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Abstract

Although fully generative models have been
successfully used to model the contents of
text documents, they are often awkward to
apply to combinations of text data and doc-
ument metadata. In this paper we propose
a Dirichlet-multinomial regression (DMR)
topic model that includes a log-linear prior on
document-topic distributions that is a func-
tion of observed features of the document,
such as author, publication venue, references,
and dates. We show that by selecting ap-
propriate features, DMR topic models can
meet or exceed the performance of several
previously published topic models designed
for specific data.

1 Introduction

Bayesian multinomial mixture models such as latent
Dirichlet allocation (LDA) [3] have become a popular
method in text analysis due to their simplicity, useful-
ness in reducing the dimensionality of the data, and
ability to produce interpretable and semantically co-
herent topics. Text data is generally accompanied by
metadata, such as authors, publication venues, and
dates. Many extensions have been proposed to the ba-
sic mixture-of-multinomials topic model to take this
data into account. Accounting for such side informa-
tion results in better topics and the ability to discover
associations and patterns, such as learning a topical
profile for a given author, or plotting a timeline of
the rise and fall of a topic. Currently, developing
models for new types of metadata involves specifying
a valid generative model and implementing an infer-
ence algorithm for that model. In this paper, we pro-
pose a new family of topic models based on Dirichlet-
multinomial regression (DMR). Rather than generat-
ing metadata or estimating topical densities for meta-

data elements, DMR topic models condition on ob-
served data. As with other conditional models such
as maximum entropy classifiers and conditional ran-
dom fields, users with limited statistical and coding
knowledge can quickly specify arbitrarily complicated
document features while retaining tractable inference.

The simplest method of incorporating metadata in
generative topic models is to generate both the words
and the metadata simultaneously given hidden topic
variables. In this type of model, each topic has a distri-
bution over words as in the standard model, as well as
a distribution over metadata values. Examples of such
“downstream” models include the authorship model of
Erosheva, Fienberg and Lafferty [5], the Topics over
Time (TOT) model of Wang and McCallum [15], the
Group-Topic model of Wang, Mohanty and McCallum
[16], the CorrLDA model of Blei and Jordan [1] and
the named entity models of Newman, Chemudugunta
and Smyth [12].

One of the most flexible members of this family is the
supervised latent Dirichlet allocation (sLDA) model
of Blei and McAuliffe [2]. sLDA generates metadata
such as reviewer ratings by learning the parameters of
a generalized linear model (GLM) with an appropriate
link function and exponential family dispersion func-
tion, which are specified by the modeler, for each type
of metadata. We show in Section 4.3 that the TOT
model is an example of sLDA.
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Figure 1: Graphical model representation of a “down-
stream” topic model, in which metadata m is generated
conditioned on the topic assignment variables z of the doc-
ument and each topic has some parametric distribution
over metadata values.



Another approach involves conditioning on metadata
elements such as authors by representing document-
topic distributions as mixtures of element-specific dis-
tributions. One example of this type of model is the
author-topic model of Rosen-Zvi, Griffiths, Steyvers
and Smyth [13]. In this model, words are generated
by first selecting an author uniformly from an observed
author list and then selecting a topic from a distribu-
tion over topics that is specific to that author. Given
a topic, words are selected as before. This model as-
sumes that each word is generated by one and only
one author. Similar models, in which a hidden vari-
able selects one of several multinomials over topics,
are presented by Mimno and McCallum [11] for mod-
eling expertise by multiple topical mixtures associated
with each individual author, by McCallum, Corrada-
Emmanuel, and Wang [9] for authors and recipients
of email, and by Dietz, Bickel and Scheffer [4] for in-
ferring the influence of individual references on citing
papers. These “upstream” models essentially learn an
assignment of the words in each document to one of a
set of entities.
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Figure 2: An example of an “upstream” topic model
(Author-Topic). The observed authors determine a uni-
form distribution η over authors. Each word is generated
by selecting an author, a, then selecting a topic from that
author’s topic distribution θa, and finally selecting a word
from that topic’s word distribution.

Previous work in metadata-rich topic modeling has
focused either on specially constructed models that
cannot accommodate combinations of modalities of
data beyond their original intention, or more compli-
cated models such as exponential family harmoniums
and sLDA, whose flexibility comes at the cost of in-
creasingly intractable inference. In contrast to previ-
ous methods, Dirichlet-multinomial regression (DMR)
topic models are able to incorporate arbitrary types
of observed continuous, discrete and categorical fea-
tures with no additional coding, yet inference remains
relatively simple.

In section 4 we compare several topic models designed
for specific types of metadata to DMR models con-
ditioned on features that emulate those models. We
show that performance of DMR models is in almost
all cases comparable to similar generative models, and
can be considerably better.

2 Modeling the influence of document
metadata with Dirichlet-
multinomial regression

For each document d, let xd be a vector containing
feature that encode metadata values. For example, if
the observed features are indicators for the presence of
authors, then xd would include a 1 in the positions for
each author listed on document d, and a 0 otherwise.
In addition, to account for the mean value of each
topic, we include an intercept term or “default feature”
that is always equal to 1.

For each topic t, we also have a vector λt, with length
the number of features. Given a feature matrix X, the
generative process is:

1. For each topic t,

(a) Draw λt ∼ N (0, σ2I)
(b) Draw φt ∼ D(β)

2. For each document d,

(a) For each topic t let αdt = exp(xT
d λt).

(b) Draw θd ∼ D(αd).
(c) For each word i,

i. Draw zi ∼M(θd).
ii. Draw wi ∼M(φzi

).

The model therefore includes three fixed parameters:
σ2, the variance of the prior on parameter values; β,
the Dirichlet prior on the topic-word distributions; and
|T |, the number of topics.

Integrating over the multinomials θ, we can construct
the complete log likelihood for the portion of the model
involving the topics z:

P (z,λ) = (1)∏
d
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The derivative of the log of Equation 1 with respect to
the parameter λtk for a given topic t and feature k is

∂`

∂λtk
= (2)∑
d

xdk exp(xT
d λt)×(

Ψ
(∑

t

exp(xT
d λt)

)
−Ψ

(∑
t

exp(xT
d λt) + nd

)
+

Ψ
(

exp(xT
d λt) + nt|d

)
−Ψ

(
exp(xT

d λt)
))
− λtk

σ2
.



TxF
D

α zθ w
T

φ β

x

λ
μ

σ2

Figure 3: The Dirichlet-multinomial Regression (DMR)
topic model. Unlike all previous models, the prior distri-
bution over topics, α, is a function of observed document
features, and is therefore specific to each distinct combina-
tion of metadata feature values.

We train this model using a stochastic EM sampling
scheme, in which we alternate between sampling topic
assignments from the current prior distribution condi-
tioned on the observed words and features, and numer-
ically optimizing the parameters λ given the topic as-
signments. Our implementation is based on the stan-
dard L-BFGS optimizer [8] and Gibbs sampling-based
LDA trainer in the Mallet toolkit [10].

3 Related Work

Recent work by Blei and McAuliffe [2] on supervised
topic models (sLDA) combines a topic model with a
log-linear (GLM) model, but in the opposite manner:
rather than conditioning on observed features through
a log-linear model and then predicting topic variables,
sLDA uses topic variables as inputs to the log-linear
model to generate observed features. An important
advantage of the DMR topic model over sLDA for
many applications is that DMR is fully conditional
with respect to the observed features. In contrast,
sLDA must explicitly estimate probability distribu-
tions over all possible feature values by fully speci-
fying the link and dispersion functions for a GLM. Al-
though the class of exponential dispersion families sup-
ports a wide range of modalities, the specification of
GLMs adds modeling complexity. In addition, adding
these distributions to the complete log likelihood of the
model may result in a significantly more complicated
model that is correspondingly more difficult to train.

In contrast, “off the shelf” DMR topic models can
be applied to any set of features with no additional
model specification. Furthermore, training a model
with complex, multimodal, dependent features is no
more difficult in a DMR framework than training a
model with a single observed real-valued feature. The
distinction between conditional and generative meth-
ods is analogous to the difference between maximum
entropy and näıve Bayes classifiers and between con-
ditional random fields and hidden Markov models.

Guimaraes and Lindrooth [6] use Dirichlet-
multinomial regression in economics applications,

but do not use a mixture model or any hidden
variables. They observe that Dirichlet-multinomial
regression falls within the family of overdispersed
generalized linear models (OGLMs), and is equivalent
to logistic regression in which the output distribution
exhibits extra-multinomial variance. This property is
useful because DMR produces unnormalized Dirichlet
parameters rather than normalized multinomial
parameters. These Dirichlet parameters can then be
used as a prior for a Bayesian mixture model.

4 Experimental Results

The DMR topic model comprises a broad space of con-
ditional topic models, offering great flexibility for users
to define new features. For example, Table 4 shows re-
sults for a model incorporating years, venues, authors,
and references. In this example, changing two of three
authors substantially affects the topical Dirichlet prior.
In order to establish that DMR topic models can be
effectively trained using the methods described in this
paper, we present three examples of DMR models, in
which the features are designed to emulate previously
published topic models designed for specific types of
side information. The purpose of these comparisons
is not to suggest that the models compared should
necessarily be replaced by equivalent DMR models,
but rather to explore the benefits of building custom
models relative to simply defining features and passing
them to the DMR trainer.

Table 1: DMR topic prior for two documents, given fea-
tures 2003, JMLR, D. Blei, A. Ng, and M. I. Jordan
and features 2004, JMLR, M.I. Jordan, F. Bach, and
K. Fukumizu.

αt Topic words (Blei, Ng, Jordan)
2.098 models model gaussian mixture generative
0.930 bayesian inference networks network probabilistic
0.692 classifier classifiers bayes classification naive
0.636 probabilistic random conditional probabilities fields
0.614 sampling sample monte carlo chain samples

αt Topic words (Jordan, Bach, Fukumizu)
4.046 kernel density kernels data parametric
2.061 space dimensional high reduction spaces
1.780 learning machine learn learned reinforcement
1.501 prediction regression bayes predictions naive
0.879 problem problems solving solution solutions

We evaluate the DMR topic model on a corpus of re-
search papers drawn from the Rexa database.1 For
each paper we have text, a publication year, a publica-
tion venue, automatically disambiguated author IDs,
and automatically disambiguated references. We se-

1http://www.rexa.info



lect a subset of papers from the corpus from venues
related to artificial intelligence. We filter out dates
earlier than 1987, authors that appear on fewer than
five papers, and references to papers with fewer than
10 citations. In addition, for each type of metadata
(authors, references, and dates) we train the relevant
model only on documents that have that information,
since the generative semantics of the Author-Topic
model, for example, is undefined if there are no ob-
served authors.

In order to provide a fair comparison and reduce the
effect of arbitrary smoothing parameters, we optimize
the αt parameters of all non-DMR topic models using
stochastic EM as described by Wallach [14]. This pa-
rameter determines the expected mean proportion of
each topic. Optimizing the αt parameters has a sub-
stantial positive effect on both model likelihood and
held-out performance. Results without hyperparam-
eter optimization are not shown. The DMR model
intrinsically represents the mean level of each topic
through the parameters for the default feature. The
smoothing parameter for the topic-word distributions,
β, is constant for all models at 0.01. The variance σ2

for DMR is set to 10.0 for the default features and
0.5 for all other features. All models are run with 100
topics.

We train each model for 1000 iterations. After an
initial burn-in period of 250 iterations we optimize
parameters (λ for DMR, α for all other models) ev-
ery 50 iterations. All evaluations are run over 10-
fold cross validation with five random initializations
for each fold.

4.1 Author features

For author features, we compare the Author-Topic
(AT) model [13] to DMR trained on author indicator
features. Example topics for three authors are shown
in table 2.

4.1.1 Held-out Likelihood

To evaluate the generalization capability of the model
we use the perplexity score described by Rosen-Zvi et
al. [13] as well as the empirical likelihood (EL) method
advocated for topic model evaluation by Li and Mc-
Callum [7]. Evaluating the probability of held-out doc-
uments in topic models is difficult because there are
an exponential number of possible topic assignments
for the words. Both metrics solve this problem by
sampling topic distributions from the trained model.
Given a trained model, calculating the perplexity score
involves sampling topics for half the words in a testing
document conditioned on those words. We then use
that sampled distribution to calculate the log probabil-

ity of the remaining words. In the empirical likelihood
method, we sample a large number of topic multino-
mials for each testing document, according to the gen-
erative process of the model. We then calculate the
log of the average probability of the words given those
sampled topic distributions.

Both metrics measure a combination of how good the
topic-word distributions are and how well the model
can guess which combinations of topics will appear in a
given document. The difference is that empirical like-
lihood estimates the probability of the words without
knowing anything about the content of the document,
while perplexity also measures the model’s ability to
“orient” itself quickly given a small amount of local
information, such as the first half of the document.

For the EL DMR topic model, we sample |S| uncon-
ditional word distributions for a given held-out docu-
ment d by first calculating the αd parameters of the
Dirichlet prior over topics specific to that document
given the observed features xd in the manner described
earlier. We then sample a topic distribution θds from
that Dirichlet distribution. Finally, we calculate the
probability of each of the observed word tokens wi by
calculating the marginal probability over each topic
t of that type using the current point estimates of
P (wi|t) given the topic-word counts.

EL(d) =
1
|S|
∑

s

∑
i

∑
t

θdts

nwi|t + β

nt + |T |β
(3)

Results for perplexity and empirical likelihood for AT
and DMR with xd = author indicator functions are
shown in Figure 4. DMR shows much better perplex-
ity than either LDA or AT, while both author-aware
models do substantially better than LDA in empirical
likelihood. The AT models are consistently slightly
better in EL than DMR, but the difference is much
less than the difference between DMR and LDA. One
explanation for the improved perplexity is that DMR
uses a “fresh” Dirichlet prior for each held-out doc-
ument, which can rapidly adapt to local word infor-
mation in the test documents. In contrast, AT uses
multinomials to represent author-topic distributions.
These multinomials have less ability to adapt to the
test document, as they generally consist of hundreds
of previously assigned words.

4.1.2 Predicting Authors

In addition to predicting the words given the authors,
we also evaluate the ability of the Author-Topic (AT)
and DMR models to predict the authors of a held-out
document conditioned on the words. For each model
we can define a non-author-specific Dirichlet prior on
topics. For AT, defining a prior over topics is equiv-



Table 2: Ranked topics for three authors under the DMR topic model (left) and the Author-Topic (AT) model
(right). For DMR, the sampling distribution for the first word in a document given an author is proportional to
the number on the left. For a given topic t, this value is exp(λt0 + λtaxda), where λt0 is the default parameter
for topic t. For AT, the sampling distribution for the next word (i + 1) in a document given the author is
proportional to the number on the left. The integer portion generally corresponds to the number of words in a
given topic currently assigned to the author, while the fractional part corresponds to αt. These values are much
larger than those for DMR, meaning that the topic drawn for word i + 1 will have relatively little influence on
the topic drawn for word i+ 2.

DMR AT
David Blei David Blei

0.25 data mining sets large applications 48.21 bayesian data distribution gaussian mixture
0.24 text documents document categorization large 36.17 text documents document information
0.16 problem work set general information 31.39 model models probabilistic modeling show
0.16 method methods results proposed set 28.09 inference approximation propagation approximate
0.15 distribution bayesian model gaussian models 15.10 markov hidden models variables random
0.15 semantic syntactic lexical sentence named 11.05 discourse sentences aspect semantic coherence
0.14 retrieval information document documents relevance 9.31 process approaches methods techniques terms
0.13 model models show parameters order 9.20 probability distribution distributions estimates
0.13 image images resolution pixels registration 9.11 segmentation image texture grouping region
0.11 translation language word machine english 8.25 data sets set large number
0.11 control robot robots manipulators design 7.28 method methods propose proposed applied
0.10 reasoning logic default semantics theories 6.15 networks bayesian probabilistic inference network
0.10 simple information form show results 5.28 problem problems solving solution solutions
0.09 system systems hybrid intelligent expert 5.19 task tasks performed goal perform

Andrew Ng Andrew Ng
0.31 show algorithms results general problem 202.11 reinforcement policy state markov decision
0.31 number large size small set 112.30 error training data parameters sample
0.21 system systems hybrid intelligent expert 97.18 learning bounds function bound algorithms
0.20 method methods results proposed set 58.33 show results problem simple class
0.19 results quality performance show techniques 57.36 algorithm algorithms efficient problem set
0.18 algorithm algorithms efficient fast show 54.26 optimal time results computing number
0.17 learning reinforcement policy reward state 39.21 bayesian data distribution gaussian mixture
0.16 decision markov processes mdps policy 34.37 learning learn machine learned algorithm
0.15 feature features selection classification extraction 31.37 work recent make previous provide
0.15 results experimental presented experiments proposed 31.25 set general properties show defined
0.14 performance results test experiments good 31.14 classification classifier classifiers accuracy class
0.14 learning training learn learned examples 31.09 inference approximation propagation approximate
0.14 knowledge representation base acquisition bases 30.19 feature features selection classification performance
0.13 problem work set general information 22.39 model models probabilistic modeling show

Michael Jordan Michael Jordan
0.69 distribution bayesian model gaussian models 58.18 learning bounds function bound algorithms
0.39 algorithm algorithms efficient fast show 57.09 inference approximation propagation approximate
0.38 show algorithms results general problem 33.21 bayesian data distribution gaussian mixture
0.31 problem work set general information 27.39 model models probabilistic modeling show
0.31 models model modeling probabilistic generative 27.20 probability distribution distributions estimates
0.21 performance results test experiments good 27.05 program programs programming automatic
0.21 problem problems solving solution optimization 24.17 entropy maximum criterion criteria optimization
0.19 learning training learn learned examples 22.33 show results problem simple class
0.15 networks bayesian inference network belief 21.25 set general properties show defined
0.14 data mining sets large applications 20.36 algorithm algorithms efficient problem set
0.12 simple information form show results 20.11 kernel support vector machines kernels
0.12 function functions gradient approximation linear 18.14 methods simple domains current incremental
0.12 methods techniques approaches existing work 18.02 genetic evolutionary evolution ga population
0.12 learning machine induction rules rule 17.19 feature features selection classification performance
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Figure 4: Perplexity and empirical log likelihood for
the DMR topic model trained with author indicator
features (blue triangles), the Author-Topic (AT) model
(red diamonds), and LDA (black circles). Clusters of
points represent cross-validation folds. Perplexity is
much better for DMR than either AT or LDA. Em-
pirical likelihood is better for the author-aware mod-
els than for LDA. In every case, AT performs slightly
better in EL than DMR.

alent to adding a single new, previously unseen au-
thor for each held-out document. The Dirichlet prior
is specified using the α parameters that are fitted in
training the model. For DMR, the topic prior Dirich-
let is specified using the prior for a document with no
observed features (the exponentiated parameters for
the intercept terms for each topic).

For each held-out document, we independently sample
100 sequences of topic assignments from the generative
process defined by the model, given the word sequence
and the topic prior. We add up the number of times
each topic occurs over all the samples to get a vector
of topic counts n1...n|T |. We then rank each possible
author by the likelihood function of the author given
the overall topic counts. For AT, this likelihood is
the probability of adding nt counts to each author’s
Dirichlet-multinomial distribution, which is defined by
the number of times each topic is assigned to an author
nt|a and the total number of tokens assigned to that
author na:

P (d|a) =
∑

t αt + na∑
t αt + na +

∑
t nt

∏
t

αt + nt|a + nt

αt + nt|a
.(4)

For DMR, we define a prior over topics given only a
particular author as the Dirichlet parameters under
the DMR model for a document with only that author
feature; in other words, the exponentiated sum of the

default feature parameter and the author feature pa-
rameter, for each topic. The likelihood for an author is
the Dirichlet-multinomial probability of the nt counts
with those parameters. Note that the likelihoods for a
given author and held-out document are not necessar-
ily comparable between DMR and AT, but what we
are interested in is the ranking.

Results are shown in Figure 5. DMR ranks authors
consistently higher than AT.
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Figure 5: Prediction results for authors and citations.
DMR is shown with triangles, and AT and Citation
topics with Xes.

4.2 Citation features

Following Dietz, Bickel and Scheffer [4], we consider
a model for citation influence that is similar to the
Author-Topic model. Each citation is treated as a po-
tential “author”, such that when the model generates
a word, it first selects a paper from its own references
section and then samples a topic from that paper’s
distribution over topics.

Empirical likelihood results for this citation model are,
like AT, slightly better than a DMR model with the
same information encoded as citation indicator fea-
tures. Perplexity was significantly better for the cita-
tion model. In this case, the number of occurrences
of citations may allow the generative model to obtain
a better representation of the topical content of ci-
tations. In contrast to authors, each citation’s topic
multinomial may only consist of a few dozen words,
allowing it to adapt more easily to local information.

The DMR model also shows citation prediction per-
formance comparable to the generative citation topic
model, as shown in Figure 5.
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Figure 6: Perplexity and empirical log likelihood for
the DMR topic model trained with citation features,
the Citation model, and LDA. Unlike other features,
citations show very strong perplexity results for the
upstream Citation model. DMR continues to out-
perform LDA in this metric. As with the Author-Topic
model, the Citation model has slightly better empirical
likelihood than DMR, and both substantially outper-
form LDA.

4.3 Date features

In many text genres, the date of publication provides
information about the content of documents. For ex-
ample, a research paper published in an artificial in-
telligence conference in 1997 is much more likely to
be about neural networks and genetic algorithms than
about support vector machines. The opposite is likely
to be true of a paper published in 2005.

Previous work on topic models that take into account
time includes the Topics over Time (TOT) model of
Wang and McCallum [15]. As with LDA, under the
TOT model each word wi is generated by a hidden
topic indicator variable zi. In addition, the TOT gen-
erative process also samples a “date” variable from a
topic-specific beta distribution parameterized by ψt1

and ψt2 ∀t ∈ T . The support of the beta distribu-
tion is real numbers between zero and one, so rather
than generating an actual date, TOT generates a
point proportional to the date of a document, within
a finite range of dates. We define this proportion,
pd = dated−mind′ dated′

maxd′ dated′−mind′ dated′
. In order to sample effi-

ciently, Wang and McCallum use the convention that
rather than generating the date once per document,
each word in a given document generates its own date,
all of which happen to be the same.

Consider the terms in the likelihood function for a

TOT model that involve pd for some document d:

P (pd|zd) = (5)∏
i

1
Zzi

exp (ψzi1 log(pd) + ψzi2 log(1− pd))

where Zt is the beta function with parameters ψt1 and
ψt2. Since pd is constant for every token in a given
document, we can rewrite Equation 6 as

1
Z

exp

(∑
i

ψzi1 log(pd) + ψzi2 log(1− pd)

)
(6)

From this representation, we can see two things. First,
this expression is the kernel of a beta distribution with
parameters

∑
i ψzi1 and

∑
i ψzi2, so Z is equal to a

beta function with those parameters. Second, this ex-
pression defines a generalized linear model. The link
function is identity, the exponential dispersion func-
tion is beta, and the linear predictor is a function of
the number of words assigned to each topic, the topic
beta parameters, and the sufficient statistics, which
are log(p) and log(1−p). With the slight modification
of substituting normalized topic counts z̄ = 1/N

∑
i zi

for the raw topic counts, we see that TOT is precisely
a member of the sLDA family of topic models [2].

To compare DMR regression topic models to TOT,
we use the same sufficient statistics used by the beta
density: xd = log(pd) and log(1−pd). DMR and TOT
therefore have the same number of parameters: two
for each topic date distribution, plus one parameter
(the topic intercept parameter in DMR, an optimized
αt for TOT) to account for the mean proportion of
each topic in the corpus.

Figure 7 shows perplexity and EL results for TOT and
DMR with TOT-like features. DMR provides substan-
tially better perplexity, while also showing improved
empirical likelihood.

5 Conclusions

The Dirichlet-multinomial regression topic model is a
powerful method for rapidly developing topic models
that can take into account arbitrary features. It can
emulate many previously published models, achieving
similar or improved performance with little additional
statistical modeling or programming work by the user.

One interesting side effect of using the DMR model
is efficiency. Adding additional complexity to a topic
model generally results in a larger number of variables
to sample and a more complicated sampling distribu-
tion. Gibbs sampling performance is mainly a function
of the efficiency of the innermost loop of the sampler;
in the case of LDA this is the calculation of the sam-
pling distribution over topics for a given word. The
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Figure 7: Perplexity and empirical log likelihood for
the DMR topic model trained with date features, the
Topics Over Time (TOT) model, and LDA. TOT
shows perplexity roughly equivalent to LDA, while
DMR perplexity is substantially better. DMR also
outperforms TOT in empirical likelihood.

Author-Topic model adds an additional set of hid-
den author assignment variables that must be sam-
pled. TOT adds an additional term (a beta density)
to this calculation. In contrast, in a DMR model, all
information from the observed document metadata is
accounted for in the document-specific Dirichlet pa-
rameters. As a result, the sampling phase of DMR
training is no more complicated than a simple LDA
sampler. The additional overhead of parameter opti-
mization, which we have found decreases as the model
converges, can be more than made up by a faster sam-
pling phase, especially if the number of sampling iter-
ations between optimizations is large.

DMR provides a useful complement to generative mod-
els such as AT and sLDA, which can make inferences
about hidden variables and can be incorporated into
more complicated hierarchical models. One area for
future work is hybrid sLDA-DMR models constructed
by splitting the observed features into a set of condi-
tioned variables and a set of generated variables.
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