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Theory of Missing Data: Factorizations

Data/Selection Model Factorization:

• The probability of selection depends on the true values 

of the data variables and latent variables. 

MAR:

MCAR:

NMAR:                          No simplification in general.

Classification of Missing Data:

X
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Theory of Missing Data: Inference

MCAR/MAR Posterior:

NMAR Posterior:
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Unsupervised Learning Unsupervised Learning Unsupervised Learning Unsupervised Learning ---- MAR:MAR:MAR:MAR: Models

Finite Bayesian 

Mixture Model

Dirichlet Process 

Mixture Model

Factor Analysis 

Mixture Model
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Restricted Boltzmann 

Machine for Missing Data

Unsupervised Learning Unsupervised Learning Unsupervised Learning Unsupervised Learning ---- MAR:MAR:MAR:MAR: Models

Restricted Boltzmann 

Machine for Missing Data
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Unsupervised Learning – NMAR:

Data Sets: Yahoo!  

Collected ratings for randomly selected songs and 
combined them with existing ratings for user selected 
songs to form a novel collaborative filtering data set.

User Selected Randomly Selected
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Unsupervised Learning – NMAR:

Data Sets: Jester
Jester gauge set of 10 jokes used as complete 
data. Synthetic missing data was added.

• 15,000 users randomly selected

• Missing data model: µv(s) = s(v-3)+0.5
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Unsupervised Learning – NMAR:

Basic Experimental Protocol
• We train on ratings for user selected items, and test on 
ratings for both user selected items, and randomly 
select items.

User Selected Ratings

Randomly Selected 

Ratings
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Unsupervised Learning Unsupervised Learning Unsupervised Learning Unsupervised Learning ---- NMAR:NMAR:NMAR:NMAR: Models

Finite Bayesian 

Mixture Model/CPT-v

Dirichlet Process 

Mixture Model/CPT-v
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Unsupervised Learning Unsupervised Learning Unsupervised Learning Unsupervised Learning ---- NMAR:NMAR:NMAR:NMAR: Models

Conditional Restricted 

Boltzmann Machine/E-v

Finite Bayesian 

Mixture Model/LOGIT-vd
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Unsupervised Learning – NMAR:

Comparison of Results on Yahoo! Data
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Unsupervised Learning – NMAR:

NEW: Ranking Results

• :  mean of posterior predictive distribution for test item i.

• : rank of test item i according to        .

• : rank of test item i according to        .
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Unsupervised Learning – NMAR:

NEW: Comparison of Yahoo! Ranking Results

Strong Generalization:
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Classification: Imputation

Multiple Imputation: Replace missing feature values with 
samples of xm given xo drawn from several imputation models. 

1 5

Mixture of Factor Analyzers 

K=3, Q=1
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Classification: Reduced Models

Reduced Models: Each observed data subspace defined by a 
pattern of missing data gives a separate classification problem.

R=[0,1] R=[1,1]

R=[1,0]
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Classification: Response Augmentation

Response Augmentation: Set missing features to zero and 
augment feature representation with response indicators.

X=[0.0, 1.1, 0, 1]
~

X=[2.0, 1.1, 1, 1]
~

X=[-2.8, 0, 1, 0]
~
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Classification: Generative Models

Generative Model (LDA-FA):

Predictive Distribution with Missing Data:

Missing Data Problems in Machine Learning

Benjamin Marlin

21Department of Computer Science, University of Toronto

Results: Linear Discriminant Analysis

Training Data 
Generative 

Learning 

Discriminative 

Learning
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Classification: Logistic Regression
Training Data Zero Imputation Mean Imputation 

Mix FA Imputation Augmented Reduced 
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Classification: : Gaussian KLR
Training Data Zero Imputation Mean Imputation 

Augmented Reduced Mix FA Imputation 
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Classification: Neural Networks
Training Data Zero Imputation Mean Imputation 

Augmented Reduced Mix FA Imputation 

Missing Data Problems in Machine Learning

Benjamin Marlin

25Department of Computer Science, University of Toronto

Classification: 

UCI Thyroid-Sick
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Classification: 

MNIST Digit Classification with Missing Data
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Classification: 

MNIST Digit Classification with Missing Data
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The End


