the run
is greater than `i, we know that a merger of Li

with Li+2 must have taken place. Moreover, by
P3 we know that Li+1 is a 0-run of length 1 and
that the first bit of Li+3 must be intact in all
received strings (by P3). It is easy to verify that
Bitwise Majority Alignment will correctly recover
Li, Li+1, and Li+2 and after Li+2 is recovered,
the counters in each string will point to the first
received bit of Li+3. We will terminate this phase

at Li+2.

• All received strings see the same run length. In
this case, either all received strings see only the
bits in Li or one of the strings lost a bit in Li, the
entire run Li+1, and merged with the run Li+2.
This is only possible if `i+1 = `i+2 = 1. Thus
if either `i+1 or `i+2 has length greater than 1,
we can simply terminate the current phase here.
Otherwise, we are at the begining of an alternat-
ing sequence, starting at Li+1. Let Lj be the
delimiting run for this alternating sequence. Af-
ter Bitwise Majority Alignment recovers Li, one
of the received strings may be positioned at Li+3

while all other strings are positioned at the first
received bit of Li+1 (by P3 and P6). First
consider the case when no string is pointing to
Li+3. Then since no two succesive bits get deleted,
Bitwise Majority Alignment correctly recovers the
entire sequence with every string positioned at the
first received bit of Lj . Otherwise, a received
string points to Li+3 and by P6, no more bits are
lost in Li+1 through Lj−1 in any other received
string. As we run Bitwise Majority Alignment,
while processing the run Lj−1, in this received
string we will see a run of opposite parity (i.e. Lj)
while all other strings point to a run of length 1.
Bitwise Majority Alignment will insert Lj−1 in this
string and the pointer for this string points to the
second received bit in Lj . For all other strings, it
points to the first bit of Lj . In either case, the
pointers in all strings are positioned correctly at
the end of this phase that we terminate at Lj−1.

The analysis above crucially relies on the long runs
being intact. It is easy to see that a long run will
lose many bits in each of the received strings. As a
result, Bitwise Majority Alignment algorithm can get
mispositioned in many received strings while processing
a long run. We next show that a natural modification
of Bitwise Majority Alignment can handle long runs
as well. In the modified Bitwise Majority Alignment,
when we arrive at a long run, we simply increment the
counters to the begining of the next run. We set the
length of the run to be the median length scaled by a
factor of 1/(1 − q). Otherwise, the algorithm behaves
identically to Bitwise Majority Alignment. The simple
observation here is that even in presence of deletions in
long runs, we always recognize a long run.

Lemma 4.3. If at least m − 2 strings point to the first
received bit of a run Li, then we can always determine
whether or not Li is a long run.



Proof. We claim that if a majority of the strings have
at least

√
n bits in the ith run, then li must be long and

it short otherwise. Suppose Li is a long run. Then by
P5, at least 2m/3 strings must have received the first√

n bits of this run intact. So the majority must see a
run of length at least

√
n. Now suppose Li is a short

run. Then by P3, at most one string participates in a
merger Therefore, in majority of the received strings we
must see a run of length less than

√
n.

Lemma 4.4. Suppose t = L1L2L3 · · ·Lk is the trans-
mitted string. If all received strings obey the prop-
erties outlined in Lemma 4.1, then the modified
Bitwise Majority Alignment reconstructs a string t′ =
L′1L

′
2L

′
3 · · ·L′k such that `′i = `i whenever Li is a short

run and `′i = `i + o(`i) otherwise.

Proof. The proof is similar to that of Lemma 4.2. We
can essentially maintain the same inductive invariants,
and using Lemma 4.3, we can recognize whenever Li is
a long run. At this point, we update the counters in
each string to the first received bit in the next run. The
length of Li is estimated by scaling the median observed
length by a factor of 1/(1− q).

4.1 Recovering Lengths of Long Runs: We now
describe how to exactly determine the length of the long
runs when q = O(1/

√
n). The main idea is to repeat

the modified Bitwise Majority Alignment algorithm
Θ(nq log n) times using a new set of m received strings
each time.

Let B(n, p) denote the binomial distribution with
parameters n and p, that is, the sum of n independent
Bernoulli trials, each with success probability p. The
next lemma is a variant of Chernoff bounds.

Lemma 4.5. Let Xi’s for i = 1, . . . , n be independent
Bernoulli trials each with success probability p, and
X =

∑
i Xi. Let σ =

√
np(1− p) be the standard

deviation of X. Then, for k > 0,

Pr (|X − np| ≥ kσ) ≤ 2 exp(−k2/6).

We now describe how we determine the length of
a long run Li. Without loss of generality, let Li be
a long run of 1’s. Consider the jth repetition of the
algorithm. Let z1, . . . , zm be the observed lengths for
Li in each received string. The median Xj of all zi’s
is the estimate for li given by the jth repetition of the
algorithm.

In a given repetition, the majority of the received
strings do not lose the delimiting bits for Li with high
probability. Hence, for the majority of the repetions,
Xj , is distributed according to the binomial distribution
B(li, 1 − q), the sum of li Bernoulli trials each with

success probability (1 − q). When the run Li−1 or run
Li+1 is lost in the majority of the received strings in a
given repetition of the algorithm, Xj value includes the
noise added by the concatenated runs.

Let X be the median of Xj ’s. With high prob-
ability, Xj is within log n times the standard devia-
tion of B(li, 1 − q), namely O(

√
liq log n). Hence we

can eliminate all Xj ’s that differ from X by at least
O(
√

Xq log n) since they are guaranteed to be noisy esti-
mates. The remaining Xj ’s either have no noise or have
noise at most O(

√
liq log n) (due to concatenations). Let

N = Θ(nq log n) be the number of these Xj ’s. The final
estimate for li is obtained by taking the average of these
Xj ’s.

In expectation, either run Li−1 or run Li+1 will be
lost in O(q) fraction of the repetitions. Hence, using
Chernoff bounds, we can show that in no more than
O(q log n) fraction of the repetitions, run Li−1 or run
Li+1 is lost. So, O(q log n) is the fraction of the noisy
estimates.

First, we prove that if there were no noisy estimates,
then the sum of Xj ’s divided by (1 − q)N is within
an additive 1/3 of li with high probability, thus it
determines li (by simply rounding up or down to the
nearest integer value). Using Chernoff bounds,

Pr
(
|
∑

Xj − (1− q)Nli| > (1− q)N/3
)

= Pr

(
|
∑

Xj − (1− q)Nli| >(√
N(1− q)
3
√

qli

)√
Nliq(1− q)

)

≤ 2 exp(−N(1− q)/54qli) ≤ 2 exp(−O(N/qn)) ≤ 1
n

Now, we will figure out the contribution of the noise
to this estimate. Recall that only O(q log n) fraction
of the estimates can have a noise of ±O(

√
liq log n).

Hence, the total noise contribution in the summation
of Xj ’s is O(Nq3/2

√
li log2 n), and thus the average

noise contribution is O(log2 n/n1/4). Since the noise
in the estimate is o(1), it does not change the result of
the up/down rounding to the nearest integer. We thus
determine li with high probability.

4.2 A lower bound: In this section, we outline an
argument that Ω(nq(1 − q)) received strings are neces-
sary for exact reconstruction of the transmitted string.
Let t0 = 1n/20n/2 and t1 = 1(n/2)+10(n/2)−1 be two
strings. We claim that Ω(nq(1− q)) samples are needed
to distinguish between t0 and t1 when transmitted over
a deletion channel with deletion probability q. Hence,



showing the optimality of our algorithm from the pre-
vious section.

Distinguishing between t0 and t1 boils down to
distinguishing B(n/2, 1 − q) from B((n/2) + 1, 1 − q)
using independent samples. The density functions of
B(n/2, 1 − q) and B(n/2 + 1, 1 − q) are such that the
former dominates until (and including) n(1− q)/2, and
the latter dominates afterwards. Also, the L1 distance
between them is O(1/

√
nq(1− q)). Hence, distinguish-

ing between t0 and t1 is the same as distinguishing an ε-
biased coin from a fair coin with ε = O(1/

√
nq(1− q)).

It is well known that this requires Ω(ε−2) = Ω(nq(1−q))
coin flips. Hence, Ω(nq(1− q)) samples are required for
the exact reconstruction of the lengths of the runs.
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A Proof of Lemma 3.3

Proof. Let step u′ be the last visit to state 0 prior to
step u. Let v = u − u′. We first upper bound the
probability that the random walk is not at state 0 in v
steps. Then, by summing on all possible values for v,
we prove the lemma.

Let X be the sum of the lengths of forward moves,
Y be the number of “stay at the same position” moves
and Z be the number of backward moves between the

steps u′ and u. Clearly X +Y +Z ≥ v. Thus, we would
like to upper bound Pr (X > Z).

Pr (X ≥ Z)
= Pr (X ≥ Z ∩ Y ≥ Z) + Pr (X ≥ Z ∩ Z ≥ Y )
≤ Pr (Y ≥ Z) + Pr (X ≥ v/3)

Now,

Pr (Y ≥ Z) =
v/2∑
j=0

Pr (Z = j) Pr (Y ≥ Z|Z = j)

≤
v/2∑
j=0

Pr (Z = j)

≤ e−βv(1−1/(2β))2/2

To bound Pr (X ≥ v/3), we consider X as the sum
of v random variables Xj with the following distribu-
tion: Xj = i with probability αi (for i > 0) and Xj = 0
with probability 1−2α

1−α . Consider a new random vari-
able X ′ which is the sum of v random variables X ′

j

with the following distribution: X ′
j = i with probability

(2α)i−1(1− 2α) (for i ≥ 1) Note that

Pr (X ≥ v/3) ≤ Pr (X ′ ≥ v/3 + v)

since Pr (Xj = 0) ≥ Pr
(
X ′

j = 1
)

but Pr (Xj = l) ≤
Pr
(
X ′

j = l + 1
)

for l ≥ 1.
Furthermore, note that X ′ is a sum of geometric

random variables, that is, the negative binomial distri-
bution. Hence, we can bound Pr (X ≥ v/3) as follows:

Pr (X ≥ v/3)
≤ Pr (X ′ ≥ 4v/3)

=
∑

x≥4v/3

(
x− 1
v − 1

)
(1− 2α)v(2α)x−v

≤
(

1− 2α

2α

)v (
e

v − 1

)v−1 ∑
x≥4v/3

xv−1(2α)x

≤
(

1− 2α

2α

)v ( 4ve

3(v − 1)

)v−1

2α4v/3
∑
j≥0

[2eα]j

≤ (4α1/3)v 1
1− 2eα

Hence, we have shown that

Pr (X ≥ Z) ≤ (4α1/3)v 1
1− 2eα

+ e−βv(1−1/(2β))2/2.



Hence, we can conclude that for v > k′ log n,
the probability that the random walk does not return
to state 0 in v steps is negligible. By summing the
expression above over all v such that 1 ≤ v ≤ n, we
show that the probability that a random walk is not at
state 0 at step u is less than 1/20 for suitable contants
k and d.


