

Missing Data Problems in Machine Learning Benjamin Marlin			
Basic I	Notation		
N	Number of data cases.		
D	Number of data dimensions.		
C	Number of classes.		
	Number of multinomial values.		
K	Number of clusters or hidden units.		
Department of Co	omputer Science, University of Toronto	4	

Missing Data Problems in Machine Learning Benjamin Marlin					
Basic Nota	tion for Missing	Data			
\mathbf{x}_n	0.1 0.9 0.2 0.7 0.3	Data Vector			
r _n	1 0 0 1 1	Response Vector			
On	1 4 5	Observed Dimensions			
\mathbf{m}_n	2 3	Missing Dimensions			
$\mathbf{x}_n^{\mathbf{o}_n}, \mathbf{x}_n^o$	0.1 0.7 0.3	Observed Data			
$\mathbf{x}_n^{\mathbf{m}_n}, \mathbf{x}_n^m$	0.9 0.2	Missing Data			
Department of Computer Scie	nce, University of Toronto	5			

Theory of Missing Data: Overview

Background on the Theory of Missing Data (Little/Rubin):

- Factorizations of the generative process
- Three classes of missing data
 - Missing Completely at Random (MCAR)
 - Missing at Random (MAR)
 - Not Missing at Random (NMAR)
- The effect of each class of missing data on inference

Extensions and Elaborations:

- MAR assumption, multivariate data, and symmetry
- MAR assumption and model misspecification

Missing Data Problems in Machine Learning Missing Data Problems in Machine Learning \bigcirc Beniamin Marlin Beniamin Marlin **Theory of Missing Data:** Factorizations Theory of Missing Data: Classification **Data/Selection Model Factorization:** MCAR MAR NMAR $P(\mathbf{X}, \mathbf{R}, \mathbf{Z}|\theta, \mu) = P(\mathbf{R}|\mathbf{X}, \mathbf{Z}, \mu)P(\mathbf{X}, \mathbf{Z}|\theta)$ Xol Z Xobs Ζ The probability of selection depends on the true values of the data variables and latent variables. Xmis X^m Pattern Mixture Model Factorization: $P(\mathbf{X}, \mathbf{R}, \mathbf{Z}|\vartheta, \nu) = P(\mathbf{X}, \mathbf{Z}|\mathbf{R}, \vartheta)P(\mathbf{R}|\nu)$ MCAR: $P(\mathbf{R}|\mathbf{X}, \mathbf{Z}, \mu) = P(\mathbf{R}|\mu)$ Each response vector defines a different pattern, and MAR: $P(\mathbf{R}|\mathbf{X}, \mathbf{Z}, \mu) = P(\mathbf{R}|X^{obs}, \mu)$ each pattern has a different distribution over the data. NMAR: No simplification in general. 7 Department of Computer Science, University of Toronto Department of Computer Science, University of Toronto 8

Missing Data Problems in Machine Learning Benjamin Marlin

Theory of Missing Data: Misspecification

Misspecified Missing Data Model, NMAR Missing Data:

• If missing data is NMAR, it is not sufficient to use any missing data model. Inference is still biased if the wrong missing data model is used.

Misspecified Data Model, MAR Missing Data:

• Even if missing data is MAR with respect to the underlying generative process, inference for the parameters of a simpler data model can still be biased.

Missing Data Problems in Machine Learning Benjamin Marlin

Theory of Missing Data: Misspecification

Misspecified Data Model, MAR Missing Data:

- Consider a 2D binary example where the true data model is the full four element CPT, and we approximate it using a product of the two marginal distributions.
- \bullet Suppose the missing data model is MAR, and our goal is to estimate the marginal P(X1=1).

x	P(x)	P(R = [0,0] x)	P(R = [0,1] x)	P(R = [1,0] x)	P(R = [1,1] x)
0.0	a	α	β	γ	$1 - \alpha - \beta - \gamma$
0 1	b	α	δ	γ	$1 - \alpha - \delta - \gamma$
$1 \ 0$	c	α	β	λ	$1 - \alpha - \beta - \lambda$
11	d	α	δ	λ	$1 - \alpha - \delta - \lambda$

Missing Data Problems in Machine Learning Missing Data Problems in Machine Learning \bigcirc Beniamin Marlin Beniamin Marlin Theory of Missing Data: Misspecification Theory of Missing Data: Misspecification Misspecified Data Model, MAR Missing Data: Misspecified Data Model, MAR Missing Data: $\delta = 0.1$ Suppose we estimate P(X1=1) under the marginal a = 0.1 c = 0.7 $\alpha = 0.1$ model, and under the true model. b = 0.1 d = 0.1 $\beta = 0.1 + t0.05$ $\gamma = 0.2$ • We can show that Computing P(X1=1) under the 0.7961 ± 0.0007 marginal model is equal to computing P(X1=1|R1=1). 0.7917 0.10 0.8000 0.7923 ± 0.0006 0.15 0.8000 0.7996 ± 0.0006 0.7860 ± 0.0007 0.20 0.8000 0.8011 ± 0.0007 0.7812 0.7826 ± 0.0008 • We can further prove that P(X1=1) is only equal to 0.250.8000 0.7750 P(X1=1| R1=1) if $\beta = \delta$. This corresponds to the MCAR 0.30 0.8000 0.8000 ± 0.0007 0.7679 0.7679 ± 0.0007 0.35 0.8000 0.7994 ± 0.0008 0.7596 0.7582 ± 0.0009 condition. 0.40 0.8000 0.7500 0.7501 ± 0.0010 0.8000 0.7386 0.7992 ± 0.0010 0.7379 ± 0.0010 0.450.50 0.8000 0.7986 ± 0.0010 0.7250 0.7241 ± 0.0010 Department of Computer Science, University of Toronto 13 Department of Computer Science, University of Toronto 14

15

Missing Data Problems in Machine Learning Benjamin Marlin

Unsupervised Learning – MAR: Overview

Background on Unsupervised Learning With Random Missing Data:

- Finite Bayesian Multinomial Mixture (MAP EM)
- Dirichlet Process Multinomial Mixture (Gibbs)
- Finite Factor Analysis/PPCA Mixture (ML EM)
- Restricted Boltzmann Machines (Contrastive Divergence)

Extensions and Elaborations:

Department of Computer Science, University of Toronto

- · Collapsed Gibbs sampler for DPMM with missing data
- · Derivation of factor analysis mixture with missing data
- New view of RBM models for missing data

Missing Data Problems in Machine Learning Benjamin Marlin

Finite Bayesian Mixture: Model

Dirichlet Distribution:

Bayesian mixture modeling becomes much easier when conjugate priors are used for the model parameters. The conjugate prior for the mixture proportions θ is the Dirichlet distribution.

$$P(\theta|\alpha) = \frac{\Gamma(\sum_{k} \alpha_{k})}{\prod_{k} \Gamma(\alpha_{k})} \prod_{k} \theta_{k}^{\alpha_{k}-1}$$

$$E[\theta_{k}|\alpha] = \frac{\alpha_{k}}{\sum_{k=1}^{K} \alpha_{k}}$$

$$P(\theta|\alpha, \mathbf{z}) = \frac{\Gamma(N + \sum_{k} \alpha_{k})}{\prod_{k} \Gamma(C_{k} + \alpha_{k})} \prod_{k} \theta_{k}^{C_{k} + \alpha_{k}-1}$$

Missing Data Problems in Machine Learning Benjamin Marlin Finite Bayesian Mixture: Model Probability Model: $P(Z_n = k|\theta) = \theta_k$ φ $P(\mathbf{X}_n = \mathbf{x}_n | Z_n = k, \beta) = P(\mathbf{x}_n | \beta_k)$ $P(\theta, \beta | \alpha, \phi) = P(\theta | \alpha) \prod P(\beta_k | \phi)$ β_k **Properties:** · Allows for a fixed, finite number of clusters. • In the multinomial mixture, $P(x_n|\beta_k)$ is a X_n product of discrete distributions. The prior on β Nand θ is Dirichlet. Department of Computer Science, University of Toronto Skip 16

Missing Data Problems in Machine Learning Missing Data Problems in Machine Learning Benjamin Marlin Benjamin Marlin Finite Bayesian Mixture: Prediction Dirichlet Process Mixture: Model **Predictive Distribution: Probability Model:** α. $P(x_{dn} = v | \mathbf{x}_n, \mathbf{r}_n, \beta, \theta)$ $P(\phi|\phi_0,\alpha) = \mathcal{DP}(\alpha,\phi_0)$ $P(\beta_n | \phi) = \phi(\beta_n)$ $=\sum_{k=1}^{K} P(x_{dn}=v|z_n=k,\beta) P(z_n=k|\mathbf{x}_n,\mathbf{r}_n,\beta,\theta)$ $P(\mathbf{X}_n = \mathbf{x}_n | \beta) = P(\mathbf{x}_n | \beta_n)$ $=\sum_{k=1}^{K}\beta_{vdk}\frac{\theta_{k}\prod_{d=1}^{D}\prod_{v=1}^{V}\beta_{vdk}^{[r_{dn}=1][x_{dn}=v]}}{\sum_{k'=1}^{K}\theta_{k'}\prod_{d=1}^{D}\prod_{v=1}^{V}\beta_{vdk'}^{[r_{dn}=1][x_{dn}=v]}}$ **Properties:** βn • Since ϕ is discrete, the DPM can be viewed as a countably infinite mixture model. Another way to arrive at a DPM is to consider the limit of a Bayesian mixture model with symmetric Dirichlet prior as the number for components K goes to infinity. Department of Computer Science, University of Toronto Department of Computer Science, University of Toronto 19 20

Missing Data Problems in Machin<u>e Learning</u> Benjamin Marlin

Dirichlet Process Mixture: Inference

Collapsed Gibbs Sampler With Missing Data:

$$P(z_n = k, \exists i \neq n \ z_i = k | z_{-n}, \mathbf{x}, \alpha, \phi_0)$$

$$\propto \frac{c_k^{-n}}{N - 1 + \alpha} \prod_{d=1}^D \prod_{v=1}^V \left(\frac{c_{vdk}^{-n} + \phi_{vd0}}{\sum_{v=1}^V c_{vdk}^{-n} + \phi_{vd0}} \right)^{[r_{dn}=1][x_{dn}=v]}$$

Department of Computer Science, University of Toronto

 Λ_k

 Ψ_k

26

N

Finite Mixture/CPT-v: Learning

MAP EM Algorithm (M-Step):

$$\begin{aligned} \theta_k &= \frac{\alpha_k - 1 + \sum_{n=1}^{N} q_n(k)}{N - K + \sum_{k=1}^{K} \alpha_k} \\ \beta_{vdk} &= \frac{\phi_{vdk} - 1 + \sum_{n=1}^{N} q_n(k) [a_{dn} = 1] [x_{dn} = v] + q_n(k, v, d) [a_{dn} = 0]}{\sum_{n=1}^{N} q_n(k) - V + \sum_{v=1}^{V} \phi_{vdk}} \\ \mu_v &= \frac{\xi_{1v} - 1 + \sum_{n=1}^{N} \sum_{d=1}^{D} [r_{dn} = 1] [x_{dn} = v] + q_n(v, d) [r_{dn} = 1] [a_{dn} = 0]}{\xi_{1v} + \xi_{0v} - 2 + \sum_{n=1}^{N} \sum_{d=1}^{D} [r_{dn} = 1] [x_{dn} = v] + q_n(v, d) [a_{dn} = 0]} \end{aligned}$$
Department of Computer Science, University of Toronto

Missing Data Problems in Machine Learning Benjamin Marlin DP Mixture/CPT-v: Results

Yahoo! Results: DP vs DP/CPT-v and DP/CPT-v+

	Weak Rand	Weak User
MCMC DP	0.7658 ± 0.0031	0.5735 ± 0.0004
MCMC DP/CPT-v	0.5548 ± 0.0037	0.6798 ± 0.0049
MCMC DP/CPT-v+	0.4421 ± 0.0008	0.7814 ± 0.0082
	-	
	Strong Rand	Strong User
MCMC DP	0.7624 ± 0.0063	0.5767 ± 0.0077

MCMC DP	0.7624 ± 0.0063	0.5767 ± 0.0077
MCMC DP/CPT-v	0.5549 ± 0.0026	0.6670 ± 0.0071
MCMC DP/CPT-v+	0.4428 ± 0.0027	0.7537 ± 0.0026

₩ 0.0

0.55

0.45

0.4 l

0.05

0.1 0.15 NMAR Effect Strength

0 25

WWE 0.6

0.55

0.5

0.4

0.05

0.1 0.15 NMAR Effect Strength

Department of Computer Science, University of Toronto

Missing Data Problems in Machine Learning Benjamin Marlin

М

0.25

Finite Mixture/LOGIT-vd: Results

Yahoo! Weak Generalization Results: MM vs MM/LOGIT-vd

Missing Data Problems in Machine Learning Benjamin Marlin

Finite Mixture/LOGIT-vd: Results Jester Results: MM vs MM/LOGIT-vd Weak MAE vs Effect Strength Strong MAE vs Effect Strength 0.7 User EM MM User EM MM/Log User EM MM 0.75 0 Rand EM MM nd EM MM Rand EM MM/I - Rand EM MM/Log 0.7 0.65 0.65 0.6 MAE MAE 0 0.55 0.55 0.5 0.5 0.45 0.45 শ P 0.4 0.4 0.25 0.25 0.05 0.1 0.15 NMAR Effect Strength 0.2 0.05 0.1 0.15 NMAR Effect Strength 0.2 Department of Computer Science, University of Toront

68

Conditional RBM: Results

Missing Data Problems in Machine Learning Benjamin Marlin

small by comparison, but still significant.

training time.

Yahoo! Weak Generalization Results: cRBM vs cRBM-v

Unsupervised Learning – NMAR: Results

Methods that model NMAR effects perform significantly better than methods that don't on synthetic and real data.
Differences between methods that model NMAR effects are

 Results show a big win for rating prediction when a small number of ratings for randomly selected items is available at

Missing Data Problems in Machine Learning Beniamin Marlin

75

Conditional RBM: Results Jester Results: cRBM vs cRBM-v Weak MAE vs Effect Strength Strong MAE vs Effect Strength User CD cRBM User CD cRBM-User CD cRBM User CD cRBM - 6 0.7 Rand CD cRBM BM - Rand CD cRBM-0. 0. 0.6 0.6 AAE AAE 0.6 0. 0.5 0.5 0.5 0.5 0.45 0.45 0.4 0.4 0.1 0.15 NMAR Effect Strength 0.25 0.05 0.1 0.15 NMAR Effect Strength

Missing Data Problems in Machine Learning Benjamin Marlin

Department of Computer Science, University of Toron

Unsupervised Learning – NMAR: Comparison of Results on Yahoo! Data

	Complexity	Rand MAE	Complexity	User MAE
EM MM	1	0.7725 ± 0.0024	5	0.5779 ± 0.0066
EM MM/CPT-v	20	0.5431 ± 0.0012	10	0.6661 ± 0.0025
EM MM/Logit	5	0.5038 ± 0.0030	5	0.7029 ± 0.0186
EM MM/CPT-v+	5	0.4456 ± 0.0033	20	0.7088 ± 0.0087
MCMC DP	N/A	0.7624 ± 0.0063	N/A	0.5767 ± 0.0077
MCMC DP/CPT-v	N/A	0.5549 ± 0.0026	N/A	0.6670 ± 0.0071
MCMC DP/CPT-v+	N/A	0.4428 ± 0.0027	N/A	0.7537 ± 0.0026
CD RBM	20	0.7179 ± 0.0025	10	0.5513 ± 0.0077
CD cRBM/E-v	1	0.4553 ± 0.0031	20	-0.5506 ± 0.0085
Department of Computer Scie	ence. University o	f Toronto		76

Missing Data Problems in Machine Learning Benjamin Marlin

Department of Computer Science, University of Toron

Unsupervised Learning – NMAR: NEW: Ranking Results

$$NDCG(n) = \frac{\sum_{i=1}^{T} \frac{2^{x_{ni}^{t}} - 1}{\log(1 + \hat{\pi}(i, n))}}{\sum_{i=1}^{T} \frac{2^{x_{ni}^{t}} - 1}{\log(1 + \pi(i, n))}}$$

- \hat{x}_{ni}^t : mean of posterior predictive distribution for test item i.
- $\hat{\pi}(i, n)$: rank of test item i according to \hat{x}_{ni}^t .
- $\pi(i, n)$: rank of test item i according to x_{ni}^t .

Missing Data Problems in Machine Learning Benjamin Marlin

Unsupervised Learning – NMAR:

NEW: Comparison of Yahoo! Ranking Results

Weak Generalization:

Department of Computer Science, University of To

	K=1	K=5	K=10	K=20
EM MM	0.8153 ± 0.0007	0.8135 ± 0.0006	0.8106 ± 0.0005	0.8073 ± 0.0006
EM MM/CPT-v	0.8257 ± 0.0006	0.8325 ± 0.0006	0.8353 ± 0.0006	0.8356 ± 0.0008
EM MM/Logit	0.8251 ± 0.0005	0.8385 ± 0.0003	0.8384 ± 0.0005	0.8381 ± 0.0010
EM MM/CPT-v+	0.8282 ± 0.0003	0.8337 ± 0.0007	0.8355 ± 0.0008	0.8367 ± 0.0007
MCMC DP	0.8167 ± 0.0007	0.8167 ± 0.0007	0.8167 ± 0.0007	0.8167 ± 0.0007
MCMC DP/CPT-v	0.8259 ± 0.0010	0.8259 ± 0.0010	0.8259 ± 0.0010	0.8259 ± 0.0010
MCMC DP/CPT-v+	0.8320 ± 0.0011	0.8320 ± 0.0011	0.8320 ± 0.0011	0.8320 ± 0.0011
CD cRBM	0.8104 ± 0.0007	0.8154 ± 0.0012	0.8174 ± 0.0010	0.8183 ± 0.0011
CD cRBM/E-v	0.8211 ± 0.0007	0.8185 ± 0.0010	0.8220 ± 0.0011	0.8210 ± 0.0009

0.25

74

Department of Computer Science, University of Toror

Missing Data Problems in Mach Benjamin Marlin	ne Learning		$\textcircled{\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Missing Data Problems in Machine Learning Benjamin Marlin
Unsupervised Le NEW: Comparison of	arning - of Yahoo!	- NMAR: Ranking Re	sults	Classification with Missing Data: Background on Classification with Complete Data:
Strong Generaliza	tion: Complexity	Rand NDCG]	 Linear/Regularized Discriminant Analysis Logistic Regression Perceptrons and SVMs
EM MM/CPT-v EM MM/Logit EM MM/CPT-v+	20 5 20	$\begin{array}{c} 0.8102 \pm 0.0022 \\ 0.8352 \pm 0.0023 \\ 0.8398 \pm 0.0012 \\ 0.8377 \pm 0.0012 \end{array}$		Kernel Methods and Kernel Logistic Regression Multi-Layer Neural Networks Frameworks for Classification with Missing Features:
MCMC DP MCMC DP/CPT-v MCMC DP/CPT-v+ CD cRBM CD cRBM/F-v	N/A N/A N/A 20 10	$\begin{array}{c} 0.8167 \pm 0.0025 \\ 0.8248 \pm 0.0020 \\ 0.8319 \pm 0.0011 \\ 0.8207 \pm 0.0011 \\ 0.8244 \pm 0.0017 \end{array}$		Generative Classifiers Single and Multiple Imputation Reduced Models/Classification in Subspaces
Department of Computer Science, University	of Toronto		79	Response Indicator Augmentation Department of Computer Science, University of Toronto

Imputation Framework

Mean Imputation: Replace missing feature values with mean of observed values for each feature.

Missing Data Problems in Machine Learning Benjamin Marlin

Imputation Framework

Multiple Imputation: Replace missing feature values with samples of **x**^m given **x**^o drawn from several imputation models.

Missing Data Problems in Machine Learning Benjamin Marlin

Logistic Regression: Model

Linear logistic regression optimizes the conditional likelihood of the class labels given the features using gradient methods.

• Can exactly represent the class posterior of exponential family class conditional models with shared dispersion.

$$P(Y = 1 | \mathbf{X} = \mathbf{x}) = \frac{1}{1 + \exp(-(\mathbf{w}^T \mathbf{x} + b))}$$
$$P(Y = c | \mathbf{X} = \mathbf{x}) = \frac{\exp(\mathbf{w}_c^T \mathbf{x} + b_c)}{\sum_{c'=1}^C \exp(\mathbf{w}_{c'}^T \mathbf{x} + b_{c'})}$$

Department of Computer Science, University of Toront

Classification with Missing Data: UCI Hepatitis

	Hepatitis		
	Loss	$\operatorname{Err}(\%)$	
LR Zero	0.4012 ± 0.0439	20.67 ± 2.71	
LR Mean	0.4064 ± 0.0576	18.00 ± 2.82	
LR MixFA	0.3517 ± 0.0506	13.33 ± 3.44	
LR Reduced	0.4443 ± 0.0720	19.33 ± 3.78	
LR Augmented	0.5812 ± 0.1258	19.33 ± 4.27	
LDA-FA Dis	0.4312 ± 0.0720	20.00 ± 3.98	

Department of Computer Science, University of Toronto

101

Missing Data Problems in Machine Learning Benjamin Marlin

Classification with Missing Data: UCI Thyroid-AllHypo

Department of Computer Science, University of Toronto

	Thyroid: A	Thyroid: AllHypo		
	Loss	$\operatorname{Err}(\%)$		
LR Zero	0.1284 ± 0.0002	3.62 ± 0.02		
LR Mean	0.1274 ± 0.0001	3.43 ± 0.00		
LR MixFA	0.1273 ± 0.0020	3.88 ± 0.15		
LR Reduced	0.1281 ± 0.0008	3.53 ± 0.06		
LR Augmented	0.1246 ± 0.0003	3.49 ± 0.03		
NN Mean	0.0630 ± 0.0007	2.51 ± 0.08		
NN MixFA	-0.0673 ± 0.0002	2.72 ± 0.03		
NN Reduced	0.0650 ± 0.0004	2.55 ± 0.07		
NN Augmented	0.0612 ± 0.0003	2.57 ± 0.10		
LDA-FA Dis	0.1246 ± 0.0003	3.55 ± 0.02		

 \bigcirc

Classification with Missing Data: UCI Thyroid-Sick

	Thyroid:	Sick
	Loss	$\operatorname{Err}(\%)$
LR Zero	0.2123 ± 0.0005	6.75 ± 0.00
LR Mean	0.1112 ± 0.0000	5.25 ± 0.00
LR MixFA	0.1270 ± 0.0009	6.21 ± 0.11
LR Reduced	0.1263 ± 0.0000	5.35 ± 0.00
LR Augmented	0.1166 ± 0.0024	5.35 ± 0.06
NN Mean	0.1892 ± 0.0036	6.42 ± 0.00
NN MixFA	0.1118 ± 0.0012	5.03 ± 0.15
NN Reduced	0.1069 ± 0.0022	3.81 ± 0.09
NN Augmented	0.1065 ± 0.0025	4.95 ± 0.19
LDA-FA Dis	0.1092 ± 0.0011	5.16 ± 0.02
Department of Computer Science, Univers	ity of Toronto	

Missing Da Benjamin Ma	ata Problems in Mach i arlin	ine Learning		6	Missing Data Problems in Machine Learning Benjamin Marlin	
Classi MNIST	i fication: Digit Classifie	cation with N	Aissing Da	ta	Classification: gKLR Augmented Kernel Details	
		MNIST I	Digits		160 m Eigenvalue Spectrum	
		Loss	$\operatorname{Err}(\%)$		140	
	LR Zero	0.6350 ± 0.0110	19.75 ± 0.41		100	
	LR Mean	0.6150 ± 0.0112	19.15 ± 0.34		120	
	LR Reduced	0.7182 ± 0.0135	22.62 ± 0.45		100	
	LR Augmented	0.6160 ± 0.0112	19.35 ± 0.36		<u>3</u> 80	
	LDA-FA Dis	0.6355 ± 0.0051	19.95 ± 0.25		80	
	NN Mean	0.6235 ± 0.0541	18.34 ± 0.42		a 40	
	NN Reduced	0.6944 ± 0.0088	21.51 ± 0.27		20	
	NN Augmented	0.5925 ± 0.0161	17.76 ± 0.18			
	gKLR Mean	0.4147 ± 0.0075	13.02 ± 0.24		-20	
	gKLR Reduced	0.5694 ± 0.0079	18.32 ± 0.49			
	gKLR Augmented	0.3896 ± 0.0101	12.34 ± 0.46		40 0 100 200 300 400 500 600 700 800 900 1000	
Department of	Computer Science, University	of Toronto		105	Department of Computer Science, University of Toronto	106

