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ABSTRACT
The ability to find tables and extract information from them
is a necessary component of data mining, question answer-
ing, and other information retrieval tasks. Documents of-
ten contain tables in order to communicate densely packed,
multi-dimensional information. Tables do this by employ-
ing layout patterns to efficiently indicate fields and records
in two-dimensional form.

Their rich combination of formatting and content present
difficulties for traditional language modeling techniques, how-
ever. This paper presents the use of conditional random
fields (CRFs) for table extraction, and compares them with
hidden Markov models (HMMs). Unlike HMMs, CRFs sup-
port the use of many rich and overlapping layout and lan-
guage features, and as a result, they perform significantly
better. We show experimental results on plain-text gov-
ernment statistical reports in which tables are located with
92% F1, and their constituent lines are classified into 12
table-related categories with 94% accuracy. We also discuss
future work on undirected graphical models for segmenting
columns, finding cells, and classifying them as data cells or
label cells.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Experimentation, Theory, Measurement

Keywords
Tables, conditional random fields, hidden Markov models,
information extraction, metadata, question answering.
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Information in many documents is carried not only in
their stream of words, but also by the layout of those words.
Just as prepositions serve to make relations between phrases,
two-dimensional layout also serves to communicate group-
ings, connections and constraints. The ultimate example of
conveying meaning through layout is the table.

Tables—textual tokens laid out in tabular form—are often
used to compactly communicate information in fields and
records. They have been described as “databases designed
for human eyes.” Tables appear in the earliest writing on
clay tablets, and in the most modern Web pages. Some make
use of line-art, others rely on whitespace only. They some-
times consists merely of two simple columns, other times of
extremely baroque collections of headings, embedded sub-
headings, and varying cell sizes. They are used in everything
from government reports, to magazine articles, to academic
publications.

In previous work building the QuASM system (Question
Answering Using Semi-structured Metadata)[13], extracting
table data proved to be the most challenging task faced.
Question answering (QA) systems typically perform a two-
step retrieval in finding the information relevant to a query.
First, documents are retrieved that match the question, then
those documents are searched for possible answers. QuASM
used a heuristic program to turn each data cell and its meta-
data into its own small document. That small document
could be more accurately retrieved and quickly searched.
It was found that the amount and quality of the meta-
data was extremely important to the success of the system,
especially in the document retrieval step. Unfortunately,
QuASM tended to extract too much information from the
tables, which hurt performance.

To improve the extraction, and by extension the ability
to answer questions, a move away from heuristics and to-
ward a more formal model is proposed. Although there has
been significant effort and progress in statistical language
modeling for information retrieval tasks, there has been rel-
atively little work in models that combine language and lay-
out. Traditional language modeling, focused on a stream of
language content, simply does not apply to data that is a
two-dimensional mixture of content and layout features.

This paper presents a model of table extraction that richly
integrates evidence from both content and layout by using
conditional random fields (CRFs) [7]. CRFs are discrimin-
atively-trained undirected graphical models that have great
freedom to use complex, overlapping and non-independent
feature sets that operate at multiple levels of granularity
and multiple modalities. We describe a method that simul-
taneously locates tables in plain-text government statisti-



cal reports, and labels each of their constituent lines with
tags such as header, sub-header, data, separator, etc. The
features measure aspects of the input stream such as the
percentage of alphabetic characters, the presence of regu-
lar expression matching months or years, and the degree
to which whitespace in the current line aligns with whites-
pace in the previous line. In experiments on government re-
ports, tables are located with 92% F1, and lines are labeled
with 94% accuracy—reducing error by 80% over a similarly-
configured hidden Markov model with the same features.
For application to our question-answering system, we cur-
rently use these tags in concert with subsequent heuristics
to find table cell boundaries, classify cells as data or label,
and associate data cells with their corresponding label cells.

This paper also describes ongoing work on a more complex
conditional random field that operates both vertically and
horizontally, uses approximate inference procedures [17], and
provides a complete conditional probabilistic model for table
detection, cell segmentation and classification.

2. TABLE EXTRACTION

2.1 Related Work
Matthew Hurst [3, 6, 5, 4] describes the problem of in-

formation extraction from tables as one of both layout and
language: the elements of tables are potentially ambiguous;
cells may span multiple columns or multiple lines; header
information may lay across multiple cells; there may be a
lack of continuity between table lines. While systems can
be based on either layout or language, the combination of
the two is necessary to resolve the ambiguities in the data
of tables. Given a table, Hurst’s model breaks tabular text
into blocks, then determines what the blocks represent—
using generative language models in both stages.

An example of a purely layout-based approach is found
in Pyreddy and Croft [14]. A character alignment graph
(CAG) is used to find text tables in documents in order to
extract those tables for indexing for information retrieval.
The CAG abstracts the table to text characters and spaces
and attempted to identify titles, captions and data rows base
on the structures revealed by the CAG. Since the whole table
is extracted, there is no attempt to identify the fine elements
of the table, only the sections of the table (header area,
data area). Ng, Lim and Koo [12] apply machine learning
techniques to identify rows and columns in tables, but again
were only interested in finding the location of the table in
the text not extracting its different components, either in
terms of lines or cells.

Pinto et al. [13] build on the CAG with a heuristic method
to extract the individual cells for QA. As this system ex-
tracts cell data and associates it with its metadata, some
language processing is used to distinguish headers from data
rows. It was learned from this work that accurate tagging of
tables is important in building the representation used for
information retrieval. However, since this system does not
finely distinguish between types of header rows, it tended to
draw in extraneous metadata. Study of the errors made by
the QA system show that the extraneous metadata is a lead-
ing cause of failure to retrieve the appropriate documents.

2.2 Task and Approach
Table extraction may be broken down into six overlapping

sub-problems:

1. Locate the table.
2. Identify the row positions and types.
3. Identify the column positions and types.
4. Segment the table into cells.
5. Tag the cells as data or headers.
6. Associate data cells with their corresponding headers.

This paper concentrates on items one and two, employing
a conditional probability Markov model for labeling the lines
of a document. The labels indicate whether or not the line
is part of a table, and if so, what role it plays in the table.
The use of finite-state Markov models helps represent useful
context, for example the fact that titles are expected to be
followed by table headers, followed by data rows, followed
by footnotes. State transition probabilities are a function of
various features derived from the text.

Web pages contain two types of tables. Text tables are hu-
man formatted, generally using white space and fixed fonts
to align columns. HTML tables are machine formatted, us-
ing a markup language to designate the position of cells.
Even though not all HTML table elements are actually used
for tables, text table extraction is the harder problem, since
the markup has to be inferred from the layout of the table.
Our source for these tables is a crawl of www.FedStats.com
from July of 2001. These documents are rich in numeric data
tables on a variety of subjects. A set of these documents was
randomly selected and hand labeled for the experiments dis-
cussed in this paper.

An example of a text table is shown in Figure 1. This ta-
ble demonstrates many of the challenges that tables present.
Examine the sixth data line, labeled Sprouts. To correctly
extract the 3rd number on the line (3200), we need to as-
sociate it with the three title lines, the super-header “Area
Planted”, the column header “1999”, the sub-header “acres”,
the section-header “Brussels” and the row-header “Sprouts”.
Close examination shows that “Area Planted” is almost en-
tirely over the second data column. Why not associate it
only with that column? Why would the word “Brussels”
be part of the sprouts data row instead of an empty data
row? In Pinto et al., this problem was handled by including
metadata generously. In addition to extracting the row and
column headers, any row labeled as a header was included
in its entirety. One of the goals of this work is to reduce that
extraneous metadata to improve retrieval on a QA task.

Note that data extraction from HTML tables is not triv-
ial, but presents a different set of problems. The table, rows
and cells are delineated by the HTML markup, so finding a
table is not difficult. However, HTML tables are often used
to format documents instead of presenting data—proving
once again that the combination of language and layout is
important in extracting information from tables. A content
judgment must be made to see if the table is worthy of hav-
ing its data processed. The use of mark up is not consistent,
so header lines and data cells still need to be identified, just
as in text tables. It is our belief that the techniques pre-
sented here will also be applicable to HTML tables.

3. CONDITIONAL RANDOM FIELDS
Conditional Random Fields [7] are undirected graphical

models used to calculate the conditional probability of values
on designated output nodes given values assigned to other
designated input nodes.

In the special case in which the designated output nodes
of the graphical model are linked by edges in a linear chain,



Figure 1: Example Table Snippet
<TITLE> Principal Vegetables for Fresh Market: Area Planted and Harvested
<TITLE> by Crop, United States, 1997-99 1/
<TITLE> (Domestic Units)
<SEPARATOR> --------------------------------------------------------------------------------
<SUPERHEADER> : Area Planted : Area Harvested
<SUPERHEADER> Crop :----------------------------------------------------------------
<TABLEHEADER> : 1997 : 1998 : 1999 : 1997 : 1998 : 1999
<SEPARATOR> --------------------------------------------------------------------------------
<SUBHEADER> : Acres
<SEPARATOR> :
<DATAROW> Artichokes 2/ : 9,300 9,700 9,800 9,300 9,700 9,800
<DATAROW> Asparagus 2/ : 79,530 77,730 79,590 74,030 74,430 75,890
<DATAROW> Beans, Lima : 2,700 3,000 3,200 2,500 2,000 2,900
<DATAROW> Beans, Snap : 90,260 94,700 98,700 82,660 87,800 90,600
<DATAROW> Broccoli 2/ : 130,800 134,300 137,400 130,800 134,300 137,300
<SECTIONHEADER> Brussels :
<SECTIONDATAROW> Sprouts 2/ : 3,200 3,200 3,200 3,200 3,200 3,200
<DATAROW> Cabbage : 77,950 79,680 79,570 75,230 76,280 74,850

CRFs make a first-order Markov independence assumption
among output nodes, and thus correspond to finite state
machines (FSMs). In this case CRFs can be roughly un-
derstood as conditionally-trained hidden Markov models.
CRFs of this type are a globally-normalized extension to
Maximum Entropy Markov Models (MEMMs) [10] that avoid
the label-bias problem [7].

Let o = 〈o1, o2, ...oT 〉 be some observed input data se-
quence, such as a sequence of lines of text in a document,
(the values on n input nodes of the graphical model). Let S
be a set of FSM states, each of which is associated with a la-
bel, l ∈ L, (such as a label DataRow). Let s = 〈s1, s2, ...sT 〉
be some sequence of states, (the values on T output nodes).
CRFs define the conditional probability of a state sequence
given an input sequence as

pΛ(s|o) =
1

Zo
exp

(
T∑

t=1

∑
k

λkfk(st−1, st,o, t)

)
,

where Zo is a normalization factor over all state sequences,
fk(st−1, st,o, t) is an arbitrary feature function over its argu-
ments, and λk is a learned weight for each feature function.
A feature function may, for example, be defined to have
value 0 in most cases, and have value 1 if and only if st−1

is state #1 (which may have label Header), and st is state
#2 (which may have label DataRow), and the observation
at position t in o is a line of text containing digits separated
by more than one space. Higher λ weights make their cor-
responding FSM transitions more likely, so the weight λk in
this example should be positive since widely-spaced digits
often appear in data rows of tables. More generally, feature
functions can ask powerfully arbitrary questions about the
input sequence, including queries about previous lines, next
lines, and conjunctions of all these. They may also have
arbitrary values from −∞ to ∞.

CRFs define the conditional probability of a label se-
quence based on total probability over the state sequences,

pΛ(l|o) =
∑

s:l(s)=l

pΛ(s|o),

where l(s) is the sequence of labels corresponding to the
labels of the states in sequence s.

Note that the normalization factor, Zo, (also known in
statistical physics as the partition function) is the sum of

the “scores” of all possible state sequences,

Zo =
∑
s∈ST

exp

(
T∑

t=1

∑
k

λkfk(st−1, st,o, t)

)
,

and that the number of state sequences is exponential in the
input sequence length, T . In arbitrarily-structured CRFs,
calculating the partition function in closed form is intractable,
and approximation methods such as Gibbs sampling, or
loopy belief propagation must be used. In linear-chain-
structured CRFs (in use here for sequence modeling), the
partition function can be calculated efficiently by dynamic
programming. The details are given in the following subsec-
tion.

3.1 Efficient Inference in CRFs
As in forward-backward for hidden Markov models (HMMs)

[15], the probability that a particular transition was taken
between two CRF states at a particular position in the input
sequence can be calculated efficiently by dynamic program-
ming. We can define slightly modified “forward values”,
αt(si), to be the probability of arriving in state si given the
observations 〈o1, ...ot〉. We set α0(s) equal to the probability
of starting in each state s, and recurse:

αt+1(s) =
∑
s′

αt(s
′) exp

(∑
k

λkfk(s′, s,o, t)

)
.

The backward procedure and the remaining details of Baum-
Welch are defined similarly. Zo is then

∑
s αT (s). The

Viterbi algorithm for finding the most likely state sequence
given the observation sequence can be correspondingly mod-
ified from its original HMM form.

3.2 Training CRFs
The Λ = {λ...} weights of a CRF are typically set to

maximize conditional log-likelihood, L, of labeled sequences
in some training set, D = {〈o, l〉(1), ...〈o, l〉(j), ...〈o, l〉(N)}:

L =

N∑
j=1

log
(
pΛ(l(j)|o(j))

)
−
∑

k

λ2
k

2σ2

where the second sum is a Gaussian prior over parameters,
with variance σ2, that provides smoothing to help cope with
sparsity in the training data [2].



When the training labels make the state sequence unam-
biguous (as they often do in practice), the likelihood func-
tion in exponential models such as CRFs is convex, so there
are no local maxima, and thus finding the global optimum
is guaranteed. It is not, however, straightforward to find it
quickly. Parameter estimation in CRFs requires an iterative
procedure, and some methods require fewer iterations than
others.

Although the original presentation of CRFs [7] described
training procedures based on iterative scaling [7], it is signif-
icantly faster to train CRFs and other “maximum entropy”-
style exponential models by a quasi-Newton method, such as
L-BFGS [1, 8, 16]. This method approximates the second-
derivative of the likelihood by keeping a running, finite win-
dow of previous first-derivatives. Sha and Pereira [16] show
that training CRFs by L-BFGS is several orders of mag-
nitude faster than iterative scaling, and also significantly
faster than conjugate gradient.

L-BFGS can simply be treated as a black-box optimiza-
tion procedure, requiring only that one provide the first-
derivative of the function to be optimized. Assuming that
the training labels on instance j make its state path unam-
biguous, let s(j) denote that path, then the first-derivative
of the log-likelihood is

δL

δλk
=

(
N∑

j=1

Ck(s(j),o(j))

)
−

(
N∑

j=1

∑
s

pΛ(s|o(j))Ck(s,o(j))

)
− λk

σ2

where Ck(s,o) is the “count” for feature k given s and o,
equal to the sum of fk(st−1, st,o, t) values for all positions,
t, in the sequence s. The last term is the derivative of the
Gaussian prior.1

The upper parenthesized term corresponds to the expected
count of feature k given that the training labels are used to
determine the correct state paths. The lower parenthesized
term corresponds to the expected count of feature k using
the current CRF parameters, Λ, to determine the likely state
paths. Matching simple intuition, notice that when the state
paths chosen by the CRF parameters match the state paths
from the labeled data, the derivative will be zero.

When the training labels do not disambiguate a single
state path, expectation-maximization can be used to fill in
the “missing” state paths.

4. TABLE EXTRACTION WITH CRFS

4.1 Line Labels
Our approach to table extraction starts by labeling each

line of a document with a tag that describes that line’s func-
tion relative to tables. The set of labels we use was designed
by examining a large number of tables in Web documents. A
good labeling accomplishes two goals; it marks the bound-
aries of the tables (table location) and identifies the row
types useful for question answering and other applications.
This section explains each label.

1We also tried an L1-like hyperbolic prior,∑
k(a/b) log(cosh(bλk)), with slope a and sharpness b,

and having derivative ab tanh(λk), but found it not to make
a significant difference in accuracy.

4.1.1 Non-extraction Labels
Non-extraction labels represent lines that do not con-

tribute information about table cells. The three labels
are NONTABLE, BLANKLINE and SEPARATOR. NON-
TABLE represents lines of text that have no association with
a table. NONTABLE lines usually appear outside of a ta-
ble. BLANKLINE denotes lines that contain no visible text.
BLANKLINE labels may appear within or outside a table.
SEPARATOR indicates lines that use certain punctuation
characters (-,*, e.g.) to suggest sectioning. They may
appear anywhere in a document.

4.1.2 Header Labels
Header labels mark lines that contain metadata for data

cells. Some or all of the information in header lines
will be associated with the data cells below. The header
labels are TITLE, SUPERHEADER, TABLEHEADER,
SUBHEADER and SECTIONHEADER. TITLE represents
lines of text in which all content should be associated with
every data cell in the following table. SUPERHEADER lines
contain text whose association with data cells spans multi-
ple columns. SUPERHEADER lines appear above TABLE-
HEADER lines. TABLEHEADER represents lines where a
one to one correspondence between data cells and header
cells is likely. SUBHEADER, like SUPERHEADER, has
text with multiple column associations, but appears below
the TABLEHEADER label. SECTIONHEADER indicates
lines of text that pertain to the next few lines of data. SEC-
TIONHEADER labels often group together data lines that
are sub-topics of the SECTIONHEADER.

4.1.3 Data Row Labels
Data row labels mark rows that contain data cells, the

atomic information to extract. Data rows often contain
header information for the row, also. The data row labels are
DATAROW and SECTIONDATAROW. DATAROW rep-
resents lines whose column headers are found in SUPER-
HEADER, TABLEHEADER and SUBHEADER lines. SEC-
TIONDATAROW represents lines whose data cells are also
headed by SECTIONHEADERS.

4.1.4 Caption Labels
Caption labels mark rows that appear below data but still

apply to the table. The caption labels are TABLEFOOT-
NOTE and TABLECAPTION. TABLEFOOTNOTE repre-
sents a reference to a cell or line in a table. TABLECAP-
TION represents a line of text that refers to the whole table.

4.2 Feature Set
Pinto et al. [13] describe features used by a heuristic ta-

ble extractor to identify a narrower range of line types. This
work serves as a starting point for the features used in this
paper. One difference, however, is the treatment of sepa-
rator characters, such as dashes. During the creation of a
CAG, these characters are treated as white space. The belief
that separator characters convey a different meaning than
white space prompted their inclusion in these experiments.
As the system was developed other features were added to
improve performance on development data.

4.2.1 White Space Features
White space is employed in documents and tables to im-

prove readability. Common uses are to separate table cells,
indent titles, indent sub-section data rows and to provide



a separation between lines of text. For purposes of this re-
search white space is any character matching the regular
expression “\s” as defined in the Java pattern class. The
white space features:

• At least four consecutive white space characters are
found in data rows, separating row headers from data,
and in titles that are centered.

• At least four space indents are found in title lines, and
often in header lines where the row header column is
not labeled, or at the start of sub-headers and super-
headers.

• Gaps, at least two consecutive white spaces between
non-space characters, are often used to separate cells
in data and header lines. At least two gaps is used as
an indicator of a table line.

• A large gap of at least five consecutive white spaces
is sometimes used in tables with a small number of
columns to separate the row header from the data.

• A single space indent is often found in section data
rows, as the indent sets these rows off from normal
data rows.

• All space characters is a feature of a line that would
match the regular expression ^\s*$, a blank line.

• The percentage of white space from the first non-white
space character on can separate data rows from prose.
Data rows tend to have a higher percentage of white
space.

4.2.2 Text Features
Printable characters also convey information about the

type of line being observed. The use of digits, keywords and
the layout of the line all contribute features that make lines
recognizable as table or not. The text features:

• Cells are the text between gaps. Three cells on a line
is a feature of data lines.

• Strings common in table headers (month abbrevia-
tions, year strings (1981), other key words) constitute
header features. This feature is expressed as a percent-
age of the characters in the line found in such strings.

• Alphabet characters (A-Za-z) are useful in distinguish-
ing numeric data rows from text headers in tables. The
feature is expressed as a percentage of the non-white
space characters on the line.

• Digit characters (0-9) are also useful in distinguishing
numeric data rows from text headers in tables. The
feature is also expressed as a percentage of the non-
white space characters on the line.

4.2.3 Separator Features
Punctuation marks are often used for formatting tables. A

line of dashes may delineate the header section from the data
section of a table. Vertical characters mark the boundaries
between cells. Two features look directly at punctuation:

• Separator characters (-,+,—,!,=,:,*) are often used to
delineate the boundaries between sections of tables
(headers from data) and to mark column boundaries.
This feature is expressed as a percentage of the non-
space characters on the line.

• Four consecutive periods (.) are indicative of tables
where the row header is separated by a large distance
from a single data column, such as in a table of con-
tents. The periods may or may not be separated by
white space characters.

4.2.4 Feature Representation
Each feature can be represented as a binary value. A 1

indicates the presence of the feature and a 0 indicates the
lack of a feature. For percentage features, a threshold is set,
above which the feature will score a one. Thresholds are
listed in Table 1.

Feature Threshold
Percentage of White Space 0.3
Header Features 0.6
Alphabet Characters 0.6
Digit Characters 0.7
Separator Characters 0.8

Table 1: Thresholds for Percentage Features

With CRFs, it is as easy to use continuous-valued features
as it is to use discrete-valued ones. This enabled experiments
in which the percentage features are not treated as binary
features, but in which the actual percentages are the input.

4.2.5 Conjunctions of Features
CRFs have the ability to take into account information

from before and after the current label. One way of accom-
plishing this is to look at a conjunction of features. The
value of features on one line are multiplied by the value of
features on another (or the same) line, creating a new fea-
ture (Feature1&Feature2). Conjunctions help capture rela-
tionships that a linear combination of features may not. In
these tests, the conjunctions used were the current line with
the previous line, the current line with the following line and
the conjunction of the two following lines together.

4.3 Data Set
We gathered a large set of documents from a crawl of

www.FedStats.gov performed in June 2001. Documents were
chosen for these experiments based on an earlier heuristic
algorithm indicating that these documents may contain ta-
bles. From this set, documents were chosen randomly. This
set contains documents both with and without tables.

Each line of the documents was labeled with one of the
twelve labels described in section 4.1. A simple heuristic
program was run to make an educated guess for a label for
each line. Human judgment was then employed to correct
mistakes in the heuristic labeling.

The first fifty-two documents labeled became the training
set. These fifty-two documents contain 31,915 lines of text
and 5,764 table lines. The next six documents labeled were
set aside as a development set. These six documents contain
5,817 lines of text and 3,607 table lines. Finally, 62 more
documents were labeled, containing 26,947 lines of text and
5,916 table lines. These documents were held out as final
test data.

5. EXPERIMENTAL RESULTS

5.1 Alternative Models
We compare CRFs with two alternative models, both of

which are configured to use the same (binary) feature set de-
scribed previously. CRFs combine the benefits of finite state
models and conditionally-trained log-linear models. The al-
ternatives models are chosen to demonstrate importance of
integrating both benefits.



Hidden Markov models [15], like CRFs, are Markov mod-
els; however they are trained to maximize the generative,
joint probability of observation sequence and the label (state)
sequence, rather than the conditional probability of the la-
bel sequence given observation sequence. We capture the
multiple binary observation features with a smoothed multi-
variate Bernoulli [11].

The second alternative, a Maximum Entropy classifier, is
a log-linear model trained to maximize a conditional proba-
bility—like the CRF. However it does not represent any
finite-state context; it instead classifies each line indepen-
dently. As with the CRF, we use a Gaussian prior, and
train using L-BFGS.

5.2 Training CRFs
Using our Java implementation [9], we trained two ver-

sions of the CRF by L-BFGS. One version used only binary
features (CRF Binary), and converged in 147 iterations. An-
other version used the actual value for the percentage fea-
tures (CRF Continuous), but all other features were treated
as binary, converging in 188 iterations. Both versions used
a Gaussian prior and the same conjunction of features (see
section 3.2)

5.3 Evaluation

5.3.1 Table Line Location
The accuracy of locating tables is evaluated by the F-

measure, (2×Recall×Precision)/(Recall+Precision). [12]
In this case, recall is the number of lines correctly labeled
as belonging in a table (all but NONTABLE, BLANKLINE
and SEPARATOR) divided by the actual number of table
lines. Precision uses same numerator with the total num-
ber of lines labeled as table lines by the program as the
denominator. Table 2 shows the results for the HMM and
two CRFs. CRF Binary used all binary features while CRF
Continuous represented the percentage features as the ac-
tual percentage.

CRF CRF
Data Set HMM Max Ent Binary Continuous
Training .813 .991 .998 .999
Development .955 .981 .994 .993
Test .648 .887 .912 .918

Table 2: Table Line Location, F-Measure

5.3.2 Line Identification
During development of the system, a small evaluation set

was used to see if performance was improving. A larger set of
data was held out for final testing, and no evaluations were
done on that set until the best trained CRF was decided
upon. The results for the development and test data are
presented in Table 3. All four processes do well on the devel-
opment set, but the superiority of the CRF shines through
on the test data. In looking at the test data, a number of the
documents had an unusual construction, where there were
many blank lines between lines of text. The HMM mistak-
enly recognized these NONTABLE lines as TITLES. The
CRF handled these more gracefully.

It is also useful to examine where the CRF made errors.
Table 4 presents recall and precision for each of the la-

CRF CRF
Data Set HMM Max Ent Binary Continuous
Training 89.7 99.5 99.9 99.9
Development 85.5 94.5 96.0 95.9
Test 65.4 85.4 93.4 93.5

Table 3: Percent of Lines Labeled Correctly

bels for the best performing CRF, CRF Continuous, run
on the test data. In this data set, labeling of TABLE-
HEADER lines was especially poor and especially troubling
because the majority of mislabeled TABLEHEADER lines
were as NONTABLE or DATAROW. This contrasted from
the development set, where TABLEHEADERS were mostly
missed as other header lines. SECTIONDATAROW lines
were most often missed as DATAROW lines, although the
DATAROW lines were most often missed when the table
was missed, so NONTABLE is the most frequent mistake.
A number of NONTABLE lines were mislabeled as TABLE-
CAPTION, and these mislabels did not occur in the context
of the end of a table. This aspect of the CRF needs to be
more fully explored.

Label # of Labels Recall Precision
NONTABLE 14118 .979 .954
BLANKLINE 6186 .993 .998
SEPARATOR 492 .896 .942
TITLE 192 .542 .897
SUPERHEADER 92 .652 .909
TABLEHEADER 236 .462 .340
SUBHEADER 49 .918 .616
SECTIONHEADER 186 .441 .701
DATAROW 4497 .864 .912
SECTIONDATAROW 716 .547 .678
TABLEFOOTNOTE 163 .687 .896
TABLECAPTION 20 .000 .000

Table 4: CRF Continuous on Test Set

Figure 2 shows two examples of table labeling gone bad.
The first is an example of a table of contents. Notice that
there is no gap structure. Nor is there a series of lines
with the same structure to indicate a body of a table. The
four consecutive periods feature alone did not prove strong
enough to label the data rows. With no data rows, there
was no table. This may be an example of over fitting the
training data. While there are two examples of this type
of table in the training set, the sample is small compared
to other type of tables. Additionally, the four consecutive
periods feature most often occurs in the training set with
data rows containing gaps.

The second table is partially correct. However, a number
of rows lack gaps (two spaces) between cells, and those lines
are labeled TABLEHEADER. Because there is a discernible
table structure, however, the CRF does a better job of as-
signing a table-type label to the line. It’s clear from looking
at this data, gaps are over weighted in determining data
rows. An examination of the training data shows only two
lines labeled as a data row where digit cells are only sepa-
rated by one space.

The results were also compared with the heuristic results
based on the methods of Pinto, et al. That system uses



Figure 2: Problem Tables
Viterbi Label
NONTABLE Index
NONTABLE Page
BLANKLINE
NONTABLE Marketings, Income, and Value of Milk Production:
NONTABLE United States, 1997-99 . . . . . . . . . . . . . . . . . . . . . . 3
BLANKLINE
NONTABLE Milk and Cream: Marketings and Income,
NONTABLE by State and United States, 1998 . . . . . . . . . . . . . . . . 6
BLANKLINE
NONTABLE Milk and Cream: Marketings and Income,
NONTABLE by State and United States, 1999 . . . . . . . . . . . . . . . .10

-----------------------------------------------------------------------------------------------------------

TABLEHEADER Item All H B O W NMM
BLANKLINE
SEPARATOR ------------------------------------------------------------- ---- ---- ---- ---- ---- ----
BLANKLINE
NONTABLE In ’96, Owns the Same Business Owned in 1992@4: Yes 68.9 67.3 60.1 71.2 66.0 70.5
BLANKLINE
TABLEHEADER In ’96, Owns the Same Business Owned in 1992@4: No 25.5 26.9 32.1 23.2 27.7 24.2
BLANKLINE
DATAROW In ’96, Owns the Same Business Owned in 1992@4: Not Rptd 5.7 5.7 7.7 5.6 6.3 5.3
BLANKLINE
DATAROW Year That Ownership Ended@4: 1994 5.4 4.9 6.3 5.1 5.3 5.5
BLANKLINE
DATAROW Year That Ownership Ended@4: 1995 4.5 4.9 5.3 4.7 4.7 4.4
BLANKLINE
DATAROW Year That Ownership Ended@4: Not Reported 9.9 10.1 12.0 9.0 11.0 9.3
BLANKLINE
TABLEHEADER Year That Ownership Ended@4: N/A@5 68.9 67.3 60.1 71.2 66.0 70.5

four names (captions, headers, data and non-table) to mark
lines, but our labels map nicely to those. Based on the
more generous measure given by the smaller number of la-
bels the CRF outperformed the heuristic program (see Table
5). This is encouraging, since improvements on a heuristic
system requires constant changes to program code, while
improvements on the CRF system require only defining new
features that can be automatically extracted. These results
also show that among the three methods discussed, CRFs
have the most consistent performance.

Data Set Heuristic CRF Continuous
Development 77.1 98.6
Test 92.0 95.3

Table 5: Percent of Lines Labeled Correctly, Heuris-
tic Measurement

6. FUTURE WORK IN TABLE INFORMA-
TION EXTRACTION

The conditional random field model described above lo-
cates tables and tags their constituent lines, but knows noth-
ing of columns, does not segment individual table cells hor-
izontally or vertically, and does not tag individual cells as
being data or header. In ongoing work we are implement-
ing a richer conditional random field that will solve all these
tasks by using a graphical model with nodes at multiple lev-
els of granularity, and with dependency-edges running both
vertically and horizontally.

In this new model there are nodes representing the tag of
each line of text (as in the model described above), horizon-
tally-connected nodes for each individual character2 (with
labels indicating horizontal segmentation of cells), and verti-
cally-connected nodes for each individual character (with
labels indicating vertical segmentation of cells). The latter
two types of nodes use standard OIB-style segmentation la-
bels to indicate the Begin, Interior, and Outside, of cells—
with different families of these tags to indicate data cells
versus header cells.

Thus, for example, a character node might be tagged with
Vertical-Begin/Data and Horizontal-Interior/Data to
indicate the it is at the top of a data cell vertically, and in
the middle of the data cell horizontally.

This model is connected in a grid-pattern instead of a
linear-chain, and the dynamic-programming-based efficient
inference described above is no longer possible. Gibbs sam-
pling or loopy belief propagation would both apply, but we
rely instead on a procedure for exact MAP estimates based
on tree agreement [17]. Inference in our model consists of
three steps performed in a cycle. First, as described above,
belief propagation is performed on a linear-chain-shaped
CRF (with one node per line), in order to tag each line
of text. Second, belief propagation is performed using the
horizontal edges of the character nodes. Third belief propa-
gation is performed using the vertical edges of the character
nodes. The overall inference procedure then cycles to step 1,
where the tagging decisions of previous inference steps can
now be examined as features. The procedure is guaranteed
to converge.

2or alternatively, each space-separated token



For efficiency, the character-level inference might only oc-
cur in regions of the document that the first step indicated
were likely to contain a table. Association of data cells with
their corresponding header cells may not require sophisti-
cated modeling—for each data cell, simply finding header
cells that intersect horizontally and vertically is expected to
perform extremely robustly. Experimentation with this new
model is pending.

While this model is being developed, experiments will also
proceed on using the CRF labeling with the QuASM extrac-
tion program. Our hypothesis is that the finer labeling cou-
pled with the column finding heuristics of the old program
will solve the problem of extraneous metadata. We then
hope to show that these cleaner documents perform better
on a QA retrieval task.

7. CONCLUSIONS
Tables occur in many types of documents, in many for-

mats and variations. They contain data that are important
for various information retrieval tasks, including document
retrieval, question answering, summarization and novelty
detection. Processing of tables is distinguished from many
other language processing tasks in that it requires model-
ing a complex, interdependent mixture of language and for-
matting features. For this reason, a conditionally-trained
probability model is particularly well-suited to table extrac-
tion, because conditional models handle well many arbi-
trary, non-independent features of its input. CRFs offer the
combined benefits of conditional-probability training and
Markov finite-state context, and these benefits are shown in
our experimental results to provide a practical improvement
over generative models (an HMM) and conditionally-trained
stateless models (a maximum entropy classifier).

There are many promising avenues for further work. Our
current training set is not large. Since the models are clearly
overfitting, simply training with more data may help signif-
icantly. There are also opportunities for adding more com-
plex features. The most significant missing component of
our model is the ability to locate and label cells within the
table; our plans for this problem are outlined above. These
models are expected to also be applicable to many other
non-tabular tasks involving mixtures of content, formatting
and layout.
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