
# Missing Data Problems in Machine Learning

#### **Senate Thesis Defense**

Ben Marlin Machine Learning Group Department of Computer Science University of Toronto April 8, 2008

Department of Computer Science, University of Toronto



Missing Data Problems in Machine Learning Benjamin Marlin

# **Introduction: Notation for Missing Data**

| $\mathbf{x}_n$                                | 0.1 0.9 0.2 0.7 0.3 | Data Vector            |
|-----------------------------------------------|---------------------|------------------------|
| $r_n$                                         | 1 0 0 1 1           | Response Vector        |
| $\mathbf{o}_n$                                | 1 4 5               | Observed<br>Dimensions |
| $\mathbf{m}_n$                                | 2 3                 | Missing<br>Dimensions  |
| $\mathbf{x}_n^{\mathbf{o}_n}, \mathbf{x}_n^o$ | 0.1 0.7 0.3         | Observed Data          |
| $\mathbf{x}_n^{\mathbf{m}_n}, \mathbf{x}_n^m$ | 0.9 0.2             | Missing Data           |

Department of Computer Science, University of Toronto

Missing Data Problems in Machine Learning Benjamin Marlin

## **Theory of Missing Data:** Factorizations

#### **Data/Selection Model Factorization:**

$$P(\mathbf{X}, \mathbf{R}, \mathbf{Z} | \theta, \mu) = P(\mathbf{R} | \mathbf{X}, \mathbf{Z}, \mu) P(\mathbf{X}, \mathbf{Z} | \theta)$$

• The probability of selection depends on the true values of the data variables and latent variables.

#### Classification of Missing Data:

MCAR:  $P(\mathbf{R}|\mathbf{X}, \mathbf{Z}, \mu) = P(\mathbf{R}|\mu)$ 

MAR:  $P(\mathbf{R}|\mathbf{X},\mathbf{Z},\mu) \times P(\mathbf{R}|X^o,\mu)$ 

**NMAR:**  $P(\mathbf{R}|\mathbf{X}, \mathbf{Z}, \mu)$  No simplification in general.

Department of Computer Science, University of Toronto

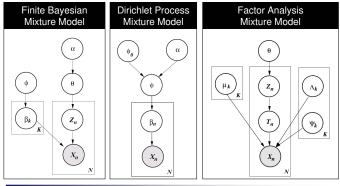
4

Missing Data Problems in Machine Learning Benjamin Marlin

# **Theory of Missing Data: Inference**

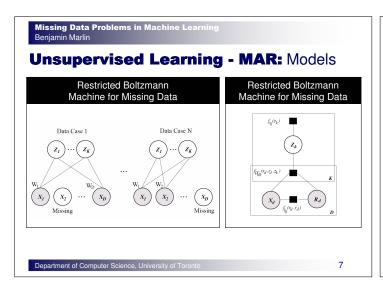
#### MCAR/MAR Posterior:

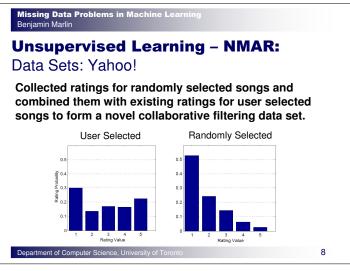
$$P(\theta|\mathbf{x}^{o}, \mathbf{r}) \propto \int \int \int P(\mathbf{X}, \mathbf{Z}|\theta) P(\mathbf{R}|\mathbf{X}, \mu) P(\theta|\omega) P(\mu|\eta) d\mu dZ d\mathbf{x}^{m}$$
$$\propto P(\mathbf{X}^{o} = \mathbf{x}^{o}|\theta) P(\theta|\omega)$$


#### **NMAR Posterior:**

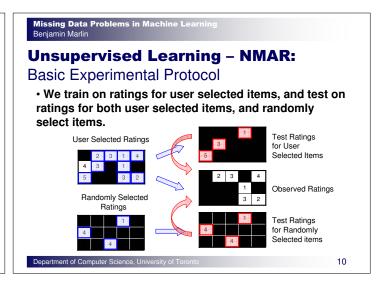
$$P(\theta|\mathbf{x}^o,\mathbf{r}) \propto \int \int \int P(\mathbf{X},\mathbf{Z}|\theta) P(\mathbf{R}|\mathbf{X},\mathbf{Z},\mu) P(\theta|\omega) P(\mu|\eta) d\mu dZ d\mathbf{x}^m$$

Department of Computer Science, University of Toronto

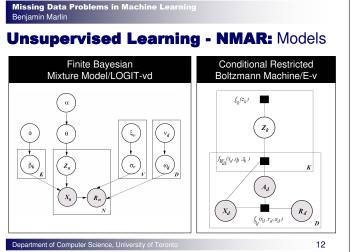

Missing Data Problems in Machine Learning Benjamin Marlin


# **Unsupervised Learning - MAR:** Models




Department of Computer Science, University of Toronto


6






Missing Data Problems in Machine Learning Benjamin Marlin **Unsupervised Learning - NMAR:** Data Sets: Jester Jester gauge set of 10 jokes used as complete e860 data. Synthetic missing data was added. 15,000 users randomly selected • Missing data model:  $\mu_v(s) = s(v-3)+0.5$ s=0.125 0.5 P(T Rating Value Rating Value Rating Value Rating Value Rating Value Department of Computer Science, University of Tol 9







# **Unsupervised Learning - NMAR:**

Comparison of Results on Yahoo! Data

|                | Complexity | Rand MAE            | Complexity | User MAE            |
|----------------|------------|---------------------|------------|---------------------|
| EM MM          | 1          | $0.7725 \pm 0.0024$ | 5          | $0.5779 \pm 0.0066$ |
| EM MM/CPT-v    | 20         | $0.5431 \pm 0.0012$ | 10         | $0.6661 \pm 0.0025$ |
| EM MM/Logit    | 5          | $0.5038 \pm 0.0030$ | 5          | $0.7029 \pm 0.0186$ |
| EM MM/CPT-v+   | 5          | $0.4456 \pm 0.0033$ | 20         | $0.7088 \pm 0.0087$ |
| MCMC DP        | N/A        | $0.7624 \pm 0.0063$ | N/A        | $0.5767 \pm 0.0077$ |
| MCMC DP/CPT-v  | N/A        | $0.5549 \pm 0.0026$ | N/A        | $0.6670 \pm 0.0071$ |
| MCMC DP/CPT-v+ | N/A        | $0.4428 \pm 0.0027$ | N/A        | $0.7537 \pm 0.0026$ |
| CD RBM         | 20         | $0.7179 \pm 0.0025$ | 10         | $0.5513 \pm 0.0077$ |
| CD cRBM/E-v    | 1          | $0.4553 \pm 0.0031$ | 20         | $0.5506 \pm 0.0085$ |

Department of Computer Science, University of Toronto

14

Missing Data Problems in Machine Learning

# **Unsupervised Learning - NMAR:**

**NEW:** Ranking Results

$$NDCG(n) = \frac{\sum_{i=1}^{T} \frac{2^{x_{ni}^t} - 1}{\log(1 + \hat{\pi}(i, n))}}{\sum_{i=1}^{T} \frac{2^{x_{ni}^t} - 1}{\log(1 + \pi(i, n))}}$$

- $\hat{x}_{ni}^t$  : mean of posterior predictive distribution for test item i.
- $\widehat{\pi}(i,n)$  : rank of test item i according to  $\widehat{x}_{ni}^t$  .
- $\pi(i,n)$  : rank of test item i according to  $x_{ni}^t$  .

Department of Computer Science, University of Toronto

. \_

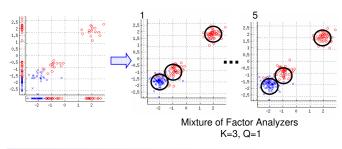
Missing Data Problems in Machine Learning Benjamin Marlin

#### **Unsupervised Learning – NMAR:**

**NEW:** Comparison of Yahoo! Ranking Results

#### Strong Generalization:

|                | Complexity | Rand NDCG           |
|----------------|------------|---------------------|
| EM MM          | 1          | $0.8162 \pm 0.0022$ |
| EM MM/CPT-v    | 20         | $0.8352 \pm 0.0023$ |
| EM MM/Logit    | 5          | $0.8398 \pm 0.0012$ |
| EM MM/CPT-v+   | 20         | $0.8377 \pm 0.0012$ |
| MCMC DP        | N/A        | $0.8167 \pm 0.0025$ |
| MCMC DP/CPT-v  | N/A        | $0.8248 \pm 0.0020$ |
| MCMC DP/CPT-v+ | N/A        | $0.8319 \pm 0.0011$ |
| CD cRBM        | 20         | $0.8207 \pm 0.0011$ |
| CD cRBM/E-v    | 10         | $0.8244 \pm 0.0017$ |


Department of Computer Science, University of Toronto

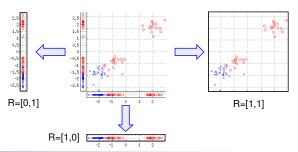
16

Missing Data Problems in Machine Learning Benjamin Marlin

### Classification: Imputation

**Multiple Imputation:** Replace missing feature values with samples of  $\mathbf{x}^m$  given  $\mathbf{x}^o$  drawn from several imputation models.

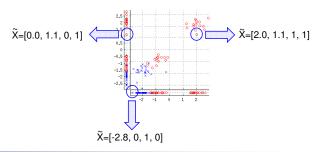



Department of Computer Science, University of Toronto

17

Missing Data Problems in Machine Learning Benjamin Marlin

#### Classification: Reduced Models


**Reduced Models:** Each observed data subspace defined by a pattern of missing data gives a separate classification problem.



**Missing Data Problems in Machine Learning** Benjamin Marlin

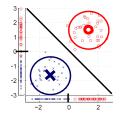
# Classification: Response Augmentation

**Response Augmentation:** Set missing features to zero and augment feature representation with response indicators.



Department of Computer Science, University of Toronto

19

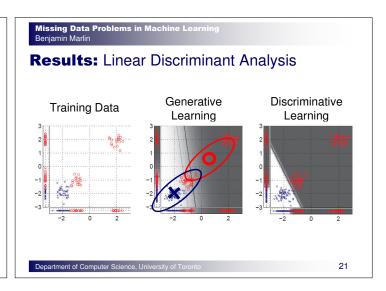

#### Classification: Generative Models

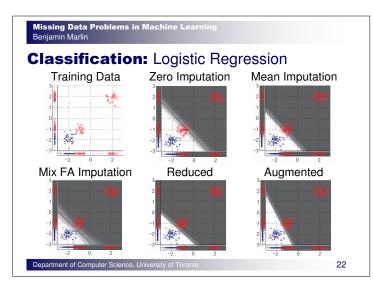
#### Generative Model (LDA-FA):

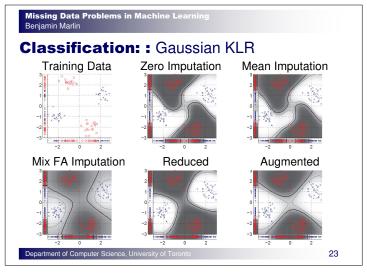
$$P(Y_n = c) = \theta_c$$

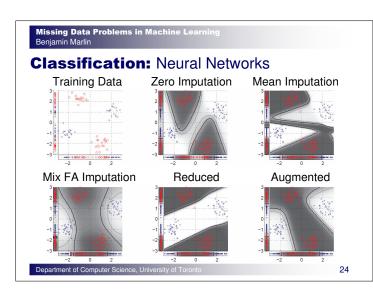
$$P(\mathbf{X}_n = \mathbf{x}_n | Y_n = c) = \mathcal{N}(\mathbf{x}_n | \mu_c, \Sigma)$$

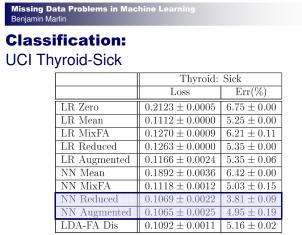
$$\Sigma = \Lambda \Lambda^T + \Psi$$





#### **Predictive Distribution with Missing Data:**

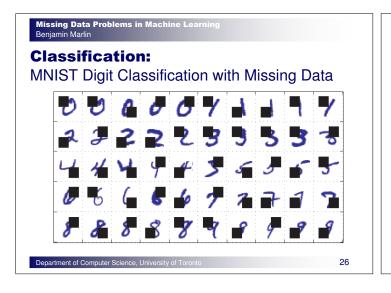

$$P(Y=c|\mathbf{X}_{n}^{o}=\mathbf{x}_{n}^{o}) = \frac{\theta_{c}\mathcal{N}(\mathbf{x}_{n}^{o}|\mu_{c}^{o},\Sigma^{oo})}{\sum_{c}\theta_{c}\mathcal{N}(\mathbf{x}_{n}^{o}|\mu_{c}^{o},\Sigma^{oo})}$$


Department of Computer Science, University of Toronto


20












25

Department of Computer Science, Univer



#### **Classification:**

# MNIST Digit Classification with Missing Data

| •              |                     | _                |  |
|----------------|---------------------|------------------|--|
|                | MNIST Digits        |                  |  |
|                | Loss                | Err(%)           |  |
| LR Zero        | $0.6350 \pm 0.0110$ | $19.75 \pm 0.41$ |  |
| LR Mean        | $0.6150 \pm 0.0112$ | $19.15 \pm 0.34$ |  |
| LR Reduced     | $0.7182 \pm 0.0135$ | $22.62 \pm 0.45$ |  |
| LR Augmented   | $0.6160 \pm 0.0112$ | $19.35 \pm 0.36$ |  |
| LDA-FA Dis     | $0.6355 \pm 0.0051$ | $19.95 \pm 0.25$ |  |
| NN Mean        | $0.6235 \pm 0.0541$ | $18.34 \pm 0.42$ |  |
| NN Reduced     | $0.6944 \pm 0.0088$ | $21.51 \pm 0.27$ |  |
| NN Augmented   | $0.5925 \pm 0.0161$ | $17.76 \pm 0.18$ |  |
| gKLR Mean      | $0.4147 \pm 0.0075$ | $13.02 \pm 0.24$ |  |
| gKLR Reduced   | $0.5694 \pm 0.0079$ | $18.32 \pm 0.49$ |  |
| gKLR Augmented | $0.3896 \pm 0.0101$ | $12.34 \pm 0.46$ |  |

Department of Computer Science, University of Toronto

27

Missing Data Problems in Machine Learning Benjamin Marlin

# The End

Department of Computer Science, University of Toronto

28