
Multi-Way Distributional Clustering via Pairwise Interactions

Ron Bekkerman ronb@cs.umass.edu

Dept. of Computer Science, University of Massachusetts, Amherst MA, 01003 USA

Ran El-Yaniv rani@cs.technion.ac.il

Dept. of Computer Science, Technion – Israel Institute of Technology, Haifa, 32000 Israel

Andrew McCallum mccallum@cs.umass.edu

Dept. of Computer Science, University of Massachusetts, Amherst MA, 01003 USA

Abstract

We present a novel unsupervised learning
scheme that simultaneously clusters variables
of several types (e.g., documents, words and
authors) based on pairwise interactions be-
tween the types, as observed in co-occurrence
data. In this scheme, multiple clustering
systems are generated aiming at maximizing
an objective function that measures multiple
pairwise mutual information between cluster
variables. To implement this idea, we pro-
pose an algorithm that interleaves top-down
clustering of some variables and bottom-up
clustering of the other variables, with a local
optimization correction routine. Focusing on
document clustering we present an extensive
empirical study of two-way, three-way and
four-way applications of our scheme using six
real-world datasets including the 20 News-
groups (20NG) and the Enron email collec-
tion. Our multi-way distributional clustering
(MDC) algorithms consistently and signifi-
cantly outperform previous state-of-the-art
information theoretic clustering algorithms.

1. Introduction

Simultaneous clustering of both the rows and columns
of contingency tables has recently been attracting con-
siderable attention. This approach has proved suc-
cessful in various application domains including unsu-
pervised text categorization (Slonim & Tishby, 2000b;
El-Yaniv & Souroujon, 2001; Dhillon et al., 2003b),
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biological data analysis (Getz et al., 2000; Cheng &
Church, 2000; Madeira & Oliveira, 2004) and collabo-
rative filtering (Banerjee et al., 2004).

For instance, consider an unsupervised text categoriza-
tion setting. Here, each row of the contingency ta-
ble corresponds to a document and each column to a
word. Each table entry is the number of word occur-
rences in the corresponding document. The goal is to
cluster the documents into subsets of thematic “equiv-
alence classes”. Obviously, the two main factors that
affect the partition quality are the choice of a clus-
tering objective function and precise design of a clus-
tering algorithm. The traditional approach to cluster-
ing documents is based on their “bag of words” vector
representation, relying on the assumption that doc-
uments discussing similar topics share enough “con-
tent words”. In two-way clustering,1 one simultane-
ously clusters the words and the documents, thereby
obtaining a compact contingency table of document
clusters (rows) and word clusters (columns). Empir-
ical evidence shows that the two-way clustering ap-
proach improves the clustering quality of documents
compared to standard “one-way” clustering routines
(Dhillon et al., 2003b). Intuitively, the main rea-
son for possible quality improvements is that a doc-
ument representation based on word clusters (rather
than words) can reduce variance via smoothing of word
counts, which often suffer from sparsity in the original
table. If the word clusters are of “high quality” (do
not introduce bias), better document clusters can be
obtained. Note that a similar technique of using word
clusters to overcome statistical sparseness of separate
words can also improve supervised text categorization
(Baker & McCallum, 1998; Bekkerman et al., 2003;
Dhillon et al., 2003a; Buntine & Jakulin, 2004).

1Other common terms are: double clustering, co-
clustering, bi-clustering and coupled clustering.
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In this paper we propose an extension of two-way clus-
tering and introduce a multi-way or multi-modal clus-
tering scheme that attempts to utilize the relations
between more than two types of entities. Specifically,
we consider the case where several (two-dimensional)
contingency tables are available that summarize co-
occurrence statistics between several variables. Our
goal is to simultaneously cluster all the variables while
utilizing as far as possible the available pairwise co-
occurrence statistics. For example, consider an au-
tomatic email assistant whose goal is to arrange a
large number of email messages into a self-organized
foldering system. While simple bag-of-words (“one-
way”) clustering can provide a reasonable solution,
and two-way (document/word) clustering can improve
the results, one can furthermore exploit the pairwise
relations of documents and words to author (sender)
identities and to document titles (email Subject lines).
There are numerous other motivating examples that
can potentially benefit from multi-way clustering, in-
cluding problems in bioinformatics, NLP, collaborative
filtering and computer vision.

The implementation of our multi-way clustering
scheme is based on two ingredients. The first is an ex-
tension of the information-theoretic objective function
proposed by Dhillon et al. (2003b), taking into account
several pairwise interactions instead of one. The sec-
ond ingredient is a novel clustering algorithm, which
can be viewed as a scheduled mixture among several
clustering directions. This algorithm is constructed
to locally optimize the above objective function. For
clustering several variables (data types) the algorithm
blends together applications of randomized agglomer-
ative (bottom-up) procedures for some variables and
randomized conglomerative (top-down) procedures for
the others. Our top-down procedure, applied to a cer-
tain variable, starts with all data points in one cluster
and explores a hierarchy of clusters by iteratively per-
forming randomized splits of the clusters in the current
hierarchy level, followed by a cluster correction routine
which is guided by the objective function. This correc-
tion routine is similar to the “sequential Information
Bottleneck (sIB)” clustering algorithm (Slonim et al.,
2002). The bottom-up procedure starts with all sin-
gleton clusters (each data point is a singleton cluster)
and in each iteration it greedily merges clusters in the
current hierarchy level and then corrects the results
using the same sIB-like routine.

The motivation for using hierarchical procedures in our
context is that they appear more robust to local min-
ima traps than known “flat” heuristics (see Section 4).
We argue that the combined use of both conglomera-
tive and agglomerative is highly beneficial. First, note

that the use of an agglomerative procedure is costly.
In particular, when the number of desired clusters is
significantly smaller than the number of data points,
the top-down procedure is significantly more efficient.
Therefore, from a computational complexity viewpoint
it is beneficial to use top-down clustering for all the
variables. However, the use of only conglomerative
procedures cannot lead to meaningful results, as we
later explain in Section 3. Therefore, the proposed
solution combines both bottom-up and top-down pro-
cedures. The resulting scheme, based on this combina-
tion, is scalable, allowing for simultaneous clustering
of any (small) number of variables while handling rel-
atively large datasets (e.g., the 20NG set).

We present results of extensive experiments in which
we apply our scheme along with other known algo-
rithms. These results indicate that the scheme’s two-
way clustering applications provide consistent and sig-
nificant improvement over state-of-the-art two-way ap-
proaches such as the co-clustering algorithm (Dhillon
et al., 2003b) and the one-way sequential Information
Bottleneck algorithm (Slonim et al., 2002). These re-
sults nicely validate, on the one hand, the advantage
of two-way clustering over the standard one-way ap-
proach, and on the other hand, the effectiveness of our
hybrid hierarchical approach over the “flat” two-way
algorithm. Three-way and four-way clustering appli-
cations of the proposed scheme often show additional
improvements which provides compelling motivation
for further studying multi-way clustering.

We briefly review some related results. The study of
distributional clustering based on co-occurrence data
using information theoretic objective functions is initi-
ated by (Pereira et al., 1993). Much of the subsequent
related work is inspired by that paper and the pio-
neering Information Bottleneck (IB) ideas of Tishby
et al. (1999). In this context, the first work consider-
ing two-way clustering of both words and documents is
by Slonim and Tishby (2000b), which is subsequently
improved by El-Yaniv and Souroujon (2001) and then
more thoroughly studied by Dhillon et al. (2003b).
The more general Multivariate Information Bottleneck
(mIB) framework (Friedman et al., 2001) also consid-
ers simultaneous clustering systems based on interac-
tion between variables, as we propose here. For two
variables (two-way clustering) the algorithm proposed
here can be viewed as a particular implementation of
the “hard case” mIB. However, for more than two vari-
ables, the framework we propose here is not a special
case of the mIB framework since the interactions be-
tween variables in mIB are described via a directed
Bayesian network, in which cycles cannot be factorized
to pairwise dependencies. Our scheme employs undi-



Multi-Way Distributional Clustering via Pairwise Interactions

rected graphs that represent pairwise interactions, and
therefore do not preclude loops. An important ingre-
dient for our algorithm is the sequential IB method of
Slonim et al. (2002). Finally, we note that the idea of
multi-way clustering has recently appeared in Bouvrie
(2004), independently of us. In this work, multiple
clustering systems are constructed by iterative appli-
cation of a two-way clustering algorithm.

2. Multi-Way Clustering Objective

In this section we introduce notation, recall the in-
formation theoretic objective function of Dhillon et al.
(2003b) for two-way clustering, and extend it to multi-
way clustering. Consider a contingency table summa-
rizing co-occurrence statistics of variables X and Y ,
where possible outcomes of X label the rows (e.g., doc-
uments) and possible outcomes of Y label the columns
(e.g., words) . Each entry (x, y) is a count of the num-
ber of times x ∈ X occurred with y ∈ Y (e.g., the
number of times word y appears in document x). Our
goal is to cluster both the rows and the columns in
a “useful” manner. We denote partitions (hard clus-
ters) of the rows and columns by X̃ and Ỹ , respec-
tively. Each x̃i ∈ X̃ is a subset of the support set of
X and the union of the x̃i is (the support of) X. The
analogous relation holds for Ỹ and Y . For simplicity,
we ignore here finite sample issues and view the (nor-
malized) contingency table as the true joint probabil-
ity distribution p(X, Y ) between two discrete random
variables.2 Given a clustering pair (X̃, Ỹ ) we mea-
sure the clustering quality via the mutual information
I(X̃; Ỹ ), which indicates the amount of information
clusters X̃ provide on clusters Ỹ (or vice versa). The
precise definition of I(X̃; Ỹ ) is given in Equation (2)
below. Our two-way objective is then to maximize
I(X̃; Ỹ ) under a constraint on the number of clusters
|X̃| and |Ỹ |.3 This objective has been used (implic-
itly or explicitly) in several successful two-way clus-
tering algorithms (Slonim & Tishby, 2000b; El-Yaniv
& Souroujon, 2001; Dhillon et al., 2003b), leading to
effective unsupervised categorization of documents.

In this work we consider relations between several vari-
ables, X̃1, X̃2, . . . , X̃m, m ≥ 2. There may be a num-
ber of natural ways to generalize the above objective
function to m variables. One natural extension could
be introducing the multi-information, I(X̃1; . . . ; X̃m).4

2We can introduce finite sample considerations in this
setting using several known techniques; see, for example,
(Peltonen et al., 2004).

3Maximizing this objective is equivalent to minimizing
information loss I(X; Y )− I(X̃; Ỹ ) used by Dhillon et al.
(2003b)—note that I(X; Y ) is constant.

4For a definition of multi-information, consider the dis-

However, objective functions based on high order
statistics (including the multi-information) are prob-
lematic. From a statistical viewpoint it is not clear if
we can extract reliable estimates for the full joint dis-
tribution p(X̃1, . . . , X̃m). Taking this limitation into
account, we introduce a factorized representation—the
interactions are instead modeled by the product of sev-
eral lower-order relations. This approach is analogous
to the one of undirected graphical models or factor
graphs with small clique size, which represent joint
distributions over a large number of random variables.
Without loss of generality, the remainder of this pa-
per will explain the model using factors consisting of
variable pairs—even factors of three variables can be
infeasible in large applications.

Formally, we consider the following pairwise interac-
tion graph. Let X = {Xi | i = 1, . . . , m} be the vari-
ables to be clustered, and X̃ = {X̃i | i = 1, . . . , m}
be their respective clusterings. Let G = (V, E) be an
undirected graph with V = X̃. An undirected edge eij ,
between X̃i and X̃j , appears in E if we are interested in
maximizing an interaction criterion (mutual informa-
tion in our case) between X̃i and X̃j . The edge eij is
absent if no interaction between X̃i and X̃j is expected
or their co-occurrence data is unavailable. In order to
incorporate prior knowledge we further augment edges
in E with weights wij , and when such knowledge is ab-
sent, we take wij = 1. Using the pairwise interaction
graph G, we define the following objective function:

max
{X̃i}

∑

eij∈E

wijI(X̃i; X̃j). (1)

As in two-way clustering, the maximization is per-
formed subject to constraints on the cardinalities ci =
|X̃i| (i.e., the desired number of clusters).

3. Multi-Way Clustering Algorithm

Let G = (V,E) be a pairwise interaction graph over
the variables X̃i, i = 1, . . . , m. For each eij ∈ E we
are given a contingency table Tij providing the corre-
sponding co-occurrence counts. In this section we de-
scribe a general scheme for clustering the m variables
that aims at maximizing (1). The input to the algo-
rithm is the graph G, the tables Tij and a clustering
“schedule” (see below). The output of the algorithm
is m partitions X̃i, i = 1, . . . ,m such that ci = |X̃i|.
For the algorithm’s description we will need the fol-
lowing definitions and identities, where for the current

cussions in Yeung (1991); Friedman et al. (2001); Jakulin
and Bratko (2004).
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discussion we re-notate X = Xi, Y = Xj and T = Tij :

NXY =
∑

x∈X; y∈Y

T (x, y),

p(x̃, ỹ) =
1

NXY

∑

x∈x̃; y∈ỹ

T (x, y)

I(X̃; Ỹ ) =
∑

x̃∈X̃;ỹ∈Ỹ

p(x̃, ỹ) log
p(x̃, ỹ)

p(x̃)p(ỹ)
, (2)

where p(x̃) =
∑

ỹ∈Ỹ p(x̃, ỹ), and p(ỹ) =
∑

x̃∈X̃ p(x̃, ỹ).

Pseudo-code for the multi-way distributional clustering
(MDC) algorithm is given in Algorithm 1. For simplic-
ity, the pseudo-code abstracts away several details that
are not essential for understanding the general idea but
are crucial for actual applications. We now discuss the
algorithm and provide these necessary details. Follow-
ing (Slonim et al., 2002), we perform random restarts
of the main loop: each iteration is rerun a number of
times, after which the clustering system that achieves
maximal (among others) value of the objective func-
tion is selected. This leads to better approximation of
the objective’s global maximum.

The main loop of the algorithm is controlled by a clus-
tering schedule consisting of variable index sequence
Sn = i1, . . . , in and a split (Sup, Sdown) of the vari-
able indices. If i ∈ Sup, then the variable Xi is clus-
tered using a bottom-up procedure. Otherwise (that
is, i ∈ Sdown), Xi is clustered via the top-down proce-
dure. The sequence Sn determines the processing or-
der of the variables. While this mechanism allows for
great flexibility, we always apply it in a straightforward
manner and the sequence Sn specifies a (weighted)
round-robin schedule (see details below). For exam-
ple, in the case of two-way clustering (with two vari-
ables X1 and X2), we take (ignoring, for the moment,
cluster cardinalities) Sdown = {1}, Sup = {2} and
Sn = 1, 2, 1, 2, . . . , 1, 2. A schematic view of MDC (for
this two-way instance) is given in Figure 1.

In the correction phase, performed after a merge or a
split phase, we iterate over all elements x of Xij . The
element order is determined uniformly at random (i.e.,
via a random permutation). This corrective procedure
is very similar to one iteration of the sequential IB
(sIB) algorithm of Slonim et al. (2002). Notice that
this phase can only increase the objective function (1).
We then iterate over the elements once again to further
optimize the objective. In contrast to Slonim et al.
(2002), since this pass is traded off with more random
restarts, we do not repeat it to its full convergence.

The choice of index partition (Sup, Sdown) is based on
the following two crucial observations. First, for prac-

Input:
X1, . . . , Xm – variables to cluster
G = (V, E) – pairwise interaction graph
Sup, Sdown - up/down partition, Sup⊕Sdown = {1, . . . , m}
Sn = i1, i2, . . . , in – clustering schedule

Output:
Clusterings X̃1, . . . , X̃m

Initialize clusters:
for all i = 1, . . . , m do

if i ∈ Sdown then
Place all elements of Xi in a common cluster

else if i ∈ Sup then
Place each element Xi in a singleton cluster

end if
end for
Main loop:
for all j = 1, . . . , n do

Split/merge
if ij ∈ Sdown then

Split each element x̃ of X̃ij uniformly at random to
two clusters

else if ij ∈ Sup then
Merge each element x̃ of Xij with its closest peer

end if
Correct clusters
for all elements x of Xij do

Pull x out of its current cluster
Place x into a cluster, s.t.

∑
eij∈E

wijI(X̃i; X̃j) is

maximized
end for

end for

Algorithm 1: Multi-Way Distributional Clustering
(MDC).

tical applications it is infeasible to apply bottom-up
procedures for all the variables. Second, applying only
top-down procedures is likely to be useless, in terms of
the clustering quality. This is easy to see when consid-
ering two-way applications. Let X = X1 and Y = X2.
The objective function reduces to I(X̃; Ỹ ) and we start
with X̃ and Ỹ each being a single cluster containing all
points. Clearly, in this case I(X̃; Ỹ ) = 0. We now split
X̃ to get X̃ = {x̃1, x̃2}. For any (x̃1, x̃2)-partition we
have H(Ỹ |X̃) = −∑

i p(x̃i, Ỹ ) log p(Ỹ |x̃i) = 0, since
p(Ỹ |x̃i) = 1. Therefore, I(X̃; Ỹ ) = H(Ỹ )−H(Ỹ |X̃) =
H(Ỹ ) = 0, and the corrective step of the algorithm is
useless here. The subsequent split of Ỹ strictly opti-
mizes the objective function, but the resulting cluster-
ing is optimized to correlate with the initial random
split of the X variable. This way, all the subsequent
partitions are optimized with respect to a meaning-
less, random partition. A similar argument applies to
the general MDC and implies that at least one of the
clustering procedures must be bottom-up.

The particular choice of index sequence Sn =
i1, . . . , in is made with respect to required cardinali-
ties c1, . . . , cm of clustering systems X̃1, . . . , X̃m. The
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Figure 1. A schematic view of two-way MDC with a simple
round-robin schedule. At each iteration black clusters are
split and then white clusters are merged.

number of iterations the MDC algorithm should per-
form in order to obtain ci clusters is: Ni = dlog cie
for i ∈ Sdown, and Ni = dlog(|Xi|/ci)e for i ∈ Sup.
Thus, each index i appears Ni times in the sequence
Sn, while distributed over Sn as uniformly as possible
in a weighted round-robin fashion.

We now analyze the computational complexity of
MDC for a non-weighted round-robin schedule. The
complexity depends on u = |Sup|. At each iter-
ation, the algorithm passes over all the support of
Xi, for each value it passes over all the clusters X̃i,
and for each cluster it passes over all the clusters in
each clustering system excluding X̃i itself. Thus, the
worst case time, when u > 1, is O(n|X|3), where
n = O(maxi{log ci, log(|Xi|/ci)}), and |X| is the size
of the largest support. Such complexity can be infea-
sible in real-world applications. However, when u = 1,
the running time is o(n|X|3); in particular, for two-way
MDC it is O(n|X|2), since at each iteration the size of
one clustering system is doubled, while the size of the
other is halved. In this case, the product |X̃1| · |X̃2| is
proportional to the constant |X|.

4. Experimental Setup

Multi-way clustering can serve several purposes such
as data mining, compression and self-organization.
Therefore, there can be several meaningful ways for
assessing the output quality of such algorithms. In our
evaluation we focus on self-organization of text docu-
ments. Following (Slonim et al., 2002; Dhillon et al.,
2003b) we evaluate our clustering scheme with respect
to labeled collections of documents using the following
(standard) micro-averaged accuracy measure.

Let X be the target variable and X̃ its clustering. Let
C be the set of “ground truth” categories. For each
cluster x̃, let γC(x̃) be the maximal number of x̃’s el-
ements that belong to one category. Then, the pre-
cision Prec(x̃, C) of x̃ with respect to C, is defined

~DW~

C

DW~ ~

~
S

DW~ ~

~~C

Figure 2. Pairwise interaction graphs for two-way, three-
way and four-way MDC used in our experiments. We con-
sider interactions between clusters of words W̃ , documents
D̃, email correspondents C̃ and email Subject lines S̃. No-
tice that the interaction between C̃ and S̃ is omitted.

as Prec(x̃, C) = γC(x̃)/|x̃|. The micro-averaged preci-
sion of the entire clustering X̃ is then:

Prec(X̃, C) =
∑

x̃ γC(x̃)∑
x̃ |x̃|

. (3)

It is not hard to see (see, e.g., Slonim et al., 2002) that
when the number of clusters |X̃| equals the number of
categories |C|, the precision Prec(X̃, C) equals both
the standard recall and standard accuracy measures.
In all our experiments, we fix the desired number of
document clusters to the actual number of categories.
Since our algorithms are randomized, we report on av-
erage micro-averaged accuracy, taken over four inde-
pendent runs.

We consider six text datasets to evaluate our algo-
rithms. In addition to the standard benchmark 20
Newsgroups set (20NG) we use five real-world email
directories. On the 20NG set we apply a two-way clus-
tering instance of our scheme where the variables are
documents and words. The email datasets are particu-
larly useful for evaluating three-way and four-way clus-
tering. Here we take as variables (1) messages (doc-
uments); (2) words; (3) people names associated with
messages—we consider the entire list of correspondents
(both senders and receivers); and (4) email Subject
lines, represented by their bags of words. Pairwise
interaction graphs for these three settings are shown
in Figure 2.

Three of the email directories belong to participants
in the CALO project (Mark & Perrault, 2004; Bekker-
man et al., 2005) and the other two belong to former
Enron employees.5 Folder names are ground truth cat-
egories. In each of the email directories we remove
small folders (with less than three messages) and “non-
topical” folders such as Sent Items. We also flatten the
hierarchical structure of folders. In contrast to previ-
ous work (Slonim et al., 2002), we do not apply any
feature selection, besides removing stopwords, infre-
quent words and rare names, which for 20NG implies
clustering 40,000 words and 20,000 documents simulta-

5The preprocessed Enron email datasets can be
obtained from http://www.cs.umass.edu/~ronb/enron_
dataset.html.
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neously. In message headers we utilize the From, To,
CC, Subject and Date fields, ignoring all the others.
Table 1 provides basic statistics on the six datasets.

Dataset Size Min/max # of # of # of
class distinct corresp- classes
size words ondents

acheyer 664 3/72 2863 67 38
mgervasio 777 6/116 3207 61 15
mgondek 297 3/94 1287 50 14
kitchen-l 4015 5/715 15579 299 47
sanders-r 1188 4/420 5966 99 30
20NG 19997 997/1000 39764 - 20

Table 1. Dataset summary. Number of distinct words and
number of correspondents are after preprocessing.

4.1. Benchmark Algorithms

We compare the performance of our multi-way algo-
rithms with three well known benchmark algorithms.
The first is the one-way “agglomerative Information
Bottleneck” (aIB) algorithm of Slonim and Tishby
(2000a); the second is the one-way “sequential Infor-
mation Bottleneck” (sIB) algorithm of Slonim et al.
(2002); the third is the two-way “information-theoretic
co-clustering” algorithm of Dhillon et al. (2003b).
Note that the latter two are widely considered to
be state-of-the-art clustering algorithms achieving im-
pressive results in unsupervised text categorization.

To gain some perspective on the overall performance
of the unsupervised methods we tested, we also re-
port on the results of a trivial “random clustering”,
which simply places each document in a random clus-
ter. At the other extreme, we report on the catego-
rization results of a supervised application of a support
vector machine (SVM), applied with linear kernel and
with cross-validated parameter tuning, as done, e.g.,
in Bekkerman et al. (2003).

4.2. MDC Implementation Details

The following technical details are important for repli-
cating our experimental results. Following Slonim and
Tishby (2000a), we merge two document clusters that
are close in terms of the Jensen-Shannon divergence.
For more details, see Slonim and Tishby (2000a). In
order to obtain better balanced clustering systems, we
decrease the probability that smaller clusters are fur-
ther split and larger clusters are further merged. At
the MDC’s last iteration (at which the required num-
ber of document clusters is obtained), we perform the
correction routine after merging each pair of clusters.
We perform 10 random restarts for each dataset (be-
sides 20NG, for which we perform 8 random restarts).6

6The same number of random restarts are executed in
both sIB and co-clustering algorithms.

We use the bottom-up scheme for documents and the
top-down scheme for all the other clustering systems.
To “quickly” obtain more “expressive” clusters in top-
down systems, more splits are performed at the be-
ginning of the schedule (for email datasets). However,
since this preference is computationally expensive, we
use the plain round-robin schedule for the (largest)
20NG dataset.

5. Results

Micro-averaged accuracy (averaged over four runs) for
the six datasets is reported in Table 2. It is evident
that our two-way MDC clustering results are signifi-
cantly superior to those obtained by the one-way se-
quential IB and the two-way co-clustering. Of particu-
lar importance is the striking 71.8% accuracy achieved
by the two-way MDC on 20NG. This impressive result
is 14% higher than the best previously reported result
on this dataset.7 Close to 10% improvement is also
obtained on kitchen-l and mgondek datasets.

The significant advantage of the two-way MDC over
the flat (two-way) co-clustering algorithm may suggest
that the power of our algorithm is in its exploitation
of the clustering hierarchy together with the sIB-like
correction steps. A data point is not placed in the
cluster that is best for this data point, but rather in
the cluster that is best for the entire system.

Our three-way MDC algorithm consistently improves
the two-way performance on the CALO email datasets.
However, there is no improvement in the Enron folders.
A closer inspection reveals that (probably according
to a certain corporative policy) a typical Enron mes-
sage tends to have many more addressees than a typ-
ical CALO message, which obviously introduces a lot
of noise.8 Our experimentation with four-way MDC
shows further improvement over the three-way MDC
performance on CALO data, by a notable 5.6% on
mgervasio.

We also test four-way MDC with a fully connected
pairwise interaction graph. On all the three CALO

7A micro-averaged accuracy of 57.5% on 20NG is re-
ported for sIB in Slonim et al. (2002). This result is ob-
tained with only 2,000 “most discriminating” words. Also,
in that work, duplicated and small documents are removed,
leaving only 17,446 documents. Despite the fact that we
apply sIB on all documents, our use of 40,000 words leads
to 61% accuracy.

8Note that the MDC is not just a document clustering
algorithm. If the goal is to perform better document clus-
tering, then clustering people names may hurt the perfor-
mance. However, if the goal is, e.g., people clustering, then
clustering documents (along with clustering their words
and titles) may significantly improve the performance.
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Dataset Random Agglo. Sequent. Co- 2-way 3-way 4-way SVM
clust. IB IB clustering MDC MDC MDC (superv.)

acheyer 17.8± 0.5 36.4 44.7± 0.6 47.0± 0.2 48.1± 0.7 50.5± 0.4 ∗52.1± 0.8 65.8± 2.9
mgervasio 18.3± 0.3 30.9 40.2± 2.3 36.6± 1.6 44.9± 1.2 48.6± 0.8 ∗54.2± 0.6 77.6± 1.0
mgondek 32.4± 0.1 43.3 62.1± 1.4 69.5± 1.6 77.1± 1.4 80.8± 1.2 ∗81.6± 1.0 92.6± 0.8
kitchen-l 17.9± 0.1 31.0 33.2± 0.5 33.0± 0.3 ∗41.9± 0.7 38.5± 0.2 73.1± 1.2
sanders-r 35.4± 0.1 48.8 64.8± 0.4 59.3± 1.2 ∗67.7± 0.3 67.1± 0.8 87.6± 1.0
20NG 6.3± 0.1 26.5 61.0± 0.7 57.7± 0.2 ∗71.8± 0.7 91.3± 0.3

Table 2. Micro-averaged accuracy (± standard error of the mean) on the six datasets. Each number is an average over
four independent runs (the SVM supervised classification accuracies are obtained with 4-fold cross validation).

datasets we see a certain drop in the performance com-
pared to our original four-way setting (without the
people-subjects interaction): 51.7 ± 1.0% on acheyer,
51.9 ± 0.5% on mgervasio, 80.2 ± 0.7% on mgondek.
This may indicate that some pairwise interactions are
irrelevant to the desired goal or that the statistics on
such interactions is noisy.

On CALO data, we test another algorithmic setup of
the two-way MDC in which both words and documents
are clustered agglomeratively. The results are similar
to our original two-way MDC accuracies: 48.8± 0.6%
on acheyer, 44.7 ± 1.3% on mgervasio, 75.6 ± 0.6%
on mgondek. However, this setting is not applicable to
larger datasets: taking constants into account, this ag-
glomerative version of MDC would be 300 times slower
than the regular MDC on 20NG.

In addition, we reversely apply agglomerative cluster-
ing to words and conglomerative clustering to docu-
ments on 20NG. In this setting, the 20-cluster sys-
tem is obtained too early (at the 10th iteration), with
around 50% accuracy. However, both the regular and
reverse two-way MDC obtain above 70% precision with
around 100 clusters. Interestingly, 100 clusters is the
point at which our objective function achieves its max-
imum. This may indicate that the “natural” number
of clusters for 20NG is around 100.

5.1. On the Clustering Schedule

Here we consider the two-way instance of the MDC
algorithm and attempt to see what would be an op-
timal ratio between splitting and merging weights in
a weighted round-robin schedule. To this end, we try
different ratios on the mgervasio dataset and show our
results in Figure 3. The curve in the left panel shows
that a perfectly balanced schedule does not lead to
optimal results; specifically, at ratio 1 (one top-down
step per each bottom-up step) the accuracy is 36.5%
while as much as 43.6% can be achieved around ratio
2 (two top-down steps per each bottom-up step). Nev-
ertheless, scheduling weight ratios greater than 1 have
significant computational complexity penalties. This
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Figure 3. Two-way MDC on mgervasio dataset: ex-
perimenting with different split/merge weight ratios in
weighted round-robin schedules. Accuracy curve (left),
clustering time in hours (right).

is shown in Figure 3 (right), depicting the performance
time (in CPU hours) as a function of the scheduling
ratio. While the running time is less than two hours
(on a 3.2 GHz Pentium) when the ratio is around 1, it
approaches 12 hours when the ratio grows to 2.

5.2. Social Network Analysis

Multi-way clustering can be applied not only to doc-
ument categorization, but also to various problems in
data mining. We demonstrate this by using three-way
MDC to social network analysis from the CALO email
dataset. To evaluate the quality of the constructed
clusters of email correspondents, we asked Dr. Melinda
Gervasio, the creator of the mgervasio email directory,
to classify her 61 correspondents to semantic groups.
She created four categories: SRI management, SRI
CALO collaborators, non-SRI CALO participants and
other SRI people not involved in the CALO project.

We evaluate two clusterings—one constrained to pro-
duce four clusters, the other to produce eight. Both
produced results are highly correlated with Melinda
Gervasio’s labelings. In our four-cluster results, the
category of SRI management is united with the cat-
egory of non-SRI people, while the category of SRI
CALO collaborators (the largest one) is split to two
clusters. The forth category (other SRI people) forms
a single clean cluster, and the borders between the
categories are successfully identified, leading to 62.3±
1.4% accuracy averaged over four different runs.
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In the eight-cluster result, categories of SRI manage-
ment and non-SRI people are almost perfectly split to
two different clusters, while other SRI employees still
form one cluster, and the category of SRI CALO par-
ticipants is now distributed over five clusters, one of
which contains only one person who is Melinda Ger-
vasio herself. The overall precision of the eight-cluster
system is as high as 76.6± 2.8%.

6. Conclusion and Future Work

This paper has presented an unsupervised factorized
model for arbitrary-dimensional multivariate distri-
butional clustering, as well as an efficient algorithm
for clustering based on an interleaved top-down and
bottom-up approach. On the standard 20NG dataset,
we have improved best previously published accuracy
by 14%. We have also shown that our method of lever-
aging an increasing number of dimensions can improve
accuracy on several email data sets, without significant
penalty in running time.

In future work we will further develop the connections
between this approach and factor graphs in undirected
graphical models, examining issues such as regular-
ization, structure induction, use of arbitrary features,
and semi-supervised learning. We will tackle algorith-
mic problems, such as an automatic inference of the
best clustering schedule and an improvement of the
algorithm’s complexity. Currently, the computational
bottleneck of the proposed MDC implementation is
its sIB-like correction routine. To reduce this com-
putational burden, approximations based on random
sampling can be considered. We also note that ob-
jective functions based on other statistical correlation
measures can be considered instead of the mutual in-
formation. We plan to apply the MDC framework to
other domains as well. Our initial experiments with
image clustering show promising results.
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