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Abstract

This paper describes a novel machine learning framework for solving
sequential decision problems called Markov decision processes (MDPs)
by iteratively computing low-dimensional representations and approx-
imately optimal policies. A unified mathematical framework for learn-
ing representation and optimal control in MDPs is presented based
on a class of singular operators called Laplacians, whose matrix repre-
sentations have nonpositive off-diagonal elements and zero row sums.
Exact solutions of discounted and average-reward MDPs are expressed
in terms of a generalized spectral inverse of the Laplacian called the
Drazin inverse. A generic algorithm called representation policy iter-
ation (RPI) is presented which interleaves computing low-dimensional
representations and approximately optimal policies. Two approaches
for dimensionality reduction of MDPs are described based on geometric
and reward-sensitive regularization, whereby low-dimensional represen-
tations are formed by diagonalization or dilation of Laplacian opera-
tors. Model-based and model-free variants of the RPI algorithm are
presented; they are also compared experimentally on discrete and
continuous MDPs. Some directions for future work are finally outlined.



1
Introduction

In this section, we introduce the problem of representation discovery in
sequential decision problems called Markov decision processes (MDPs),
whereby the aim is to solve MDPs by automatically finding “low-
dimensional” descriptions of “high-dimensional” functions on a state
(action) space. The functions of interest include policy functions speci-
fying the desired action to take, reward functions specifying the imme-
diate payoff for taking a particular action, transition distributions
describing the stochastic effects of doing actions, as well as value func-
tions that represent the long-term sum of rewards of acting according
to a given policy. Our aim is to illustrate the major ideas in an informal
setting, leaving more precise definitions to later sections. The concept
of a Laplacian operator is introduced, and its importance to MDPs is
explained. The general problem of dimensionality reduction in MDPs
is discussed. A roadmap to the remainder of the paper is also provided.

1.1 Motivation

A variety of problems of practical interest to researchers across a diverse
range of areas, from artificial intelligence (AI) [117] to operations

404



1.1 Motivation 405

research (OR) [109, 110], can be abstractly characterized as “sequential
decision-making.” Namely, in all these problems, the task can be for-
mulated in terms of a set of discrete or continuous set of states, in each
of which a decision maker has to select one of a discrete set of actions,
which incurs a reward or cost. The objective of the decision maker is to
choose actions “optimally,” that is, to compute a policy function that
maps states to actions maximizing some long-term cumulative measure
of rewards. Examples range from game-playing [132] and manufactur-
ing [33] to robotics [81, 97], and scheduling [143]. MDPs [56, 110] have
emerged as the standard mathematical framework to model sequential
decision-making. A MDP is mathematically defined in terms of a set of
states S; a set of actions A (which may often be conditionally defined in
terms of choices available in the current state as As); a stochastic tran-
sition distribution P a

ss′ describing the set of outcomes s′ of performing
action a in state s; and a payoff or “reward” function Ra

ss′ . The opti-
mization objective is to find a mapping or policy from states to actions
that maximize some cumulative measure of rewards. Commonly used
objective measures include maximizing the expected “discounted” sum
of rewards (where rewards in the future are geometrically attenuated by
powers of a fixed positive scalar value γ < 1), or maximizing the aver-
age reward or expected reward per decision. Crucially, the optimization
goal takes into account the uncertainty associated with actions. Every
policy defines a value function on the state space, where the value of
a state is the sum of the immediate reward received and the expected
value of the next state that results from choosing the action dictated by
the policy. A MDP is typically solved through the well-known Bellman
equation [110], which is a recursive equation relating the value of the
current state to values of adjacent states.

Exact solution methods, such as linear programming [36], policy
iteration [56], and value iteration [110], assume value functions are
represented using a table (or more generally on a fixed set of basis
functions). The complexity of these algorithms is typically polynomial
(cubic) in the size of the discrete state space |S| (or exponential in the
size of any compact description of the state space). When the number of
states is large or if the state space is continuous, exact representations
become infeasible, and some parametric or nonparametric function
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approximation method needs to be used. For example, if the states S of
a discrete MDP are enumerated from s = 1, . . . ,s = |S|, where |S| = n,
then functions over this discrete state space can be viewed as vectors
that lie in a Euclidean space R|S|. Most previous work on approximately
solving large MDPs surveyed in books on approximate dynamic pro-
gramming [109], neuro-dynamic programming [12], and reinforcement
learning [129], assume that MDPs are solved approximately by a set
of handcoded “features” or basis functions mapping a state s to a k-
dimensional real vector φ(s) ∈ Rk, where k� |S|.

Popular choices of parametric bases include radial basis functions
(RBFs), neural networks, CMACs, and polynomials. Concretely, a poly-
nomial basis can be viewed as an |S| × k matrix, where the ith column
represents the basis function 1,2i,3i, . . . , |S|i. A radial basis function

φk(s) = e−
||s−sk||2

2σ2 , where σ is a scaling factor, and sk is the “center” of
the basis function. A value function V is approximated as a linear com-
bination of basis functions, namely: V ≈ Φw, where Φ is a matrix whose
columns are the specified basis functions, and w is a weight vector. If
the number of columns of Φ is k� |S|, then Φ can be viewed as provid-
ing a low-dimensional projection of the original value function ∈ R|S|

to a subspace ∈ Rk.
It has long been recognized that traditional parametric function

approximators, such as RBFs, may have difficulty accurately approxi-
mating value functions due to nonlinearities in a MDP’s state space (see
Figure 1.1). Dayan [35] and Drummond [40] have noted that states close
in Euclidean distance may have values that are very far apart (e.g., two
states on opposite sides of a wall in a spatial navigation task). A tradi-
tional parametric architecture, such as an RBF, makes the simplifying
assumption that the underlying space has Euclidean geometry.

The same issues arise in continuous MDPs as well. Figure 1.2 shows
a set of samples produced by doing a random walk in a 2D inverted
pendulum task. Here, the state variables are θ, the pole angle, and θ̇,
the angular velocity. Note that in this task, and in many other con-
tinuous control tasks, there are often physical constraints that limit
the “degrees of freedom” to a lower-dimensional manifold, resulting in
motion along highly constrained regions of the state space. Figure 1.2
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Fig. 1.1 Left : Dimensionality reduction of a MDP M involves finding a set of bases Φ such
that any function on a MDP’s state space, such as its optimal value function V ∗, can be
compressed effectively. Right : The optimal value function in a “two-room” discrete MDP
with 400 states. The agent can take actions in the four compass directions. Each action
succeeds with probability 0.9, otherwise leaves the agent in the same state. The agent is
“rewarded” only for reaching a corner “goal” state. Access to each room from the other is
available only through a central door, and this “bottleneck” results in a nonlinear optimal
value function. This value function is ostensibly a high dimensional vector ∈ R

400, but can
be compressed onto a much lower-dimensional subspace.

also shows an approximation to the optimal value function constructed
using a linear combination of “proto-value” basis functions [77], or
eigenfunctions obtained by diagonalizing a random walk operator on
a graph connecting nearby samples.

Both the discrete MDP shown in Figure 1.1 and the continuous
MDP shown in Figure 1.2 have “inaccessible” regions of the state space,
which can be exploited in focusing the function approximator to accessi-
ble regions. Parametric approximators, as typically constructed, do not
distinguish between accessible and inaccessible regions. The approaches
described below go beyond modeling just the reachable state space, in
that they also build representations based on the transition matrix asso-
ciated with a specific policy and a particular reward function [103, 106].
By constructing basis functions adapted to the nonuniform density and
geometry of the state space, as well as the transition matrix and reward
function, the approaches described in this paper are able to construct
adaptive representations that can outperform parametric bases.
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1.2 Laplacian Operators

A unique perspective adopted in this paper is based on exploring links
between a family of singular matrices, termed Laplacians, and the
solution of MDPs.1 In continuous spaces, the (symmetric) Laplacian
operator has been the object of study for almost two centuries: it
has been called “the most beautiful object in all of mathematics and
physics” [95] as it has played a central role in physics and in many
areas of mathematics. On graphs, the discretized (symmetric and non-
symmetric) Laplacian has been studied extensively in graph theory,
where its spectra reveal structural properties of undirected and directed
graphs [26, 27]. Stated in its most general form, the (nonsymmetric)
Laplacian matrix is one whose off-diagonal elements are nonpositive
and whose row sums are equal to 0 [2, 22, 24]. As we show in this paper,
there are strong connections between Laplacian matrices and MDPs.
In particular, for any MDP, either in the discounted or average-reward
seting, its solution can be shown to involve computing a generalized
Laplacian matrix.

Since their row sums are equal to 0, Laplacian matrices are singular,
and they do not have a direct inverse (the nullspace is nontrivial since
the constant vector of all 1s is an eigenvector associated with the 0
eigenvalue). However, a family of generalized inverses exist for low-rank
and singular matrices. The well-known Moore-Penrose pseudo-inverse
is widely used in least-squares approximation, which will be useful later
in this paper. However, a less well-known family of spectral inverses —
the Drazin inverse (and a special instance of it called the group inverse)
is of foundational importance to the study of Markov chains. Indeed,
Campbell and Meyer [20] state that:

For an m-state [Markov] chain whose transition matrix
is T , we will be primarily concerned with the matrix
A = I − T . Virtually everything that one wants to know
about a chain can be extracted from A and its Drazin
inverse.

1 In this paper, we use the term “operator” to mean a mapping on a finite or infinite-
dimensional space, and the term “matrix” to denote its representation on a specific set of
bases.
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L = I − P =
[

0.7 −0.7
−0.6 0.6

]

Fig. 1.3 Illustration of a Laplacian operator associated with a MDP. Left : A simple two-
state Markov chain with transition matrix P . Right : Its associated Laplacian matrix. Exact
(and approximate) solutions to MDPs can be expressed in terms of a generalized spectral
inverse of such singular Laplacian matrices.

We denote transition matrices generally as P , and define the
Laplacian associated with a transition matrix as L = I − P [2, 22, 24]
(see Figure 1.3). It has long been known that the Drazin inverse of the
singular Laplacian matrix L reveals a great deal of information about
the structure of the Markov chain [92, 121]. In particular, the states in
a Markov chain can be partitioned into its various recurrent classes or
transient classes based on the Drazin inverse. Also, the sensitivity of
the invariant distribution of an ergodic Markov chain to perturbations
in the transition matrix can be quantified by the size of the entries in
the Drazin inverse of the Laplacian.2 The solution to average-reward
and discounted MDPs can be shown to depend on the Drazin inverse
of the Laplacian [21, 110].

As we will show in this paper, Laplacian matrices play a crucial role
in the approximate solution of MDPs as well. We will explore a specific
set of bases, called Drazin bases, to approximate solutions to MDPs
(see Figure 1.4). In continuous as well as discrete MDPs, approxima-
tion requires interpolation of noisy samples of the true value function.
A growing body of work in machine learning on nonlinear dimension-
ality reduction [73], manifold learning [8, 30, 116, 131], regression on
graphs [99] and representation discovery [80] exploit the remarkable
properties of the symmetric Laplacian operator on graphs and man-
ifolds [115]. We will describe how regularization based on symmetric
and nonsymmetric graph Laplacians can be shown to provide an auto-
matic method of constructing basis functions for approximately solving

2 Meyer [92] defines the condition number of a Markov chain with transition matrix P by
the absolute value of the largest element in the Drazin inverse of I − P .
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Fig. 1.4 Top right : The optimal value function in a two-room MDP with 100 states.
Top left : Using just 4 Drazin bases, the original MDP is compressed onto a 4D problem,
whose solution yields an optimal policy. Bottom left : The approximation plotted in 2D
showing the state space layout. Bottom right : The learned policy using the approximation
is optimal.

Table 1.1 Some Laplacian operators on undirected graphs. W is a symmetric weight matrix
reflecting pairwise similarities. D is a diagonal matrix whose entries are row sums of W . All
these operators are represented by matrices whose row sums are 0 and have non-positive
off-diagonal entries.

Operator Definition Spectrum
Combinatorial Laplacian L = D − W λ ∈ [0,2maxv dv ]

Normalized Laplacian L = I − D−1/2WD−1/2 λ ∈ [0,2]
Random Walk Laplacian Lr = I − D−1W λ ∈ [0,2]

MDPs [57, 77, 83, 102]. Table 1.1 describes a few examples of graph
Laplacian matrices. The spectral properties of the graph Laplacian
reveal a great deal of information about the structure of a graph.
In particular, the eigevectors of the symmetric Laplacian yield a low-
dimensional representation of a MDP, generating an orthogonal basis
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that reflects the nonlinear geometry of the state space. We turn to
describe the problem of dimensionality reduction in MDPs next.

1.3 Dimensionality Reduction of MDPs

Constructing a low-dimensional representation of a MDP means finding
a basis Φ with respect to which the original MDP can be represented
“compactly” and solved “efficiently.”

Definition 1.1. Basis Construction Problem in MDPs: Given a
Markov decision process M , find an “optimal” basis matrix Φ that
provides a “low-dimensional” representation of M , and enables solving
M as “accurately” as possible with the “least” computational effort.

Notions like “optimal,” “accurately,” and “least” will for now be left
somewhat vague, but will be defined more precisely later. Note that the
solution to the basis construction problem involves managing a set of
mutually incompatible trade-offs. For example, a discrete MDP can be
solved exactly using the unit vector (“table lookup”) representation:
this choice of basis optimizes the “accuracy’ dimension, and requires
no effort in finding the basis, but incurs a sizable computational cost.
Exact algorithms like policy iteration [56] have a computational com-
plexity cubic in the size of the state space |S|, or exponential in the
size of any compact encoding of a state. On the other extreme, it is
easy to project a high-dimensional value function V ∈ R|S| on a low-
order basis space of dimension Rk, where k� |S| by trivially choosing
a set of random vectors (e.g., each vector is normalized to have length 1
and whose entries are distributed uniformly between 0 and 1). In this
case, the cost of solving the MDP may be dramatically reduced, and
the effort in finding the basis matrix is again trivial, but the resulting
solution may be far from optimal.

It is possible to design an extremely compact basis matrix Φ if the
optimal value function V ∗ is known — namely, use V ∗ itself! How-
ever, knowing V ∗ presupposes solving the original MDP (presumably
on some initial basis, say the unit vectors). This latter solution illus-
trates the somewhat paradoxical situation that the basis construction
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problem may require as much or more computational effort than that
required to solve the original MDP. An example of an efficient basis is
given in Figure 1.4. Here, the optimal policy is found by compressing
a 100 state MDP into an effectively 4D space, whose solution gives
an optimal policy. However, the cost of finding the Drazin bases is
quite significant, since it involves finding the generalized inverse of the
Laplacian. In many applications, a decision maker is required to solve
many instances of the same problem. An example may be a robot that
is tasked to retrieve a set of objects in a given environment, where each
object is located in a different room. Thus, the cost of finding such
low-dimensional representations may be amortized over the solution of
a range of MDPs Mi, say all of which are defined on the same state
(action) space, and differ only in the reward function. Finally, in the
fully general setting of learning to solve MDPs, the decision maker may
only have access to samples from the underlying MDP, say by simu-
lation whereby training data are available in the form of trajectories
(st,at, rt,st+1). Here, st is the state at time t, at is the action selected,
rt is the payoff or reward received, and st+1 is the resulting state from
performing action at. This setting is commonly studied in a variety of
areas, such as approximate dynamic programming [12, 109] and rein-
forcement learning [129]. The methods described later will illustrate
these competing trade-offs and how to balance them. It is worthwhile
to point out that these similar issues often arise in other domains, e.g.,
the use of wavelet methods to compress images [86].

1.3.1 Invariant Subspaces of a MDP

This paper describes a range of methods for constructing adaptive bases
that are customized to the nonlinear geometry of a state space, or to a
particular policy and reward function. The overarching theme under-
lying the various methods described in this paper is the notion of con-
structing representations by decomposing the effect of a linear operator
T on the space of functions on a state (or state-action) space, princi-
pally by finding its invariant subspaces.3 There are many reasons to
find invariant subspaces of an operator T . The solution to a MDP can

3 If T : X → X is an operator, a subspace Y ⊆ X is called invariant if for each x ∈ Y, Tx ∈ Y.
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be expressed abstractly in terms of finding the fixed point of an oper-
ator on the space of value functions. More formally, it can be shown
that the value function V π associated with a policy π is a fixed point
of the Bellman operator T π:

T π(V π)(x) = V π(x). (1.1)

Thus, the value function V π forms a 1D invariant subspace of the
Bellman operator. We will see, however, that there are compelling rea-
sons for finding other larger invariant spaces. The invariant subspaces
associated with a transition matrix P have the attractive property of
eliminating prediction errors [11, 104]. Two main principles for con-
structing invariant subspaces of operators are explored: diagonalization
and dilation.

1.3.2 Diagonalization and Dilation

In this paper, we explore two broad principles for solving the basis
construction problem in MDPs by finding invariant subspaces, based
on widely used principles in a variety of subfields in mathematics from
group theory [123], harmonic analysis [52, 86], linear algebra [127], and
statistics [59]. Diagonalization corresponds to finding eigenvectors of
an operator: it reduces a possibly full matrix to a diagonal matrix. For
example, in linear algebra [127], eigenvectors form invariant subspaces
of T since Tx = λx = xλ. Here, λ is the representation of T on the
space spanned by x.

Diagonalization: One generic principle for basis construction involves
remapping functions over the state space into a frequency-oriented
coordinate system, generically termed Fourier analysis [125]. Exam-
ples include dimensionality reduction methods in statistics, such as
principal components analysis (PCA) [59], low-rank approximations of
matrices such as singular value decomposition (SVD) [49], and time-
series and image-compression methods, such as the fast Fourier trans-
form [136]. In the case of MDPs, the basis functions can be constructed
by diagonalizing the state transition matrix. Often, these matrices are
not diagonalizable or are simply not known. In this case, it is possi-
ble to construct bases by diagonalizing a “weaker” operator, namely a
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random walk operator on a graph induced from a MDP’s state space,
similar to recent work on manifold learning [28, 98, 116, 131]. The graph
Laplacian [26] is often used, since it is symmetric and its eigenvectors
are closely related to that of the natural random walk. We call the
bases resulting from diagonalizing the graph Laplacian “proto-value
functions” or PVFs [77]. Unlike applications of graph-based machine
learning, such as spectral clustering [96] or semi-supervised learning
[98], approximating value functions on graphs involves new challenges
as samples of the desired function are not readily available. Instead,
an iterative procedure is used to sample from a series of functions V̂t,
each of which is progressively closer to the desired optimal value func-
tion V ∗. Furthermore, samples are not available a priori, but must
be collected by exploration of the MDP’s state space. The concept of
invariant eigenspaces generalizes to infinite-dimensional Hilbert spaces
[37]; one example of which is Fourier analysis in Euclidean spaces.
We will explore building finite-dimensional Fourier bases on graphs,
and see how to generalize these ideas to eigenfunctions on continuous
spaces.

Dilation: Another general method for constructing invariant sub-
spaces uses the principle of dilation. For example, a dilation operator
on the space of functions on real numbers is Tf(x) = f(2x). Several
dilation-based approaches will be compared, including methods based
on Krylov spaces, a standard approach of solving systems of linear equa-
tions [41, 118]. Applied to MDPs, this approach results in the reward
function being “dilated” by powers of some operator, such as the transi-
tion matrix [106, 103]. A novel basis construction method called Drazin
bases is described in this paper, which uses the Drazin inverse of the
Laplacian LD. These are a new family of bases building on a theoreti-
cal result showing that the discounted value function of a MDP can be
written in terms of a series of powers of the Drazin inverse.

Another dilation-based procedure involves a multiscale construc-
tion where functions over space or time are progressively remapped
into time–frequency or space–frequency atoms [34, 86]. This multiscale
construction is most characteristic of a family of more recent methods
called wavelets [34, 86]. We will explore multiscale basis construction
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on graphs and manifolds using a recent graph-based approach called
diffusion wavelets [30]. There has been much work on multiscale wavelet
methods in image compression and signal processing [87], which can
also be viewed using the framework of invariance. We will construct
multiscale wavelet bases on discrete graphs, building on the recently
developed diffusion wavelet framework [76]. These approaches can be
applied to a range of different operators, ranging from a model-based
setting using the system dynamics transition matrix to “weaker” oper-
ators such as the natural random-walk on the (sampled) underlying
state (action) space.

Combined with any of the procedures described above for construct-
ing task-adaptive bases, it is possible to design a variety of architec-
tures for simultaneously learning representation and control. One such
framework is generically referred to as representation policy iteration
[78], comprising of an outer loop where basis functions are constructed
and an inner loop where the optimal policy within the linear span of
the constructed bases is learned.

1.4 Roadmap to the Paper

The rest of the paper is organized as follows. Section 2 provides an
overview of MDPs. Section 3 introduces a general family of Laplacian
matrices, and shows how they are intimately connected to solving
MDPs. Section 4 surveys various methods for approximately solving
MDPs, including least-squares methods, linear programming methods,
and reproducing kernel Hilbert space methods. Section 5 formulates
the problem of constructing low-dimensional representations of MDPs
more precisely, and describes a set of trade-offs that need to be bal-
anced in coming up with effective solutions. Section 6 describes the first
of the two main approaches to building basis functions by diagonal-
ization. Section 7 describes methods for constructing representations
by dilations of operators. Section 8 shows how these basis construc-
tion methods can be combined with methods for approximately solv-
ing MDPs to yield model-based techniques that simultaneously learn
representation and control. Section 9 describes a generalization of the
graph Laplacian operator to continuous sets called manifolds, as well as



1.4 Roadmap to the Paper 417

an interpolation method for approximating continuous eigenfunctions
of the manifold Laplacian. Section 10 describes a model-free version of
the RPI framework, and evaluates its performance in continuous MDPs.
Finally, Section 11 concludes with a brief survey of related work, and
a discussion of directions for future work.



2
Sequential Decision Problems

We begin by providing a detailed overview of a class of sequential deci-
sion problems called Markov decision processes (MDPs). Two common
optimality frameworks used in MDPs are described: in average-reward
MDPs, the goal of the decision maker is to optimize the expected
reward per step; in the discounted framework, the goal is to optimize
the expected cumulative discounted sum of rewards, where rewards in
the future are decayed geometrically by a discount factor γ < 1. In
Section 3, we will show how Laplacian matrices provide a way to unify
both these frameworks by expressing the discounted value function in
terms of the average-reward or gain of a policy. We describe methods for
exactly solving MDPs, including policy iteration, value iteration, and
linear programming. Finally, we discuss simulation-based reinforcement
learning methods for approximately solving MDPs, when only samples
of the transition model and reward function are available. We restrict
the discussion in this section to methods that employ table lookup
representations (or unit vector bases) to exactly represent transition
models, rewards, and policies, leaving the discussion of more general
approximation methods to Section 4.

418
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2.1 Markov Decision Processes

The basic modeling paradigm underlying a MDP is that of a decision
maker (or “agent”) who interacts with an external environment by tak-
ing actions. The sequential decision problem is formulated as a set of
“states,” each of which models a particular situation in the decision
problem. For example, a state may be a configuration of pieces in a
game of backgammon or chess, the location of a robot, the number of
jobs waiting in a queueing system and so on. A crucial assumption made
in the MDP model is that the evolution of states is “Markovian,” mean-
ing that the distribution of future states is conditionally independent
of the past, given perfect knowledge of the current state. Actions cause
the environment to stochastically transition to a new state. The desir-
ability of a state is determined by an immediate “reward” or “payoff”.
The goal of the agent is to choose actions such that it maximizes its long
term payoffs. The transition from one state to the next is governed by
a probability distribution that reflects the uncertainty in the outcome
of decisions. A detailed review of MDPs can be found in Puterman’s
text [110].

2.1.1 Discounted MDPs

We begin with the discounted optimality framework. The average-
reward MDP formulation is described in Section 2.1.2. As we will see
later in Section 3, these two frameworks are intimately related through
a generalized Laplacian operator.

Definition 2.1. A discrete Markov decision process (MDP) M =
(S,A,P a

ss′ ,Ra
ss′) is defined by a finite set of discrete states S, a finite

set of actions A, a transition model P a
ss′ specifying the distribution

over future states s′ when an action a is performed in state s, and a
corresponding reward model Ra

ss′ specifying a scalar cost or reward. In
continuous MDPs, the set of states ⊆ Rd.

Abstractly, a value function is a mapping S → R or equivalently
(in discrete MDPs) a vector ∈ R|S|. Given a policy π : S → A mapping
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states to actions, its corresponding discounted value function V π spec-
ifies the expected long-term discounted sum of rewards received by the
agent in any given state s when actions are chosen using the policy.

Definition 2.2. The long-term discounted value associated with a
state under a fixed policy is defined as:

V π(s) = Eπ(rt + γrt+1 + γ2rt+2 + · · · |s = st),

where Eπ indicates the conditional expectation that the process begins
in the initial state s. Actions are chosen at each step using policy π,
and rt is the reward received at time step t.

We can associate with any policy π a value function V π, which is
the fixed point of an operator T π.

Definition 2.3. Given any deterministic policy π, the operator T π is
defined as

T π(V )(s) = Rsπ(s) + γ
∑
s′∈S

P
π(s)
ss′ V (s′),

where Rsπ(s) =
∑

s′ P
π(s)
ss′ R

π(s)
ss′ .

It can be shown that V π(s) is a fixed point of T π, that is

T π(V π)(s) = V π(s). (2.1)

Definition 2.4. The optimal value function V ∗ of a MDP is defined as

V ∗(s) ≡ V ∗(s) ≥ V π(s) ∀ π, s ∈ S,

where the optimal policy π∗ is defined as

π∗(s) ∈ argmax
a

(
Rsa + γ

∑
s′

P a
ss′V ∗(s′)

)
.

Here, Rsa =
∑

s′∈sP
a
ss′Ra

ss′ .



2.1 Markov Decision Processes 421

The optimal policy π∗ is not in general unique. However, any
optimal policy π∗ defines the same unique optimal value function. The
optimal value function can be shown to be a fixed point of another oper-
ator T ∗, defined as follows.

Definition 2.5. The fixed point operator T ∗ for a MDP is defined as

T ∗(V )(s) = max
a

(
Rsa + γ

∑
s′∈S

P a
ss′V (s′)

)
.

It can be shown that the optimal value function is a fixed point of
the operator T ∗, that is

T ∗(V ∗)(s) = V ∗(s), ∀ s ∈ S. (2.2)

Action-value functions are mappings from S × A→ R, and repre-
sent a convenient reformulation of the value function.

Definition 2.6. The optimal action value Q∗(x,a) is defined as the
long-term value of the nonstationary policy performing a first, and
then acting optimally, according to V ∗:

Q∗(s,a) ≡ E
(
rt+1 + γmax

a′
Q∗(st+1,a

′) |st = s,at = a

)
,

where V ∗(s) = maxaQ
∗(s,a).

where rt+1 is the actual reward received at the next time step, and
st+1 is the state resulting from executing action a in state st. The
corresponding Bellman equation for Q∗(x,a) is given as

Q∗(s,a) = Rsa + γ
∑
s′

P s
ss′ max

a′
Q∗(s′,a′). (2.3)

We will describe how action-value functions can be approxi-
mated using “simulation-based” reinforcement learning methods in
Section 2.3.
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2.1.2 Average-Reward Markov Decision Processes

Another popular formulation of MDPs seeks optimal policies that max-
imize the expected reward per step, or the gain. We begin by introduc-
ing this formulation in the setting of a Markov reward process (MRP)
Mr = (P,R), where P is a transition matrix (such as defined by a fixed
policy in a MDP), and R is a reward function.

The chain structure of a Markov reward process turns out to be
crucial in the setting of average-reward MDPs. A transition matrix
P can induce several different types of structures, based on whether
states continue to be visited indefinitely. The complexity of solving a
general average-reward MDP turns out to depend critically on the chain
structure.

Definition 2.7. A MDP M is called ergodic if every state in M is
recurrent under any policy. A recurrent state is one that is visited
indefinitely often.

States that are not recurrent are called transient. If a state i has a
nonzero probability of transitioning to state j and vice-versa, the two
states communicate with each other. A set of recurrent states forms
an irreducible communicating class if no state outside the set can be
reached from a state within the set. Unichain MDPs have one recurrent
set of states, and a possibly nonempty set of transient states. Multichain
or general MDPs have multiple recurrent sets. In ergodic MDPs, there
are no transient states.

Definition 2.8. The long-run transition or limiting matrix P ∗ is
defined as

P ∗ = lim
n→∞

1
n

n−1∑
k=0

P k, (2.4)

which can be shown to exist when S is finite or countable.

If an MRP is ergodic, then each row of the long-term transition
matrix P ∗ is identical, and equal to the invariant distribution ρ (defined
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below more formally). If Pss > 0, the state s is called aperiodic. If all
states in a MDP are aperiodic, the MDP is called aperiodic. Notice
that a MDP may be ergodic, but not aperiodic (e.g., a two-state MDP
where state 1 transitions to 2 and vice versa, but each state does not
transition to itself).

Definition 2.9. The invariant distribution ρ of an ergodic MRP
M = (P,R) is the left eigenvector associated with the largest eigen-
value λ = 1, which is also the spectral radius of P .1

By convention, ρ is written as a row vector ρ = [ρ1,ρ2, . . . ,ρn], so
that

ρP = ρ. (2.5)

The limiting matrix P ∗ for an ergodic and aperiodic MRP can be writ-
ten as

P ∗ = lim
k→∞

P k = 1ρ, (2.6)

where 1 is a column vector of all 1’s. The multiplication 1ρ is the outer
product of a column vector and row vector, and generates a rank one
matrix whose every row is ρ.

Since P is ergodic (or irreducible), by the Perron-Frobenius theorem
[10], the largest eigenvalue is indeed the spectral radius λ = 1, and all
other eigenvalues are <1. Furthermore, the eigenvector associated with
λ has all positive real elements.

Definition 2.10. The gain or average-reward of a MRP at state s is
defined as

g(s) = P ∗R(s). (2.7)

Intuitively, the gain is the average-reward received over the long run
starting from state s. The bias or average-adjusted sum of rewards

1 The spectral radius of a matrix A is the real number max{|λ| : Ax = λx}, where |λ| is the
modulus of the (possibly complex-valued) eigenvalue λ.
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received for an MRP is defined as

h(s) = E

( ∞∑
t=1

(R(st) − g(st))

)
, (2.8)

where s1 = s.

In ergodic MRPs, since P ∗ has identical rows equal to ρ, the gain
g is not state-dependent, which significantly simplifies the solution
of ergodic average-reward MDPs. This property also holds true for
unichain MRPs, since transient states will not affect the long-term
average reward. However, the different transient states can affect the
total reward received, and it is desirable to find a policy that maximizes
both the gain and the bias. In ergodic (or irreducible) MRPs, the bias
can be written as

h =
∞∑

t=0

(P t − P ∗)R. (2.9)

The policy evaluation problem for average-reward ergodic (or
unichain) MDPs can be defined as follows.

Definition 2.11. Let M be an ergodic (or unichain) average-reward
MDP. The bias or average-adjusted value of any policy π can be found
by solving the equations:

hπ = Rπ − ρπ + P πhπ, (2.10)

where ρπ is the gain associated with policy π. Rπ(s) is the expected
one step reward received for taking action π(s).

Notice that this is a set of |S| equations in |S| + 1 unknowns. One
solution is to set the bias of an arbitrary state h(s) = 0, as the bias
values are really to be viewed as relative values. Another approach is to
estimate the average-reward independently by averaging the sampled
rewards. The action-value formulation of average-reward MDPs can
be defined analogously. In Section 3, we will show that solutions to
average-reward and discounted MDP are related to each other.
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2.1.3 Examples of MDPs

We briefly illustrate the range of applications of MDPs in this section,
with some examples from continuous and discrete spaces. A much wider
set of examples can be found in standard treatments [12, 109, 129]. Our
goal is two-fold: First, these examples illustrate the need for finding
low-dimensional representations of MDPs since many of them involve
continuous or large state spaces; some of these tasks will be used in the
experimental study later in Section 10. Second, these problems show
that finding good basis functions for MDPs can be aided by incorpo-
rating knowledge of the task, in particular the overall geometry of the
state space, or a high-level recursive task decomposition.

2.1.4 Grid World Domains

In discrete MDPs, the state space is over a discrete set of states. In
the simplest cases, the states are viewed as atomic entities, such as in
the example illustrated in Figure 1.1. Such problems are widely used
as simple “toy” testbeds in many papers on MDPs in AI and machine
learning. Figure 2.1 illustrates a larger “multiagent” grid world domain

1 2 3 4 5 6 7 8 9 10
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123

Fig. 2.1 A multiagent “blocker” domain with a state space of >106 states.
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with a state space of over 106 states, proposed in [119]. This task is a
cooperative multiagent problem where a group of agents try to reach
the top row of a grid, but are prevented in doing so by “blocker” agents
who move horizontally on the top row. If any agent reaches the top row,
the entire team is rewarded by +1; otherwise, each agent receives a
negative reward of −1 on each step. The agents always start randomly
placed on the bottom row of the grid, and the blockers are randomly
placed on the top row. The blockers remain restricted to the top row,
executing a fixed strategy. The overall state space is the Cartesian
product of the location of each agent.

2.1.5 Factored MDPs

In many interesting real-world applications of MDPs, the state space
and action space can be modeled as resulting from the combinatorial
product of a set of discrete (or continuous) state variables. Figure 2.2
illustrates a simulated “humanoid” robotics domain [114], modeled as
a large factored “concurrent” MDP. Concurrent decision-making is a
familiar everyday phenomenon of multi-tasking: when we drive, we usu-
ally engage in other activities as well, such as talking on a cellphone
or conversing with other occupants in the vehicle. Concurrency is a
fundamental issue in the control of high degree-of-freedom humanoid

Fig. 2.2 A factored MDP model of a two-armed humanoid robot. The task is to efficiently
stack dishes by coarticulating multiple concurrent temporally extended actions: for example,
as the left arm of the robot is placing a dish on the stack, the right arm can reach over to
obtain the next dish.
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robots. Solving concurrent MDPs is challenging not only due to the
large state space, but also due to the large action space generated
by many possible subsets of action variables. A factored concurrent
MDP [114] is a model of sequential decision-making, where the inter-
action between an agent and its environment is modeled by a set of
factored state variables s1, . . . ,sn, and a set of discrete action variables
a1, . . . ,ak. In the humanoid robot concurrent MDP example, there are
7 state variables and 3 action variables, as shown in Figure 2.3. The
set of possible states is generated by Cartesian products of the state
variables, and the set of possible concurrent actions is generated by
products of action variables (not all concurrent actions may be legal in
every state).

A common assumption in factored MDPs [55, 124, 51] is to approx-
imate value functions as a linear combination of fixed basis functions
FΦ = {φ1, . . . ,φk}: each basis function represents a localized “feature”
φi : Si × Ai→ R, where typically Si is defined over a subset of the state
variables, and Ai is defined over a subset of action variables. We will
discuss approximation methods for solving (factored) MDPs in more
detail in Section 4.

Left arm (al) Right arm (ar) Eyes (ae)

pick pick fixate-on-washer
washer-to-front washer-to-front fixate-on-front
front-to-rack front-to-rack fixate-on-rack
rack-to-front rack-to-front no-op
front-to-washer front-to-washer
stack stack
no-op no-op

swasher lpos, rpos, epos lstat, rstat srack

0,1, . . . ,n washer has-plate stacked
front empty not-stacked
rack

Fig. 2.3 Factored state and action variables for the humanoid robot task illustrated in
Figure 2.2.
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2.1.6 Manufacturing Application

MDPs have long been applied to problems in industrial optimization,
ranging from optimizing production on unreliable machines [85] to
scheduling elevators [129]. Figure 2.4 shows an example of a schedul-
ing problem involving autonomous guided vehicles (AGVs) in a factory
domain (see e.g., [47]). M1 to M3 are workstations in this environment.
Parts of type i have to be carried to the drop-off station at workstation
i (Di), and the assembled parts brought back from pick-up stations of
workstations (Pi’s) to the warehouse. The AGV travel is unidirectional
as the arrows show. The AGV receives a reward of 20 when it picks up
a part at the warehouse, delivers a part to a drop-off station, picks up
an assembled part from a pick-up station, or delivers an assembled part
to the warehouse. It also gets a reward of −5 when it attempts to exe-
cute Put1–Put3, Pick1–Pick3, Load1–Load3, Unload, and Idle actions
illegally. There is a reward of −1 for all other actions. The state of
the environment consists of the number of parts in the pick-up and

P1

P2

P3

D1

D2

D3
Load

Unload

Assemblies

Parts

M1M3

M2

MachineM:

D:

P:

Drop off Buffer

Pick up Buffer

Warehouse

Fig. 2.4 An AGV scheduling task can be modeled as an average-reward MDP. An AGV
agent (not shown) carries raw materials and finished parts between machines (M1–M3) and
warehouse.
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drop-off stations of each machine and whether the warehouse contains
parts of each of the three types. In addition, the agent keeps track of
its own location and status as a part of its state space. Thus, in the
flat case, the state space consists of 33 locations, 6 buffers of size 2, 7
possible states of the AGV (carrying part1–part3, carrying assembly1–
assembly3, empty), and 2 values for each part in the warehouse, i.e.,
|S| = 33 × 36 × 7 × 23 = 1,347,192 states. Since there are 14 primitive
actions (Left, Forward, Right, Put1–Put3, Pick1–Pick3, Load1–Load3,
Unload, Idle) in this problem, the total number of parameters that
must be learned (the size of the action-value Q(s,a) table) in the flat
case is 1,347,192 × 14 = 18,860,688.

2.1.7 Continuous MDPs

In many applications of MDPs, the states or state variables are contin-
uous, taking values over some prescribed range of real numbers. One
example is the Acrobot task [129], a two-link under-actuated robot
that is an idealized model of a gymnast swinging on a highbar. The
only action available is a torque on the second joint, discretized to one
of three values (positive, negative, and none). The reward is −1 for
all transitions leading up to the goal state. The detailed equations of
motion are given in [129]. The state space for the Acrobot is 4D. Each
state is a 4-tuple represented by (θ1, θ̇1,θ2, θ̇2). θ1 and θ2 represent the
angle of the first and second links to the vertical, respectively, and are
naturally in the range (0,2π). θ̇1 and θ̇2 represent the angular veloci-
ties of the two links. Notice that angles near 0 are actually very close
to angles near 2π due to the rotational symmetry in the state space.
Figure 2.5 plots the Acrobot state space projected onto the subspace
spanned by the two joint angles θ1 and θ2. This subspace is actually a
torus.

2.2 Exact Solution Methods

The examples of MDPs shown previously illustrate the computational
challenges in solving large MDPs. Before proceeding to tackle large
MDPs, it will be essential to introduce the basic solution methods that
later approximation methods are based on.



430 Sequential Decision Problems

raise tip above

θ1

θ2

Torque
applied here

this line

Fig. 2.5 The state space of the Acrobot (shown on the left) exhibits rotational symmetries.
The figure on the right plots its projection onto the subspace of R

2 spanned by the two
joint angles θ1 and θ2, which can be visualized as a torus. The angular velocities θ̇1 and
θ̇2 were set to 0 for this plot. The points shown on the torus are subsampled states from a
random walk. The colors indicate the value function, with red (darker) regions representing
states with higher values.

2.2.1 Value Iteration

One way to solve a MDP is to construct the optimal value function
V ∗, or action value function Q∗(s,a). Since these functions are the
fixed points of operators, a natural strategy is to find the fixed point
by successive approximation. The value iteration algorithm computes
the next approximation V t+1 by iteratively “backing up” the current
approximation:

V t+1(s) = T ∗(V t)(s) = max
a

(
Rsa + γ

∑
a

P a
ss′V t(s′)

)
. (2.11)

The value iteration algorithm can be terminated when the differ-
ence between successive approximations is less than some tolerance
parameter, that is ‖V t+1 − V t‖ ≤ ε, where ‖ · ‖ denotes the “norm”
or “length” of a function. It can be shown that the operator T ∗ is a
contraction in a Hilbert space, and hence the algorithm will asymptot-
ically converge [138].2 A similar procedure can be used to compute the
optimal action value function Q∗(s,a). A drawback of value iteration

2 Intuitively, this property implies that at each iteration, the “distance” between V t and
V ∗ shrinks, and hence asymptotically, the algorithm must converge.
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is that its convergence can be slow for γ near 1. Also, at each step, it
is necessary to “backup” values over the entire state space. This prob-
lem has been addressed by a number of approaches; algorithms such as
real-time dynamic programming (RTDP) and “simulation-based” rein-
forcement learning methods back up values over only a set of sample
transitions [129].

2.2.2 Policy Iteration

The policy iteration algorithm was introduced by Howard [56].
In this procedure, at each iteration, the decision maker “evaluates” a
specific policy π, finding its associated value function V π. Then, the
associated “greedy” policy π′ associated with V π is computed, which
deviates from π for one step by finding the action that maximizes
the one-step reward and then follows π subsequently. Howard proved
that if π is not the optimal policy, the greedy policy associated with
V π must improve on π. This procedure will become the foundation

Algorithm 1 The Policy Iteration Algorithm for Discounted MDPs
Set π to some random initial policy.

1: repeat
2: Solve the “Bellman” linear system of equations to determine V π

(I − γP π)V π = Rπ

3: Find the “greedy” policy π′ associated with V π:

π′(s) ∈ argmax
a

(∑
s′

P a
ss′

(
Ra

ss′ + γV (s′)
))

4: if π′ �= π then
5: Set π← π′ and return to Step 2.
6: else
7: Set done ← true.
8: end if
9: until done.

Return π as the optimal discounted policy for MDP M .
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for the Representation Policy Iteration (RPI) framework presented
in Sections 8 and 10, where both basis functions as well as optimal
policies will be simultaneously learned [78]. As described here, the
policy iteration algorithm assumes that value functions (and other
functions such as rewards, transition models, and policies) can be
stored exactly, using a “table lookup” representation. In Section 4,
we will describe a variant of this procedure, called least-squares policy
iteration (LSPI) [69], which is based on least-squares approximation
of the action value function Qπ associated with policy π.

2.2.3 Linear Programming

A third approach to exactly solving MDPs is based on linear program-
ming [110]. The variables for the linear program are the values V (i).
The exact formulation is given below:

Definition 2.12. The linear program required to solve a MDP M is
given as

Variables : V (1), . . . ,V (n),

Minimize :
∑

s

αsV (s),

Subject to : V (s) ≥
∑
s′

P a
ss′

(
Ra

ss′ + γV (s′)
)
, ∀ s ∈ S, a ∈ A,

where α is a state relevance weight vector whose weights are all positive.

There is one constraint for each state s and action a, thus, leading to
an intractable set of constraints in problems with an exponential state
space. Later, we will describe a variant of this linear programming
(LP) formulation in Section 4, which uses a set of basis functions to
compute an approximation of the exact value function that lies in the
space spanned by the bases.

2.3 Simulation-Based Methods

We now turn to briefly describe a class of approximation methods for
solving MDPs, which retain the restriction of representing functions
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exactly, but require only sample transitions (st,at, rt,s
′
t) instead of

true knowledge of the MDP. Such methods can be generically referred
to as simulation-based methods, and are the topic of much study in
various areas, including approximate dynamic programming [12, 109]
and reinforcement learning [129]. Two classes of methods will be
described: Monte–Carlo methods, which approximate the exact return
V π by summing the actual returns, and temporal-difference learning
methods, which can be viewed as a biased version of Monte–Carlo
methods.

2.3.1 Monte–Carlo Methods

Monte–Carlo methods have long been studied in a variety of fields,
and there is a well-developed statistical theory underlying them [113].
Monte–Carlo methods for solving MDPs are based on the simple idea
that the value of a particular state V π(s) associated with a particu-
lar policy π can be empirically determined by “simulating” the policy
π on a given MDP M , and averaging the sum of rewards received.
Monte–Carlo methods are simple to implement. As a statistical pro-
cedure, they have the attractive property of being unbiased estima-
tors of the true value. Unfortunately, their variance can be high. A
more detailed discussion of Monte–Carlo methods for MDPs is given
in [12, 129].

Algorithm 2 Monte–Carlo method for evaluating policy π in state s.
for i = 1 to N do

Set the step counter t = 0, initial state st = s, and V̂i = 0.
Set the action a = π(st), and “execute” action a.
Let the sample reward received be rt. Set t← t + 1.
Set V̂i = V̂i + rt.
if terminated then

Set V̂i = 1
t V̂i.

end if
end for
Return V̂ π(s) = 1

N

∑N
i=1 V̂i.
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2.3.2 Temporal-Difference Learning

Temporal-difference (TD) learning methods [130] exploit the property
that the value of a state V π(s) can be estimated as the sum of the
immediate reward received, rt, and a biased estimate of the value at
the next state. The simplest TD(0) algorithm can be written as

V̂ π
t+1(s)← (1 − αt)V̂ π

t (s) + αt

(
rt + V̂ π

t (s)
)
. (2.12)

Here, αt ∈ (0,1) is a time-varying “learning rate” that averages the
estimate over multiple samples. As in the Monte–Carlo procedure, the
TD(0) algorithm also only requires a simulation of a MDP, and asyn-
chronously evaluates the value of states in a MDP over sampled trajec-
tories. A more sophisticated least-squares variant of TD algorithm uses
a set of nonunit vector bases to approximate value functions [16, 18].
Readers familiar with the theory of stochastic approximation [65] may
recognize the TD update rule given above as similar to the Robbins-
Munro method of finding the roots of a function. Indeed, a rigorous
convergence analysis of TD learning has been made drawing on the
theory of stochastic approximation [12, 138]. A TD-based method for
learning action values called Q-learning was introduced by Waktins
[140]. Q-learning estimates the optimal action value function using the
following learning rule:

Qt(s,a)← (1 − αt)Qt(s,a) + αt

(
rt + γmax

a′
Qt(s′,a′)

)
. (2.13)

Q-learning is sometimes referred to as an “off-policy” learning algo-
rithm since it estimates the optimal action value function Q∗(s,a),
while simulating the MDP using any policy, such as a random walk. In
practice, a greedy policy is used that picks actions at each state with
the highest Q(x,a), occasionally choosing random actions to ensure
sufficient exploration.
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Laplacian Operators and MDPs

In this section, we introduce a broad class of Laplacian operators,
which play an important role in later sections. In particular, we explore
two specific types of Laplacian operators. The first type is intimately
linked to the study of Markov decision processes (MDPs) introduced in
Section 2. In particular, we show that exact solutions of average-reward
and discounted MDP models can be expressed in terms of a generalized
inverse of a Laplacian operator. We introduce a generalized spectral
inverse called the Drazin inverse. We show that discounted value func-
tions can be written as a Laurent series expansion that involves powers
of the Drazin inverse of the Laplacian. This expansion will provide
the theoretical foundation for a new approach to approximating MDPs
using the Drazin basis, which we will explore in later sections. We also
introduce a more restricted class of positive-definite Laplacian matri-
ces that have been the topic of considerable interest in machine learn-
ing to approximate functions on graphs and continuous sets embedded
in Euclidean spaces called manifolds. These so-called graph Laplacian
operators will be extended later to manifolds, and lead to an effective
method of approximating continuous MDPs.

435
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3.1 Laplacian Operators

A unique feature of this paper is the explicit linking of a class of singular
operators called Laplacians with exact and approximate solutions of
MDPs. A common property shared by all the Laplacian operators in
this paper is that their matrix representations have row sums that are 0,
and their off-diagonal entries are nonpositive.

Definition 3.1. The generalized Laplacian operator [2, 22, 24] is
defined as a (possibly nonsymmetric) matrix L ∈ Rn×n, where

L(i, j) ≤ 0, i �= j,
n∑

j=1

L(i, j) = 0, i = 1, . . . ,n.

Note importantly that no assumption is made here that L is sym-
metric.1 It is possible to associate a generalized Laplacian matrix LΓ

with any directed graph Γ = (V,E,W ), where the edge weights W (i, j)
associated with the directed arc (i, j) ∈ E are strictly positive. More
precisely, the Laplacian matrix LΓ is defined as follows:

LΓ(i, j) =



−W (i, j) if i �= j and (i, j) ∈ E,
0 if i �= j and (i, j) /∈ E,
−
∑

k �=i LΓ(i,k) if i = j.

There are interesting connections between generalized Laplacian
matrices and stochastic matrices. In particular, the following theorem
is a straightforward consequence of the above definition.

Theorem 3.1. For any stochastic matrix P and α > 0, the matrix
α(I − P ) is a generalized Laplacian.

There are fundamental connection between Laplacian matrices and
MDPs, as we discuss next. In what follows, for brevity, we will refer to
“generalized Laplacians” as simply “Laplacian matrices.”

1 Laplacian matrices are sometimes also referred to as discrete Schrodinger operators, par-
ticularly when the matrix is symmetric [134]. Laplacian matrices can also be viewed as
singular M -matrices [10].



3.2 Laplacian Matrices in MDPs 437

3.2 Laplacian Matrices in MDPs

In this section, we describe how the solution of average-reward and
discounted MDPs can be defined in terms of a Laplacian matrix. We
explain how the Laplacian plays a key role in the exact solution of
MDPs. Special instances of this general form will be studied in later
sections in the approximate solution of MDPs.2

3.2.1 Discounted MDPs and the Laplacian

As we have seen earlier, solving a MDP requires computing the value
functions associated with policies. Let P π represent an |S| × |S| tran-
sition matrix of a (deterministic) policy π : S → A mapping each state
s ∈ S to a desired action a = π(s). We can associate a Laplacian Lπ

with any policy π.

Definition 3.2. Given any policy π in a MDP M with associated
transition matrix P π, the Laplacian Lπ is defined as

Lπ = I − P π. (3.1)

Let Rπ be a (column) vector of size |S| of rewards. The value func-
tion associated with policy π can be computed using the Neumann
series:

V π = (I − γP π)−1Rπ =
(
I + γP π + γ2(P π)2 + · · ·

)
Rπ. (3.2)

To show the connection of the Laplacian Lπ to V π, we reformulate
Equation (3.2) in terms of an interest rate ρ [110].

Definition 3.3. The interest rate ρ ≡ (1 − γ)γ−1 or equivalently,
γ = 1

1+ρ . The interpretation of ρ as an interest rate follows from the
property that, if a reward of 1 is “invested” at the first time step, then
1 + ρ is the amount received at the next time step. The interest rate

2 It is somewhat striking that the literature on Markov chains and MDPs investigating the
properties of Laplacian matrices [21, 92, 110, 121] nonetheless does not refer to these
matrices as Laplacians!
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formulation of the discounted value function associated with a policy
π can be written as

V π = (I − γP π)−1Rπ = (1 + ρ)(ρI + Lπ)−1Rπ, (3.3)

where Lπ = I − P π is the Laplacian matrix associated with policy π.

For ρ > 0, the matrix (ρI + Lπ)−1 is called the resolvent of −Lπ

at ρ. For γ < 1, the spectral radius of γP π < 1, and hence the
inverse (1 − γP π)−1 exists. Consequently, the resolvent (ρI + Lπ)−1

also exists.

3.2.2 Average-Reward MDPs and the Laplacian

There are close connections between the solution of average-reward
MDPs [110] and the Laplacian as well; the gain and bias of a Markov
reward process can be defined in terms of the Laplacian.

Theorem 3.2. Given a MDP M = (S,A,P,R), let the Markov reward
process defined by any policy π be Mπ = (P π,Rπ). Let the gain of the
MRP be defined as gπ and hπ. The gain gπ is in the nullspace of the
Laplacian Lπ. More precisely, we have

Lπgπ = (I − P π)gπ = 0, (3.4)

gπ + Lπhπ = Rπ. (3.5)

Equation (3.4) can be readily derived from the properties of the
long-term limiting matrix (P π)∗:

Lπgπ = (I − P π)(P π)∗Rπ

= ((P π)∗ − P π(P π)∗)Rπ = ((P π)∗ − (P π)∗)Rπ = 0.

The derivation of Equation (3.5) is more subtle; we will need to
introduce a generalized inverse of the Laplacian. We will also show
how the study of average-reward and discounted MDPs can be unified
using the generalized inverse of the Laplacian.



3.3 Generalized Inverses of the Laplacian 439

3.3 Generalized Inverses of the Laplacian

Not all matrices are invertible. In particular, if a matrix A ∈ Cn × Cn

has an eigenvalue λ = 0, or alternatively, if its column space is not
of full rank, then A has no real inverse. However, in a large class of
applications in statistics and machine learning, such low-rank matrices
are commonplace. Clearly, the Laplacian associated with the transition
matrix P , namely L = I − P , is nonvertible as it is not of full rank: its
row sums add to 0, and hence the constant eigenvector 1 is associated
with the 0 eigenvalue. In such cases, one can define generalized inverses
that satisfy many of the properties of a real inverse [20].

Definition 3.4. A generalized inverse X of a matrix A ∈ Cn × Cn is
a matrix that satisfies one or more of the following properties:

(1) AXA = A.
(2) XAX = X.
(3) (AX)∗ = AX.
(4) (XA)∗ = XA.
(5) AX = XA.
(6) Ak+1X = Ak.

where ()∗ denotes the conjugate transpose.
A generalized inverse matrix X of A that satisfies a subset C ⊂

{1,2,3,4,5,6} of these properties is labeled a AC inverse.

All of these properties are satisfied, of course, by the true inverse
A−1 of a nonsingular matrix. However, if A is singular, there is no
generalized inverse X of A that satisfies all these properties. It turns
out, however, that there are unique generalized inverses that satisfy
some interesting subsets. For example, the well-known Moore-Penrose
pseudo-inverse A† of A is a A{1,2,3,4} inverse since it satisfies the first
four properties. We will later use this generalized inverse for least-
squares approximation of value functions.

Another generalized inverse exists called the Drazin inverse (or its
special case, the group inverse) plays a crucial role in the study of
Markov chains and MDPs [110, 121]. We will introduce this inverse in
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Section 3.3.3. As we will show below, the Drazin or group inverse of
the Laplacian also intimately links the study of average-reward MDPs
with discounted MDPs. We will later investigate the Drazin basis as a
way of approximating MDPs. We will also introduce another important
matrix, the fundamental matrix of a Markov chain, which is related to
the Drazin inverse.

3.3.1 Fundamental Matrix

For simplicity, we begin our discussion with the simpler case of ergodic
chains — recall that these have a single recurrent class. The fundamen-
tal matrix is an important matrix associated with the study of Markov
chains [121].

Theorem 3.3. The eigenvalues of the matrix P − P ∗ of an ergodic
Markov chain lie within the unit circle. Consequently, the fundamental
matrix [110, 121] associated with P

L + P ∗ = I − P + P ∗ (3.6)

is invertible.

Proof. Since P is ergodic,3 from the Perron Frobenius theorem [10], it
follows that λ = 1 is its largest eigenvalue and also its spectral radius.
Furthermore, all other eigenvalues λi have their modulus |λi| < 1,1 ≤
i ≤ n − 1 (assuming P is an n × n matrix).4 Each of these eigenvalues
λi must also be an eigenvalue of P − P ∗, because if Pxi = λixi, where
λi �= 0, then it follows that

P ∗xi =
1
λi
P ∗Pxi =

1
λi
P ∗xi.

But, this can only hold if P ∗xi = 0 since λi �= 0 and λi �= 1. Hence,
it follows that

(P − P ∗)xi = Pxi = λixi.

3 A general proof for nonergodic chains can be given using the Drazin inverse, which we
introduce in Section 3.3.3. We give a simpler proof here following [21].

4 In general, eigenvalues of stochastic matrices are complex-valued. The modulus of a com-
plex number z = a + ib is defined as |z| =

√
a2 + b2.
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Thus, xi is an eigenvector of P − P ∗ with eigenvalue λi if it is also
an eigenvector of P . If, on the other hand, λi = 0, then P ∗xi = P ∗Pxi =
λiP

∗xi = 0, and hence λi = 0 is an eigenvalue of P − P ∗ as well. Finally,
the eigenvalues of the fundamental matrix L − P ∗ = I − P + P ∗ are
1,1 − λi, . . . ,1 − λn−1, none of which are 0.

3.3.2 Group Inverse of the Laplacian

We now introduce a generalized inverse of the Laplacian L = I − P
called the group inverse [20, 21]. The group inverse is a special case of
a more general inverse called the Drazin inverse, which is introduced
below.

Definition 3.5. The group inverse A# of a square matrix A ∈ Cn ×
Cn is a A1,2,5 inverse.

We now introduce the group inverse of the Laplacian, and show why
it is of fundamental importance in MDPs.

Definition 3.6. The group inverse of the Laplacian L = I − P of a
Markov chain with transition matrix P is defined as

L# = (I − P + P ∗)−1 − P ∗. (3.7)

It can be shown that the properties 1,2, and 5 in Definition 3.4 are
satisfied. As an example, let us show that L#L = LL#.

L#L =
[
(I − P + P ∗)−1 − P ∗](I − P )

= (I − P + P ∗)−1(I − P ) − P ∗(I − P )

= (I − P + P ∗)−1(I − P )

= (I − P + P ∗)−1(I − P ) + (I − P + P ∗)−1P ∗ − P ∗

= (I − P + P ∗)−1(I − P + P ∗) − P ∗

= I − P ∗

= LL#.
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The meaning of the term “group inverse” arises from the property
that it is actually the inverse element in a group ΓL of all Laplacian
matrices L, defined for a specific invariant distribution ρ, where ρP = ρ,
and P ∗ = 1ρ.

ΓL = {L : ρL = 0,L1 = 0,(L + P ∗)−1 exists}. (3.8)

We now link the group inverse of the Laplacian to the average-
reward Bellman equation (Equation (2.10)). We can expand the fun-
damental matrix in a Taylor series expansion as follows

(I − P + P ∗)−1 =
∞∑

t=0

(
P t − P ∗) . (3.9)

Using this Taylor series expansion of the fundamental matrix, we
can derive the average-reward Bellman equation as

(I − P )(I − P + P ∗)−1 = I − P ∗

P ∗ + (I − P )(I − P + P ∗)−1 = I

P ∗R + (I − P )(I − P + P ∗)−1R = R

g + (I − P )
∞∑

t=0

(
P t − P ∗)R = R

g + (I − P )h = R

g + Lh = R,

after multiplying both sides by R

which is exactly the form of the average-reward equation given in
Equation (3.5).

A simple interpretation of the group inverse of the Laplacian can
be given based on Equation (3.9):

(I − P )# = (I − P + P ∗)−1 − P ∗

=
∞∑

t=0

(P − P ∗)t − P ∗
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=
∞∑

t=0

(P t − P ∗) − P ∗

= lim
n→∞

n−1∑
k=0

(P k − P ∗) − P ∗

= lim
n→∞

n−1∑
k=0

(P k − nP ∗).

In other words, the element (i, j) in the group inverse matrix is the
difference between the expected number of visits to state j starting in
state i following the transition matrix P versus the expected number of
visits to j following the long-term limiting matrix P ∗. Figure 3.1 shows
this difference on a simple two state Markov chain.

3.3.3 Drazin Inverse of the Laplacian

Finally, we introduce the Drazin inverse of the Laplacian. In this sec-
tion, we consider arbitrary Markov chains, regardless of their chain
structure. First, we define Drazin inverses generally, using the gener-
alized inverse axioms, and then give an explicit matrix definition for
stochastic matrices.

Definition 3.7. The index of a square matrix A ∈ Cn × Cn is the
smallest nonnegative integer k such that

R(Ak) =R(Ak+1). (3.10)

Here, R(A) is the range (or column space) of matrix A.

Fig. 3.1 This figure illustrates the concept of group inverse of the Laplacian, on a sim-
ple two state Markov chain. Left : The original Markov chain with transition matrix P .
Right : A chain with transition matrix P ∗, the limiting matrix. The group inverse measures
the difference in the expected number of visits to a state following P versus P ∗.
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For example, a nonsingular (square) matrix A has index 0, because
R(A0) =R(I) =R(A) = Cn. The Laplacian L = I − P of a Markov
chain has index 1.

Definition 3.8. The Drazin inverse of a matrix A ∈ Cn × Cn is a
A{2,5,6} inverse, where property 6 holds when k is the index of A.

We now give an equivalent definition of the Drazin inverse in terms
of the decomposition of a matrix.

Definition 3.9. If a general square matrix A is decomposed as follows

A = W

(
C 0
0 N

)
W−1, (3.11)

where W and C are nonsingular matrices, and N is nilpotent,5 then its
Drazin inverse of A is given by:

AD = W

(
C−1 0
0 0

)
W−1 (3.12)

Let us specialize this definition for general (nonergodic) Markov
chains, and investigate its application to MDPs [110].

Definition 3.10. Let a transition matrix P of a Markov chain be
defined on a finite state space S, and suppose P induces m recurrent
classes on S. Then, P can be decomposed into the following form:

P = W

(
I 0
0 Q

)
W−1, (3.13)

where W is nonsingular, I is an m × m identity matrix, and Q is
an |S| − m × |S| − m times matrix. The inverse (I − Q) exists since
1 is not an eigenvalue of Q. Also limn→∞ 1

n

∑n−1
k=1Q

k = 0, since Q is
nilpotent.

We can now define the Drazin inverse LD of the Laplacian L =
I − P in its general form.

5 N is a nilpotent matrix if for some nonnegative integer k, Nk = 0.
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Definition 3.11. Given an arbitrary transition matrix P on a finite
state space S, the Drazin inverse LD of L is given by

LD = (I − P )D = W

(
0 0
0 (I − Q)−1

)
W−1. (3.14)

Also, the long-term limiting matrix P ∗ of a general Markov chain
P can be written as

P ∗ = W

(
I 0
0 0

)
W−1. (3.15)

Note that we can now derive the identity given in Definition 3.6 for
arbitrary Markov chains given the matrix form of the Drazin inverse,
since

(I − P )D = W

(
0 0
0 (I − Q)−1

)
W−1

= W

(
I 0
0 (I − Q)−1

)
W−1 −W

(
I 0
0 0

)
W−1

= (I − P + P ∗)−1 − P ∗.

3.3.4 Computation of Drazin Inverse and Limiting Matrix

Let us briefly discuss the issue of computing the Drazin inverse LD and
the long-term limiting matrix P ∗. A number of algorithms have been
developed [20]. One approach is to form the direct decomposition of a
matrix A into its nonsingular component and nilpotent component.

There are many other methods. For example, any 1-inverse of L can
be used to find its Drazin inverse, such as the Moore-Penrose pseudoin-
verse L†. More sophisticated methods are available based on the orthog-
onal deflation procedure used in singular value decomposition [20]. In
Section 7.5, we will describe a multiscale iterative method for fast com-
putation of the Drazin inverse.

3.3.5 Unifying Average-Reward and Discounted MDPs

In Equation (3.3), we formulated the discounted value function in terms
of the resolvent of the Laplacian. We now introduce an important
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Algorithm 3 A general algorithm for Drazin inverse
1: Input: A matrix A and its index k (if A = L = I − P , then k = 1).
2: Form the row-reduced echelon form of A (e.g., use MATLAB

command rref).

[Ar CA] = rref(Ak), (3.16)

where Ar is the row-reduced echelon form, and CA is the set of
column indices of A such that A(:,CA) = [v1,v2, . . . ,vr] forms a basis
for R(Ak).

3: Form the matrix I − Ar. Its nonzero columns, denoted as
[vr+1, . . . ,vn], form a basis for N (Ak).

4: Construct a nonsingular matrix W = [v1, . . . ,vn], and form the
product

W−1AW =
(
C 0
0 N

)
, (3.17)

where C is the nonsingular portion and N is the nil-potent portion.
4: The Drazin inverse of A is given as

AD = W

(
C−1 0
0 0

)
W−1. (3.18)

5: If A is the Laplacian L = I − P , the long-term limiting matrix P ∗

is given as

P ∗ = W

(
I 0
0 0

)
W−1. (3.19)

connection between average-reward and discounted MDPs using the
Laurent series expansion of the resolvent of the Laplacian. This series
will be in terms of powers of the Drazin inverse of the Laplacian. We
will later use this expansion as an interesting type of basis for approx-
imating MDPs.

Theorem 3.4. If L = I − P , and 0 < ρ < σ(I − P ) (where σ denotes
the spectral radius), the resolvent (ρI + L)−1 can be expressed as the
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following Laurent series:

(ρI + L)−1 = ρ−1P ∗ +
∞∑

n=0

(−ρ)n(LD)n+1. (3.20)

Proof. We base our proof on that given in [110]. Given the decomposi-
tion of P in Equation (3.13), we can express the resolvent (ρI + L)−1 as

(ρI + L)−1 = W

(
ρ−1I 0

0 (ρI + (I − Q))−1

)
W−1

= ρ−1W

(
I 0
0 0

)
W−1 + W

(
0 0
0 (ρI + (I − Q))−1

)
W−1.

Notice that the first term is ρ−1P ∗. Using the identity

(ρI + (I − Q))−1 = (I + ρ(I − Q)−1)−1(I − Q)−1,

we can expand the first expression in the second term above as

(I + ρ(I − Q)−1)−1 =
∞∑

n=0

(−ρ)n((I − Q)−1)n,

which is valid as long as ρ < σ(I − Q) (the spectral radius of I − Q).
Using this Taylor series expansion in the matrix decomposition above
leads to the final result.

Now, combining this theorem with the expression for the discounted
value function V π of a policy defined earlier in Equation (3.3), we finally
obtain an expression for the discounted value function in terms of the
Drazin inverse of the Laplacian.

Theorem 3.5. Given a discounted MDP M and policy π, the value
function V π can be expressed in terms of the gain and bias of the asso-
ciated Markov reward process Mπ = (P π,Rπ), and the Drazin inverse
of the Laplacian, as follows

V π = (1 + ρ)

(
ρ−1gπ + hπ +

∞∑
n=0

(−ρ)n((Lπ)D)n+1Rπ

)
. (3.21)
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Proof. This result follows directly from the previous theorem and Equa-
tion (3.3). Note that gπ = (P π)∗Rπ as defined earlier. Also, we showed
earlier that hπ = (I − P π)(I − P π + (P π)∗)−1Rπ.

If we represent the coefficients in the Laurent series as y−1,y0, . . . ,

they can be shown to be solutions to the following set of equations (for
n = 1,2, . . .). In terms of the expansion above, y−1 is the gain of the
policy, y0 is its bias, and so on.

Lπy−1 = 0

y−1 + Lπy0 = Rπ

...

yn−1 + Lπyn = 0

3.3.6 Examples

We now provide some simple examples to illustrate the Drazin expan-
sion. Figure 3.3 shows a simple 7 state grid world MDP. If each compass
action succeeds in moving the agent in the desired direction with prob-
ability 0.7, and leaves the agent in the same state with probability 0.3,
the transition matrix of an optimal policy for reaching the goal marked
G is given as

P =




0.30 0.70 0 0 0 0 0
0 0.30 0 0.70 0 0 0
0 0 0.30 0.70 0 0 0
0 0 0 0.30 0 0 0.70
0 0 0 0 0.30 0.70 0
0 0 0 0.70 0 0.30 0
0 0 0 0.3 0 0 0.7



. (3.22)

The invariant distribution ρ is given as the row vector

ρ =
(
0 0 0 0.3 0 0 0.7

)
(3.23)
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The Drazin inverse of the Laplacian L = I − P is given as

LD =




1.2245 1.0204 −0.2041 0.2463 −0.2041 −0.4082 0.0985
−0.2041 1.0204 −0.2041 0.2463 −0.2041 −0.4082 0.0985
−0.2041 −0.4082 1.2245 0.2463 −0.2041 −0.4082 0.0985
−0.5041 −0.7082 −0.5041 −0.0537 −0.5041 −0.7082 −0.2015
−0.2041 −0.4082 −0.2041 0.2463 1.2245 1.0204 0.0985
−0.2041 −0.4082 −0.2041 0.2463 −0.2041 1.0204 0.0985
−0.9041 −1.1082 −0.9041 −1.6606 −0.9041 −1.1082 −0.0842




(3.24)

Notice the highly regular structure of the entries in the above
matrix. This regularity is not a coincidence, but in fact the key rea-
son why the Drazin inverse of the Laplacian provides an effective way
to compress MDPs. Many interesting properties of the structure of
Markov chains are captured by LD (or equivalently L#, the group
inverse). In particular, the following properties can be shown (see [20]
for a more detailed analysis):

• For a general Markov chain, states si and sk belong to the
same ergodic set if and only if the ith and kth rows of I − LL#

are equal.
• If states si and sk are transient states, then L

#
ik is the

expected number of times the chain is in state sk after start-
ing in si. Also, si and sk are in the same transient set if and
only if L

#
ik > 0 and L

#
ki > 0.

• State si is a transient state if and only if the ith column of
I − LL# is 0.

Figure 3.2 gives an example of how the framework of Drazin inverses
of the Laplacian can be used to approximate value functions. Even
though the value function is highly nonlinear due to the presence of
walls and nonlinearities, it can be effectively compressed by projecting
it onto a basis generated from the Drazin inverse of the Laplacian
associated with a policy. We will describe a more complete evaluation
of these and other bases in Section 8.
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Fig. 3.2 This figure illustrates how the Drazin inverse of the Laplacian can be used to
approximately solve MDPs. The value function shown is highly nonlinear due to walls. The
approximation shown was computed by projecting the (known) optimal value function on
a set of basis vectors generated from the Drazin inverse of the Laplacian associated with
the optimal policy π. Although the problem has 100 states, the optimal value function is
effectively compressed onto a subspace of dimension 15.

3.4 Positive-Semidefinite Laplacian Matrices

In this section, we introduce a more restricted family of positive-
semidefinite (PSD) Laplacian matrices that have been the topic of sig-
nificant recent work in machine learning.6 A growing body of work
in machine learning on nonlinear dimensionality reduction [73], mani-
fold learning [8, 30, 116, 131], and representation discovery [80] exploit
the remarkable properties of the PSD Laplacian operator on manifolds
[115], many shared by its discrete counterpart, the graph Laplacian
[2, 26, 44]. Although these cannot be directly used to model transi-
tion matrices in MDPs as the more generalized Laplacians described

6 A positive-semidefinite matrix A is one where vT Av ≥ 0 for all v �= 0. PSD matrices have
real nonnegative eigenvalues and real-valued eigenvectors.
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previously, they are still of significant interest in finding approximate
solutions to MDPs, as will be described below.

3.4.1 Diffusion Models and Random Walks on Graphs

Consider a weighted graph G = (V,E,W ), where V is a finite set of
vertices, and W is a weighted adjacency matrix with W (i, j) > 0 if
(i, j) ∈ E, that is, it is possible to reach state i from j (or vice-versa) in
a single step. A simple example of a diffusion model on G is the random
walk matrix Pr = D−1W . Figure 3.3 illustrates a random walk diffusion
model. Note the random walk matrix Pr = D−1W is not symmetric.
However, it can be easily shown that Pr defines a reversible Markov
chain, which induces a vector (Hilbert) space with respect to the inner
product defined by the invariant distribution ρ:

〈f,g〉ρ =
∑
i∈V

f(i)g(i)ρ(i).

In addition, the matrix Pr can be shown to be self-adjoint with respect
to the above inner product, that is

〈Prf,g〉ρ = 〈f,Prg〉ρ.
Consequently, the matrix Pr can be shown to have real eigenvalues and
orthonormal eigenvectors, with respect to the above inner product.
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Fig. 3.3 Top: A simple diffusion model given by an undirected unweighted graph connecting
each state to neighbors that are reachable using a single (reversible) action. Bottom: First
three rows of the random walk matrix Pr = D−1W . Pr is not symmetric, but self-adjoint
with respect to the invariant distribution, and consequently has real eigenvalues and eigen-
vectors.
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The random walk matrix Pr = D−1W is called a diffusion model
because given any function f on the underlying graph G, the powers of
P t

rf determine how quickly the random walk will “mix” and converge
to the long term distribution [26]. It can be shown that the station-
ary distribution of a random walk on an undirected graph is given
by ρ(v) = dv

vol(G) , where dv is the degree of vertex v and the “volume”
vol(G) =

∑
v∈G dv.

3.4.2 Graph Laplacians

Even though the random walk matrix Pr can be diagonalized, for com-
putational reasons, it turns out to be highly beneficial to find a sym-
metric PSD matrix with a closely related spectral structure. These are
the popular graph Laplacian matrices, which we now describe in more
detail. The main idea underlying some of the graph–theoretic meth-
ods for basis construction is to view approximating the value function
of a MDP as that of regularizing functions on state space graphs. We
develop this point of view in detail in this section, showing how the
Laplacian provides a highly effective regularization framework [98].

For simplicity, assume the underlying state space is represented as
an undirected graph G = (V,E,W ), where V is the set of vertices, and
E is the set of edges where (u,v) ∈ E denotes an undirected edge from
vertex u to vertex v. The combinatorial Laplacian L is defined as the
operator L = D −W , where D is a diagonal matrix called the valency
matrix whose entries are row sums of the weight matrix W . The first
three rows of the combinatorial Laplacian matrix for the grid world
MDP in Figure 3.3 is illustrated below, where each edge is assumed to
have a unit weight:

L =




2 −1 −1 0 0 0 0
−1 2 0 −1 0 0 0
−1 0 3 −1 −1 0 0

. . .


 .

Comparing the above matrix with the random walk matrix in
Figure 3.3, it may seem like the two matrices have little in common.
Surprisingly, there is indeed an intimate connection between the ran-
dom walk matrix and the Laplacian. The Laplacian has many attractive
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spectral properties. It is both symmetric as well as PSD, and hence its
eigenvalues are not only all real, but also nonnegative. To understand
this property, it helps to view the Laplacian as an operator on the space
of functions F : V → R on a graph. In particular, the Laplacian acts as
a difference operator.

Lf(i) =
∑
j∼i

(f(i) − f(j)), (i, j) ∈ E.

On a 2D grid, the Laplacian can be shown to essentially be a dis-
cretization of the continuous Laplace operator in Euclidean space:

∂2f

∂x2 +
∂2f

∂y2 ,

where the partial derivatives are replaced by finite differences.

3.4.3 Reproducing Kernels and the Graph Laplacian

The crucial idea of using the graph Laplacian as a regularizer is that
rather than smoothing using properties of the ambient Euclidean space,
smoothing takes the underlying manifold (or graph) into account.
We develop this notion more formally in this section, by showing
that the graph Laplacian induces a Reproducing Kernel Hilbert Space
(RKHS) [54].

Definition 3.12. The Laplacian L = D −W defines a semi-norm over
all functions on an undirected graph G

〈f,g〉 = fTLg. (3.25)

Furthermore, the length of a function is defined as ‖f‖ =
√
〈f,f〉.

Since L is symmetric, the properties of a norm can be directly veri-
fied, except that for constant functions, 〈f,f〉 = 0, thus, violating one of
the properties of a norm. However, as we will show below, the Laplacian
induces a regular norm over a more restricted space. Informally, the
smaller ‖f‖ is, the “smoother” f is on the graph. This intuition can be
formalized as follows.
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Definition 3.13. The Dirichlet sum is defined as

fTLf =
∑

(u,v)∈E

wuv(f(u) − f(v))2 . (3.26)

Thus, for highly “smooth” functions, fi ≈ fj ,(i, j) ∈ E and wij is
small. More formally, a fundamental property of the graph Laplacian is
that projections of functions on the eigenspace of the Laplacian produce
the smoothest global approximation respecting the underlying graph
topology.

Note that the Laplacian L = D −W is singular since its smallest
eigenvalue λ1 = 0. In fact, it can be shown that for graphs with r com-
ponents, the 0 eigenvalue has multiplicity r, and the corresponding
eigenspace defined by the r associated eigenvectors spans the kernel
of L (where the kernel of L is the space spanned by all x such that
Lx = 0). To define the reproducing kernel associated with L, we define
a restricted Hilbert space of all functions that span the complement of
the kernel, that is, all functions that are orthogonal to the eigenvectors
associated with the 0 eigenvalue.

Definition 3.14. Let the eigenvalues of L on a graph G

with r connected components be ordered as λ1 = 0, . . . ,λr = 0,
λr+1 > 0, . . . ,λn > 0. Let the associated eigenvectors as ui,1 ≤ i ≤ n.
The Hilbert space associated with a graph G is defined as

H(G) = {g : gTui = 0,1 ≤ i ≤ r}. (3.27)

Clearly, ‖f‖ =
√
〈f,f〉 =

√
fTLf now defines a norm because

‖f‖ > 0. We now show that H(G) actually defines an RKHS as well,
and its reproducing kernel is K = L+, namely the pseudo-inverse of L.
First, note that we can write the pseudo-inverse of L as follows.

Definition 3.15. The pseudo-inverse of Laplacian L = D −W is
defined as

L+ ≡
n∑

i=r+1

1
λi
uiu

T
i , (3.28)
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where the graph G is assumed to be undirected and unweighted, and
having r connected components.

The definition easily generalizes to weighted (and directed) graphs.
The main result we need to show is as follows.

Theorem 3.6. The reproducing kernel associated with the RKHS
H(G) of an undirected unweighted graph G is given by

K = L+. (3.29)

Proof. Clearly, K is symmetric from the definition of L+. Indeed, note
also that

LL+ = I −
r∑

i=1

uiu
T
i . (3.30)

This result follows directly from the expansion of L+ and because U ,
the matrix of eigenvectors of L is orthogonal (hence, UUT = I). More
concretely,

LL+ =

(
n∑

i=1

λiuiu
T
i

)(
n∑

i=r+1

1
λi
uiu

T
i

)

=

(
n∑

i=r+1

λiuiu
T
i

)(
n∑

i=r+1

1
λi
uiu

T
i

)

=

(
n∑

i=r+1

uiu
T
i

)

= I −
r∑

i=1

uiu
T
i .

Thus, given any function g ∈ H(G), we have LL+g = g. Thus, it
follows that

g(i) = eiL
+Lg = K(:, i)Lg = 〈K(:, i),g〉,

where K(:, i) is the ith column of K, and ei is the ith unit basis
vector.
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Given that the Laplacian L defines an RKHS, it is possible to define
the problem of minimum-norm interpolation of functions on a graph G.

Definition 3.16. Given an undirected graph G, whose Laplacian L =
D −W , given samples of a function f on l vertices of G, the minimum-
norm interpolant in H(G) to f is given as follows

min
g∈H(G)

{‖g‖ : gi = fi, i = 1, . . . , l}. (3.31)

Where it is assumed without loss of generality that the function
values are known on the first l vertices. A variety of different solutions
to this minimum-norm problem can be developed. For example, one
approach is to use a regularized least-square approach, which requires
solving a linear system of equations of |G| = n equations [98]. Another
approach is to use the representer theorem [139], which states that the
solution g can be expressed as the linear sum of kernel evaluations on
the available samples.

g(i) =
l∑

j=1

K(i, j)cj , (3.32)

where the coefficients c are computed as the solution to the equation

c = K̂+f, (3.33)

where K̂ = K(1 : l,1 : l). We will discuss the application of these ideas
to basis construction in MDPs in Section 6.

3.4.4 Random Walks and the Laplacian

To make the connection between the random walk operator Pr and the
Laplacian, the normalized Laplacian [26] needs to be introduced:

L = D− 1
2LD− 1

2 .

To see the connection between the normalized Laplacian and the
random walk matrix Pr = D−1W , note the following identities:

L = D− 1
2LD− 1

2 = I − D− 1
2WD− 1

2 , (3.34)

I − L = D− 1
2WD− 1

2 , (3.35)

D− 1
2 (I − L)D

1
2 = D−1W. (3.36)
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Hence, the random walk operator D−1W is similar to I − L, so
both have the same eigenvalues, and the eigenvectors of the random
walk operator are the eigenvectors of I − L point-wise multiplied by
D− 1

2 . In particular, if λi is an eigenvalue of the random walk transition
matrix Pr, then 1 − λi is the corresponding eigenvalue of L.

The normalized Laplacian L also acts as a difference operator on a
function f on a graph, that is

Lf(u) =
1√
du

∑
v∼u

(
f(u)√
du
− f(v)√

dv

)
wuv. (3.37)

The difference between the combinatorial and normalized Laplacian is
that the latter models the degree of a vertex as a local measure.



4
Approximating Markov Decision Processes

In this section, we introduce a variety of methods for approxi-
mately solving MDPs, including least-squares, linear programming, and
Hilbert space methods. All these approaches depend crucially on a
choice of basis functions for constructing a low-dimensional representa-
tion of a MDP, and assume these are provided by the human designer.
The focus of this section is not on basis construction, but rather on
approximation. The problem of approximation is naturally formulated
using the theory of vector spaces. We assume the reader is familiar with
finite-dimensional vector spaces, as covered in standard undergraduate
textbooks [127]. However, it will be convenient to generalize the usual
matrix-based coordinate-dependent framework to a richer framework
based on a type of vector space called a Hilbert space [37].

4.1 Linear Value Function Approximation

It is obviously difficult to represent value functions exactly on large
discrete state spaces, or in continuous spaces. Furthermore, even in
discrete spaces where it is possible to store value functions exactly,
the use of a well-designed basis can greatly accelerate learning as it

458
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propagates corrections to the value function across large regions of the
state space. Consequently, there has been much study of architectures
for approximating value functions [12]. We introduce a general theoreti-
cal framework for value function approximation based on Hilbert space,
a type of vector space, i.e., much studied in approximation theory [37]
and machine learning [120].

4.1.1 A Hilbert Space Formulation

We address the problem of approximating the value function V π associ-
ated with a fixed policy π, before considering the more difficult problem
of approximation of the optimal policy V ∗. An elegant and general way
to formalize value function approximation builds on the framework of
approximation in a type of vector space called a Hilbert space [37]. We
follow the Hilbert space formulation of value function approximation
given in [138], which the interested reader can refer to for additional
details. Some readers may find the mathematics in this section to be
somewhat abstract. This section can be omitted without loss of conti-
nuity, and readers can directly proceed to Section 4.2 where two spe-
cific projection methods are described using finite-dimensional matrix
theory.

A Hilbert space H is a vector space equipped with an abstract
notion of “length” defined by an “inner product” 〈f,g〉 between any two
vectors f,g ∈ H. As an example, in the familiar Euclidean space Rn,
which is a Hilbert space, the inner product of two vectors 〈f,g〉 = fT g,
viewing f and g as column vectors. In a general MDP, the concept
of distance needs to be modified from that in Euclidean distance by
a nonuniform “weighting” that depends on the frequency with which
different states are visited by a particular policy.

We now define an inner product, i.e., induced by the invariant dis-
tribution ρπ of a policy. We assume that the MDP is ergodic, and as
seen in Section 3, the limiting matrix (P π)∗ = 1ρπ.

Definition 4.1. The space of all value functions on a discrete MDP
forms a Hilbert space under the inner product induced by the invariant
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distribution ρπ of a specific policy π, where

〈V1,V2〉ρπ =
∑
s∈S

V π
1 (s)V π

2 (s)ρπ(s). (4.1)

The “length” or norm in this inner product space is defined as
‖V ‖ρπ =

√
〈V,V 〉ρπ .1

The concept of projection is crucial in defining approximation in a
Hilbert space. Intuitively, the idea is to find the element of a (closed)
subspace that is “closest” to a given vector. In value function approx-
imation, we are interested in finding the “best” approximation to
the vector V π that lies in the subspace spanned by a set of basis
functions.

Definition 4.2. The projection operator ΠK :H→K finds the closest
element û ∈ K to u ∈ H, that is

ΠK(u) = argmin
g∈K

‖g − u‖H. (4.2)

Any projection operator Π is idempotent, so that Π2 = Π and non-
expansive, so that ‖Π(u)‖ ≤ ‖u‖.

If the basis functions φi are orthonormal, meaning that 〈φi,φj〉H =
δij , where δij = 1 if and only if i = j, then the projection operator can
be defined by the following abstract Fourier series.

Definition 4.3. If φ1, . . . ,φk is a basis for the subspace K, the projec-
tion operator ΠK operator can be written as

ΠK(u) =
k∑

i=1

〈u,φi〉Hφi. (4.3)

1 Technically, ρπ must be a strictly positive distribution for 〈., .〉ρπ to form a valid inner prod-
uct, which implies that the Markov chain can have no transient states s where ρπ(s) = 0.
A minor change allows extending the definition to arbitrary MDPs [138].
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Applying this definition to approximation of the value function V π,
we have

V π
Φ = ΠΦV

π =
k∑

i=1

〈V π,φi〉ρπ φi, (4.4)

where the projection operator onto the space spanned by the bases φi is
indicated as ΠΦ for convenience. In the next section, we will investigate
a “fixed point” algorithm for finding the best approximation to V π.
This algorithm works by finding the fixed point of the composition of
the T π operator and the projection operator ΠΦ. A natural question
that arises is whether the error in such algorithms for value function
approximation can be quantified. A convenient way to arrive at such
results is through the concept of a contraction mapping.

Definition 4.4. An operator T on a Hilbert space H is called a con-
traction mapping if and only if

‖Tu − Tv‖H ≤ β‖u − v‖H, (4.5)

where 0 < β < 1.

It can be shown that the operator T π is a contraction mapping,
where

‖T πV1 − T πV2‖ρπ ≤ γ‖V1 − V2‖ρπ . (4.6)

A standard method for computing least-square projections for value
function approximation is to find the projection of the backed up value
function T π(V π) onto the space spanned by the bases Φ. This procedure
is motivated by the observation that although the current approxima-
tion V̂ may lie within the subspace spanned by the bases, the backed up
value function may lie outside the subspace, and hence need to be pro-
jected back in. Thus, we are interested in investigating the properties
of the composite operator ΠΦT

π. Since projections are nonexpansive,
the composite operator is also a contraction mapping.

Theorem 4.1. The composite projection and backup operator ΠΦT
π

is a contraction mapping with a factor κ ≤ γ.
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Proof. We know that T π is a contraction mapping with a factor γ. It
follows easily from the nonexpansion property of ΠΦ that the combined
operator is also a contraction mapping, since

‖ΠΦT
πV1 − ΠΦT

πV2‖ρπ ≤ ‖T πV1 − T πV2‖ρπ ≤ γ‖V1 − V2‖ρπ .

Since the composite operator is a contraction mapping, it must also
have a fixed point.

Definition 4.5. The fixed point of the combined operator ΠΦT
π is

defined as

V̂ π
Φ = ΠΦT

πV̂ π
Φ . (4.7)

Exploiting the contraction property of the composite operator
ΠΦT

π the following general error bound establishes bounds on the
“distance” between the true value function V π and the fixed point
approximation V̂ π

Φ .

Theorem 4.2. Let V̂ π
Φ be the fixed point of the combined projection

operator ΠΦ and the backup operator T π. Then, it holds that

‖V π − V̂ π
Φ ‖ρπ ≤ 1√

1 − κ2
‖V π − ΠΦV

π‖ρπ . (4.8)

κ is the contraction rate of the composite operator.

Proof.

‖V π − V̂ π
Φ ‖2ρπ = ‖V π − ΠΦV

π + ΠΦV
π − V̂ π

Φ ‖2ρπ

= ‖V π − ΠΦV
π‖2ρπ + ‖ΠΦV

π − V̂ π
Φ ‖2ρπ

= ‖V π − ΠΦV
π‖2ρπ + ‖ΠΦT

π(V π) − ΠΦT
π(V̂ π

Φ )‖2ρπ

≤ ‖V π − ΠΦV
π‖2ρπ + κ2‖V π − V̂ π

Φ ‖2ρπ .

The result follows directly from the last inequality. The second step
follows from the use of the generalized Pythogorean theorem in Hilbert
spaces (the length of the sum of two orthogonal vectors is the sum of
the lengths of each vector). Note that the error vector V π − ΠΦV

π is
orthogonal to all value functions in the space spanned by the bases Φ,
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because of the property of orthogonal projectors. The inequality follows
from Theorem 4.1.

4.2 Least-Squares Approximation of a Fixed Policy

In this section, we review two standard approaches to approximating
value functions using a linear combination of basis functions, which are
known as the Bellman residual approach [122, 94], and the fixed point
approach [69, 94] Assume a set of basis functions FΦ = {φ1, . . . ,φk}
is given, where each basis function represents a “feature” φi : S → R.
The basis function matrix Φ is an |S| × k matrix, where each column
represents a basis function, and each row specifies the value of all the
basis functions in a particular state. We assume the Bellman backup
operator T π is known, and then proceed to discuss how to extend these
approaches when T π is unknown and must be estimated from samples.

Definition 4.6. The Bellman Residual minimization problem is to
find a set of weights wBR such that

wBR = argmin
w
‖T π(V̂ ) − V̂ ‖ρπ , (4.9)

where V̂ is an initial approximation to V π.

We can express the minimization as a “least-squares” problem as
follows

min
w
‖T π(V̂ ) − V̂ ‖ρπ

= min
w
‖Rπ + γP πV̂ − V̂ ‖ρπ

= min
w
‖Rπ + γP πΦw − Φw‖ρπ

(I − γP π)Φw ≈ρπ Rπ

The last step formulates the equivalence as a weighted least-squares
problem of the form Ax ≈ρ b. It is well known that the solution to a
weighted least-squares problem can be expressed generically as

x = (ATCA)−1ATCb,

where C is a diagonal matrix whose entries specify the non-uniform
weights measuring the “length” in the space. For Bellman residual
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minimization, the corresponding elements are:

ABR = (I − γP π)Φ, C = Dρπ , b = Rπ.

Thus, the Bellman residual minimization problem can be solved as
the following least-squares solution:

wBR = (AT
BRDρπABR)−1(AT

BRDρπRπ) (4.10)

Another popular approach is to find the fixed point of the combined
projection operator ΠΦ and the Bellman “backup operator T π.

Definition 4.7. The Bellman Fixed Point method for linear value
function approximation is to find the weights wFP such that

wFP = argmin
w
‖ΠΦT

π(V̂ ) − V̂ ‖ρπ . (4.11)

A similar least-squares solution to the fixed point method can be
derived as follows

min
w
‖ΠΦT

π(V̂ ) − V̂ ‖ρπ

= min
w
‖ΠΦT

πΦw − Φw‖ρπ

ΠΦT
πΦw ≈ρπ Φw

Φw = Φ(ΦTDρπΦ)−1ΦTDρπ(R + γP πΦw)

wFP = (ΦTDρπΦ − γΦTDρπP πΦ)−1ΦTDρπRπ.

Figure 4.1 gives a geometrical perspective of the problem of value
function approximation. The Bellman residual approach can be seen as

Fig. 4.1 A geometrical view of value function approximation.
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minimizing the length of the vector T π(V̂ π) − V̂ π, whereas the fixed
point approach minimizes the projection of the residual in the space
spanned by the basis Φ.

4.2.1 Least-Squares Temporal Difference Learning

In Section 2.3, we described the temporal difference TD(0) learning
algorithm. Here, we generalize this algorithm and describe the LSTD
method [16, 18]. Least-Square Temporal Difference (LSTD) computes
the approximation to the value function V π on a specific set of bases Φ.
It can be viewed as an iterative approximation of the fixed-point pro-
jection method described above (see Equation (4.11)). Essentially, the
algorithm maintains a matrix (denoted as A) and a column vector b,
which are both updated from sampled trajectories. When flag is
true, namely whenever the approximated value function is needed, the
algorithm returns w = A−1b as the answer. The algorithm shown is
the LSTD(λ) method for the undiscounted γ = 1 setting [16]. Here,
0 ≤ λ ≤ 1 is a weighting parameter that determines the eligibility or
recency of past states.

LSTD(λ) can be viewed as building a compressed model on the
basis Φ. To gain some insight into the meaning of the A matrix and b

column vector, let us assume that the basis matrix Φ is the identity, that
is, the unit vector basis is used. Then, line 6 of the LSTD algorithm,
for λ = 0, computes the sum

A = A + φ(xt)(φ(xt) − φ(xt+1))T ,

where φ(xt) is a column vector of all 0 except for a single 1 at the
location corresponding to state xt. Thus, the outer product is a matrix
with all 0’s except at the row corresponding to state xt, which has a 1
in the diagonal entry and a −1 at the column corresponding to state
xt+1. The sum of all these rank one matrices is

Af = (N − T ),

where N is a diagonal matrix counting the number of times that
each state was visited, and T is a matrix that counts the number of
transitions from state xt to state xt+1. Similarly, line 7 in the LSTD(0)
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Algorithm 4 The LSTD(λ) Algorithm
// A: A matrix of size k × k initialized to the 0 matrix.
// b: A vector of size k × 1 initialized to 0 vector.
// t: time counter initialized to 0.
// flag: A binary variable set to true when the coefficients are desired.

1: for i = 1 to N do
2: Choose a start state xt ∈ S.
3: Set zt = φ(xt)
4: while xt �= END do
5: Execute action π(xt), resulting in state xt+1 and reward Rt

6: Set A = A + zt(φ(xt) − φ(xt+1))T

7: Set b = b + ztRt

8: zt+1 = λzt + φ(xt+1)
9: t = t + 1

10: end while
11: if flag then
12: Return w = A†b
13: end if
14: end for

algorithm consists of the vector sum

b = b + φ(xt)Rt,

which is simply a vector of sum of rewards received on transitions out
of each state xt. The matrix pseudo-inversion step in line 12 of the
LSTD algorithm can be written as

V π = (N − T )†s,

where s is a column vector containing the sum of rewards received in
each state. When Φ is not the identity matrix, then A can be shown to
be computing a compressed model.

4.3 Approximation in Learning Control

The problem of value function approximation in control learning is
significantly more difficult in that only samples of the MDP are
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available, from which T π must be constructed. A standard algorithm for
control learning is approximate policy iteration [12], which interleaves
an approximate policy evaluation step of finding an approximation of
the value function V̂ πk associated with a given policy πk at stage k, with
a policy improvement step of finding the greedy policy associated with
V̂ πk . Here, there are two sources of error introduced by approximat-
ing the exact value function, and approximating the policy. A specific
type of approximate policy iteration method — the Least-Square Policy
Iteration (LSPI) algorithm [69] — is described in Section 4.3.1, which
uses a least-squares approach to approximate the action-value function
to alleviate this problem.

4.3.1 Approximation of Action-Value Functions

Here, we focus on action-value function approximation, and in particu-
lar, describe the LSPI method [69]. The complete algorithm is described
in Figure 4.2. In action-value learning, the goal is to approximate the
true action-value function Qπ(s,a) for a policy π using a set of basis
functions φ(s,a) that can be viewed as compressing the space of action-
value functions. The true action-value function Qπ(s,a) is a vector in a
high-dimensional space R|S|×|A|, and using the basis functions amounts
to reducing the dimension to Rk, where k� |S| × |A|. The approxi-
mated action value is thus

Q̂π(s,a;w) =
k∑

j=1

φj(s,a)wj ,

where the wj are weights or parameters that can be determined using a
LSM. LetQπ be a real (column) vector ∈ R|S|×|A|. φ(s,a) is a real vector
of size k where each entry corresponds to the basis function φj(s,a)
evaluated at the state action pair (s,a). The approximate action-value
function can be written as Q̂π = Φwπ, where wπ is a real column vector
of length k and Φ is a real matrix with |S| × |A| rows and k columns.
Each row of Φ specifies all the basis functions for a particular state
action pair (s,a), and each column represents the value of a particular
basis function over all state action pairs. As described in Section 4.1,
the Bellman fixed point approximation tries to find a set of weights wπ



468 Approximating Markov Decision Processes

LSPI (T,N,ε,Φ):

// T : Number of episodes for sample collection
// N : Maximum length of each trial
// ε : Convergence condition for policy iteration
// Φ: Basis function matrix

Sample Collection Phase

• Collect a data set of samples D = {(si,ai,si+1, ri), . . .} by following
a random policy for a set of T trials, each of maximum N steps.

Control Learning Phase

• Set i = 0. Initialize wi ∈ R
k to a random vector.

• Repeat the following steps:

(1) Define πi(s) ∈ argmaxaQ̂(s,a), where Q̂(s,a) = Φwi.

(2) Set i← i + 1. Using the stored transitions
(st,at,s

′
t,a

′
t, rt) ∈ D, compute the matrix A and vec-

tor b as follows:

Ãt+1 = Ãt + φ(st,at)
(
φ(st,at) − γφ(s′

t,π
i(st)

)T

.

b̃t+1 = b̃t + φ(st,at)rt.

(3) Solve the linear system of equations Ãwi = b̃ using any
standard method.

(4) until ‖wi − wi+1‖2 ≤ ε.

• Set π(s) ∈ argmaxa∈AQ̂i(s,a), where Q̂i = Φwi is the ε-optimal
approximation to the optimal value function within the linear span
of basis functions Φ.

Fig. 4.2 This figure describes a least-squares variant of approximate policy iteration.

under which the projection of the backed up approximate Q-function
TπQ̂

π onto the space spanned by the columns of Φ is a fixed point,
namely

Q̂π = ΠΦT
π(Q̂π),

where Tπ is the Bellman backup operator. It was shown in the pre-
vious section that the resulting solution can be written in a weighted
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least-squares form as Awπ = b, where the A matrix is given by

A =
(
ΦTDρπ(Φ − γP πΦ)

)
,

and the b column vector is given by

b = ΦTDρπR,

where Dρπ is a diagonal matrix whose entries reflect varying “costs” for
making approximation errors on (s,a) pairs as a result of the nonuni-
form distribution ρπ(s,a) of visitation frequencies. A and b can be esti-
mated from a database of transitions collected from some source, e.g., a
random walk. The Amatrix and b vector can be estimated as the sum of
many rank-one matrix summations from a database of stored samples.

Ãt+1 = Ãt + φ(st,at)
(
φ(st,at) − γφ(s′

t,π(s′
t))
)T
,

b̃t+1 = b̃t + φ(st,at)rt,

where (st,at, rt,s
′
t) is the tth sample of experience from a trajectory

generated by the agent (using some random or guided policy). Once the
matrix A and vector b have been constructed, the system of equations
Awπ = b can be solved for the weight vector wπ either by taking the
inverse of A (if it is of full rank) or by taking its pseudo-inverse (if A
is rank-deficient). This defines a specific policy since Q̂π = Φwπ. The
process is then repeated, until convergence (which can be defined as
when the normed difference between two successive weight vectors falls
below a pre-defined threshold ε). Note that in succeeding iterations,
the A matrix will be different since the policy π has changed.

4.4 Approximation Using Convex Optimization

A different class of approaches from least-squares for solving MDPs are
those based on convex optimization [17]. Two methods that fall into this
class are reviewed now: approximate linear programming [36] and repro-
ducing kernel based methods that use quadratic programming [120].

4.4.1 Approximate Linear Programming

A straightforward way to generalize exact linear programming using
basis functions is given below. This approach is referred to as approxi-
mate linear programming in the literature [36].
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Definition 4.8. The approximate linear program required to solve a
MDP M given a set of bases Φ is:

Variables : w1, . . . ,wk

Minimize :
∑

s

αs

∑
i

wiφi(s)

Subject to :
∑

i

wiφi(s) ≥
∑
s′

P a
ss′

(
Ra

ss′ + γ
∑

i

wiφi(s)

)
,

∀ s ∈ S, a ∈ As,

where α is a state relevance weight vector whose weights are all positive.

Note that the number of variables in the LP has now been reduced
from |S| = n to k� |S|. Unfortunately, the number of constraints is
still equal to |S||A|. For special types of factored MDPs, it is possible
to simplify the number of constraints by exploiting conditional inde-
pendence properties in the transition matrix [51].

4.4.2 Reproducing Kernel Hilbert Space Methods

A Reproducing Kernel Hilbert Space (RKHS) H is a vector space of
functions on a (state) space equipped with a symmetric kernel func-
tion K(., .) that serves as the “representer” of evaluation of any value
function:

V (x) = 〈V,K(x, .)〉H,

which implies that the kernel satisfies the “reproducing property”:

K(x,y) = 〈K(x, .),K(y, .)〉H.

One way to interpret the kernel function is to view it as “implicitly”
encoding a large (possibly infinite) set of features φ(s), such that

K(x,y) = 〈φ(x),φ(y)〉H.

A simple “polynomial” kernel is defined as the inner product
between a set of polynomial features:

φ(x) = (1,x,x2, . . . ,xn),
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which generates the kernel

K(x,y) = (1 + 〈x,y〉)n.

To formulate value function approximation using RKHS methods,
we assume that the exact value function, say V π, can be approximated
by the inner product

V̂ π(s) ≈ 〈w,φ(s)〉H, (4.12)

where φ(s) = K(s, .) is specified by the reproducing kernel associated
with H. We can treat the problem of approximating V π as an instance
of support vector regression (SVR) [120], where the goal is to approxi-
mate an unknown function f from samples (x,f(x)). The intuitive idea
is to approximate f to within ε, where only errors outside ε are penal-
ized. Also, occasional deviations above ε can be tolerated by a slack
variable. One SVR formulation of value function approximation as a
quadratic optimization problem is given below [13].

Definition 4.9. The support vector regression formulation of value
function approximation can be formulated as minimizing the Bellman
residual error BE = V̂ π

w − T π(V̂ π
w ), where V̂ π

w = Φw. In quadratic pro-
gramming, regression problems can be formulated as minimizing the
“norm” of the associated weight vector w in the RKHS defined by a
kernel function K(x,y) = 〈φ(x),φ(y)〉. Its “primal form” formulation is
given as

min
w,ξ

1
2
‖w‖2H + c

∑
s∈S

(ξs + ξ∗
s )

such that BE(s) ≤ ε + ξs

−BE(s) ≤ ε + ξ∗
s

ξs, ξ
∗
s ≥ 0, ∀ s ∈ S,

where S is a set of samples, ξ,ξ∗ are “slack variables,” and ε is a fixed
“resolution” parameter.

Such quadratic programs are usually solved by using the Lagrangian
dual. The key benefit of finding the dual solution is that it is expressed
purely in terms of inner products ofK(x,y) = 〈φ(x),φ(y)〉. This enables
using the “kernel trick” [120].
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4.5 Summary

Thus, we can see that there are a range of methods for approximately
solving MDPs, all of which assume that the basis set φ is given explic-
itly. A detailed comparison of these methods is beyond the scope of this
paper, but is the subject of ongoing research. We next turn to methods
for automatically constructing the basis Φ.



5
Dimensionality Reduction Principles in MDPs

Before proceeding to describe specific solutions to the problem of
constructing low-dimensional representations of Markov decision pro-
cesses (MDPs), we outline some general characteristics of the problem
in this section. There are several variants of the basis construction
problem, each of which may lead to a different solution. Furthermore,
there are also a set of trade-offs that need to be considered: the issue of
optimizing a single versus multiple policies, as well as approximating
a single decision problem versus multiple are some of the choices that
need to be considered. In Sections 6 and 7, we will explore particular
solutions in greater detail.

5.1 Low-Dimensional MDP Induced by a Basis

We have referred several times to the problem of basis construction
as building a “low-dimensional” representation of a MDP. Here, we
formalize this somewhat “intuitive” notion. In particular, it is possible
to show that a least-squares approximation of the value function on
a basis matrix Φ is equivalent to solving an exact “low-dimensional”
MDP MΦ [104]. This result implies that a basis Φ is not only useful in
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approximating value functions, but also induces a “simpler” MDP. The
methods described later in Sections 6 and 7 yield abstractions that are
useful in compressing any function on the state space.

Definition 5.1. Given a basis matrix Φ and policy π, the induced
approximate reward function Rπ

Φ and approximate model P π
Φ are

defined as:

P π
Φ = (ΦT Φ)−1ΦTP πΦ,

Rπ
Φ = (ΦT Φ)−1ΦTRπ.

In essence, Rπ
Φ is simply the least-squares projection of the original

reward function Rπ onto the column space of Φ. Similarly, P π
Φ is the

least-squares solution of the overconstrained system ΦP π
Φ ≈ PΦ, where

the left-hand side is the actual prediction of the features of the next
state, according to the approximate model, and the right-hand side is
its expected value. The following result can be easily shown.

Theorem 5.1. (Parr et al. [104]) Given a basis matrix Φ, the exact
solution to the approximate policy evaluation problem defined by P π

Φ
and Rπ

Φ is the same as that given by the fixed point solution of the exact
policy evaluation problem defined by P π and Rπ onto the basis Φ.

Proof. We begin by reminding ourselves from Section 4 (see Equa-
tion (4.11)) that the solution to the fixed point projection problem is
given as (ignoring the weighting matrix Dρπ):

wFP =
(
I − γ(ΦT Φ)−1ΦTPΦ

)−1
(ΦT Φ)−1ΦTRπ.

The exact solution to the “approximate” policy evaluation problem
is simply

w = (I − γP π
Φ)−1Rπ

Φ

= (I − γ(ΦT Φ)−1ΦTPΦ)−1(ΦT Φ)−1ΦTRπ

= wFP.
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Thus, we can equivalently talk about approximating the exact value
function by projection onto a set of basis functions Φ or equivalently,
view this problem as the exact solution of a compressed MDP. This
distinction is important to keep in mind in later sections. The following
lemma is a straightforward consequence of the above theorem.

Lemma 5.2. Given an approximate model P π
Φ and reward function

Rπ
Φ induced by a basis Φ, the exact policy evaluation problem defined

by P π and Rπ is reduced from its original complexity of O(n3) by the
basis Φ to O(k3).

Proof. The original policy evaluation problem requires inverting an
|S| × |S| transition matrix, where |S| = n. The approximate policy
evaluation problem reduces this to the inversion of a k × k matrix. We
are ignoring, however, the complexity of mapping the original value
function from the |S|-dimensional space to the reduced k-dimensional
basis space and back. We will describe a multiscale basis construction
method in Section 7 that enables a faster solution to the policy eval-
uation problem for some types of MDPs using a quicker method for
matrix inversion.

Although using a basis reduces the complexity of solving a MDP,
what we have not yet factored into this analysis is the cost for con-
structing the basis, as well as the “loss” in solution quality resulting
from it. These factors depend on the exact basis construction method,
which we explore in subsequent sections.

5.2 Formulating the Basis Construction Problem

The problem of approximating a discrete MDP M = (S,A,R,P ) can be
defined as constructing a basis matrix Φ of size |S| × k (or equivalently,
|S||A| × k), where k� |S| (or k� |S||A|). A good basis enables the
MDP to be solved “approximately” in time significantly less than it
would take to solve using the default “table lookup” unit vector basis.
For continuous MDPs, the basis functions are represented on a set of
“sampled” states. In coming up with a more precise formulation, there
are a set of trade-offs to be considered, which are described next.
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5.2.1 Cost of Computation

A desirable goal is to have the cost of constructing a basis be less than
the cost of solving the original MDP (in some default basis). However,
in some cases, this goal may not be achievable. Such bases are still
useful if the aim is to solve multiple closely related MDPs, which can
amortize the cost of computing the basis. For example, in Section 7,
we will describe a multiscale basis for compressing powers of a transi-
tion matrix, which provides a fast way to solve the policy evaluation
problem. In this case, each successive dyadic power of the matrix is rep-
resented on a new basis. These bases depend on the transition matrix,
but not on the reward function, so they can be re-used with multiple
reward functions. However, reward-sensitive bases such as the Drazin
or Krylov bases described in Section 7 are tailored to a specific policy
(transition matrix) and reward function. These bases are more difficult
to transfer, making their cost of construction a more sensitive issue.

5.2.2 Representational Complexity of a Basis

Another important consideration is the size of a basis, e.g., the number
of bits required to specify a basis function or the number of nonzero
coefficients of its representation on some other basis (e.g., unit vec-
tors). Laplacian eigenvector bases (described in Section 6) are not
sparse, since their support is over the whole state space. These bases
are expensive to store on a general state space graph. However, we show
that in special circumstances, where the state space graph decomposes
as a product of simpler graphs, it is possible to represent eigenvec-
tor bases very efficiently. In Section 10, we show an application to
a large multiagent MDP with 106 states using Laplacian eigenvector
bases. We also discuss multiscale wavelet bases in Section 6, which
by their very construction are significantly sparser than eigenvector
bases. Finally, in Section 9, we discuss basis construction in contin-
uous MDPs, and describe both sampling and interpolation methods
that enable Laplacian eigenvector bases to be constructed in continu-
ous MDPs. Results in Section 10 show that in several interesting con-
tinuous MDPs, excellent performance can be achieved by representing
each basis function on only a few hundred sampled states.
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5.2.3 Reward-Sensitive versus Reward-Independent

One primary distinction between different methods of constructing rep-
resentations is whether the bases are tuned to a particular reward func-
tion, or whether they are invariant across rewards. These two choices
present some interesting trade-offs: having the bases tuned to a par-
ticular reward function makes it possible to construct more effective
bases that are customized to the subspace in which a particular value
function lives; if the goal is indeed to compute V π or V ∗, it makes sense
to customize the bases to the reward function. However, on the other
hand, reward-sensitive bases are perhaps of little or no value if the goal
of the decision maker is to solve multiple MDPs on the same state
(action) space. Consider a robot which is tasked to navigate around a
fixed environment and retrieve objects. If we define the reward func-
tion based on retrieving a particular object in a specific location, then
the constructed bases will be adapted to this very specific objective. If
the goal is modified, say retrieving a different object in the very same
location or the same object in another location, a new set of bases have
to be constructed. We will explore both reward-specific and reward-
invariant bases in Sections 6 and 7.

5.2.4 Single Policy versus Multiple

Along with customizing the bases to a particular reward function, it
is also possible and indeed beneficial to also customize the basis to a
specific policy π in solving for its value function V π. Each round of the
policy iteration algorithm (defined earlier in Section 2.2.2) will conse-
quently result in a specific set of basis functions tuned to a specific
policy. It is possible to make the policy-specific bases additionally cus-
tomized to a particular reward, or indeed, to have them invariant to
the reward function. At every new round of policy iteration, a new set
of bases will have to be generated. Consequently, in this formulation,
the bases constructed have a fairly short life span, and multiple sets
of bases have to be constructed for solving just a single MDP. On the
other hand, by tuning the bases to a specific policy and reward func-
tion, it is possible to develop some theoretical guarantees on how well
they can approximate V π.
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5.2.5 Incremental versus Batch Methods

One final distinction between different basis construction methods is
where the representations are formed incrementally, one basis function
at a time, or in a “batch” mode where multiple (or all) basis functions
are constructed. The methods surveyed in the next section construct
basis functions from samples drawn from a MDP. In this context, an
additional distinction that can be drawn is whether each basis func-
tion is constructed incrementally from each sample. These distinctions
will become clearer in later sections when we discuss concrete basis
construction methods.

5.3 Basis Construction Through Adaptive
State Aggregation

We now describe a simple basis construction algorithm that will illus-
trate some of the issues discussed above, as well as provide motivation
for a more general formulation. State aggregation partitions the original
state space S into a set of k subsets S1, . . . ,Sk, where ∪k

i=1Si = S

and furthermore, Si ∩ Sj = ∅, i �= j. We can view state aggregation as
generating a special type of basis matrix Φ, where each column is an
indicator function for each cluster. Each row is associated with a state
and has a single nonzero entry, specifying the cluster to which the state
belongs. There has been a variety of approaches to state aggregation,
and a review of these methods can be found in [75]. One particular
method is of interest in terms of basis construction, namely the adaptive
aggregation method of using the Bellman error to cluster states [11].
Here, at each iteration, states are grouped according to the Bellman
residual T π(V ) − V associated with them. An abstract Markov chain
is then formed using these clusters as states, and value iteration at the
base level is interleaved with value iteration at the abstract level, where
rewards at the abstract level are defined using the Bellman residual.
Thus, the aggregation algorithm interleaves regular value iteration

V k+1 = T (V k) = Rπ + γP πV k,

with a low-rank correction step using the basis matrix:

V k = V k + Φy.
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Here, Φ is the basis function matrix that defines the state aggrega-
tion. y is computed by solving a reduced policy evaluation problem at
the “abstract” level:

y = (I − γP π
Φ)−1Rπ

Φ

where P π
Φ and Rπ

Φ are the induced transition matrix and reward func-
tion at the abstract level

P π
Φ = Φ†P πΦ,

Rπ
Φ = Φ†(T (V k) − V k).

These equations are in fact exactly the same as that given in
Definition 5.1, except that the reward function at the abstract level
is comprised of the “residual” Bellman error projected onto the space
spanned by the basis Φ. It is shown in [11] that the error after one step
of value iteration and aggregation consists of two terms:

E1 = (I − Π)(T (V k) − V k),

E2 = γ(I − Π)P πΦy,

where Π = ΦΦ† is the orthogonal projection onto the range of Φ. The
first error term E1 is controlled by adaptively aggregating the states
into m groups by dividing the Bellman residual error T (V k) − V k into
m intervals. It can be shown that the term E1 measures the difference
between the Bellman error at a state and the average Bellman error of
all states in its partition. The second term E2 is not controlled by this
scheme. As we will see next, the basis construction methods described
in Sections 6 and 7 allow controlling this second term by construct-
ing invariant subspaces of the transition matrix P π for which E2 = 0.
To achieve this capability, the basis matrices cannot be restricted to
partitions anymore, but are generalized to sets of (usually) orthogo-
nal vectors. We discuss the problem of finding invariant subspaces of
transition matrices next.

5.4 Invariant Subspaces: Decomposing an Operator

The approach to representation discovery described in Sections 6 and 7
can abstractly be characterized as determining the invariant subspaces
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of a vector space under some operator T , and building basis functions
that span these subspaces.

Definition 5.2. A subspace χ of a vector space V is invariant under
a linear mapping T if for each vector w ∈ χ, the result Tw ∈ χ.

A key theorem regarding invariant subspaces is worth stating and
proving formally [126].

Theorem 5.3. Let χ be an invariant subspace of T , and let the
columns of matrix X form a basis for χ. Then, there is a unique matrix
L such that

TX = XL.

In other words, the matrix L is the representation of T on the subspace
χ with respect to the basisX. It is often useful to refer to the restriction
of an operator T on a subspace χ as T |χ.

Proof. The proof is straightforward (see [126]). Since χ is an invari-
ant subspace, for any vector xi ∈ χ, Txi ∈ χ, and consequently can
be expressed as a linear combination of the columns in X. That
is, Txi = Xli, where li is the unique set of coefficients. The matrix
L = [l1, . . . , ln].

Often, we can determine a set of invariant subspaces such that every
vector in a vector space can be written as the direct sum of vectors from
each subspace. That is, given any v ∈ V , we can write it as

v = w1 + w2 + · · · + wk,

where each wi ∈Wi, an invariant subspace of an operator T . We will
use the following notation for direct sum decomposition of V :

V = W1 ⊕W2 ⊕ ·· · ⊕Wk
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5.4.1 Finding Invariant Subspaces of a MDP

One key idea is to find the invariant subspaces of the transition matrix
P a for each action a (or P π for each policy π).

Definition 5.3. P̂ a is a representation of the invariant subspace of P a

spanned by the basis Φ if and only if

P aΦ = ΦP̂ a. (5.1)

For example, if P a is diagonalizable (such as a reversible random
walk), then its eigenspaces form invariant subspaces.

Definition 5.4. If the transition matrix P a is diagonalizable, then
each eigenspace of the form

V λ = 〈{x |P ax = λx}〉, (5.2)

is an invariant subspace of P a where 〈{x,y, . . .}〉 represents the space
spanned by the enclosed vectors.

Unfortunately, transition matrices P a are often not reversible, in
which case, diagonalization leads to complex eigenvectors. One solution
is to replace P a with a related stochastic matrix, i.e., reversible and
whose eigenspaces provide a suitable space to compress a MDP. We
will explore such diagonalization-based methods in Section 6.

Figure 5.1 contrasts two approaches to constructing low-dimensional
representations. One approach tries to find a way to compress the tran-
sition dynamics such that the MDP can be “simulated” accurately in
a lower-dimensional space. Here, φ(s) is a compression function that
maps a potentially high-dimensional vector to a lower-dimensional one.
One approach is to find a compression function φ and a compressed
transition function such that

P a = P̂ a ◦ φ. (5.3)

In other words, compress the state first to φ(s) = ŝ and then con-
struct a compressed state prediction function P̂ a (for each action a).
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Fig. 5.1 One general principle for constructing low-dimensional representations of a MDP
is to look for invariant subspaces. Left: One approach is to construct a compression function
φ(s) of a state such that it can predict the next state accurately. Right: Another approach
is to construct a value-directed compression function that suffices to predict rewards [107].

Separately, another compressed reward predictor µ is constructed to
predict the true reward from the compressed state φ(s), so that

R = µ ◦ φ. (5.4)

Alternatively, the reward-directed (or value-directed [107]) approach
does not attempt to construct a compression function that can predict
the next state correctly, but that can only predict the rewards properly.
In this latter case, it follows from the construction of the figure that

φ ◦ P a = P̂ a ◦ φ. (5.5)

These two conditions are also related to the concept of reward-
respecting state aggregations or homomorphisms used to construct
reduced MDPs [48, 112]. In the special case of linear compression, φ
is represented by a basis matrix Φ. In this case, the identity above
shows that P̂ a is an invariant subspace of P a on the space spanned by
the basis Φ. We will explore methods in next two sections that do not
track the one-step dynamics accurately, but that find invariant sub-
spaces of P π. In the context of policy iteration, it suffices to be able to
find subspaces that enable evaluating each policy accurately.



6
Basis Construction: Diagonalization Methods

We begin our discussion of methods for constructing low-dimensional
representations of MDPs in this section by focusing on diagonaliza-
tion procedures. The main insight here is to look for invariant spaces
spanned by the eigenvectors of some diagonalizable operator on the
state (action) space. We begin by assuming that the Laplacian matrix
Lπ of a specific policy π is diagonalizable, and show how the result-
ing eigenvectors provide an efficient way to approximate its associated
value function V π. However, the resulting bases from diagonalizing the
Laplacian matrix Lπ will only be of use in approximating a specific pol-
icy π. This approach also assumes the Laplacian matrix Lπ is known,
or can be estimated. Consequently, to overcome these limitations, we
develop an alternative approach where we substitute the random walk
on a graph (or the graph Laplacian) as a diagonalizable operator, build-
ing on its attractive properties for regularizing functions on graphs.

6.1 Diagonalization of the Laplacian of a Policy

One subclass of diagonalizable transition matrices are those corre-
sponding to reversible Markov chains (e.g., induced by the natural
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random walk on a graph). Transition matrices for general MDPs are not
reversible, and their spectral analysis is more delicate, since it involves
dealing with complex numbers. If the transition matrix P π is diago-
nalizable, there is a complete set of eigenvectors Φπ = (φπ

1 , . . . ,φ
π
n) that

provides a change of basis in which the transition matrix P π is repre-
sentable as a diagonal matrix. For the sub-class of diagonalizable tran-
sition matrices represented by reversible Markov chains, the transition
matrix is not only diagonalizable, but there is also an orthonormal
basis. In other words, using a standard result from linear algebra, it
follows that

Lπ = I − P π = ΦπΛπ(Φπ)T ,

where Λπ is a diagonal matrix of eigenvalues.1 Another way to express
the above property is to write the Laplacian matrix as a sum of pro-
jection matrices associated with each eigenvalue:

Lπ =
n∑

i=1

λπ
i φ

π
i (φπ

i )T ,

where the eigenvectors φπ
i form a complete orthogonal basis. Thus,

‖ φπ
i ‖2 = 1 and 〈φπ

i ,φ
π
j 〉 = 0, i �= j. It readily follows that powers of Lπ

have the same eigenvectors, but the eigenvalues are raised to the corre-
sponding power. Hence, (I − P π)kφπ

i = (λπ
i )kφπ

i . Since the basis matrix
Φπ spans all vectors on the state space S, the reward vector Rπ can be
expressed in terms of this basis as

Rπ = Φπαπ, (6.1)

where απ is a vector of weights. For high powers of the transition
matrix, the projection matrices corresponding to the largest eigenval-
ues will dominate the expansion. Combining Equation (6.1) with the

1
L

π and P π share the same eigenvectors, and their eigenvalues are also closely related:
if λi is an eigenvalue of L

π , then 1 − λi is an eigenvalue of P π . We could obviously
phrase the problem in terms of diagonalizing the transition matrix P π directly, as has
been formulated in [106]. However, in keeping with our unified theme, we describe it in
terms of diagonalizing the Laplacian of the policy.
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Neumann expansion in Equation (3.2), it follows that

V π =
∞∑
i=0

(γP π)iΦπαπ

=
n∑

k=1

∞∑
i=0

γi(1 − λπ
k)iφπ

kα
π
k

=
n∑

k=1

1
1 − γ(1 − λπ

k)
φπ

kα
π
k

=
n∑

k=1

βkφ
π
k ,

using the property that (P π)iφπ
j = (1 − λπ

j )iφπ
j . Essentially, the value

function V π is represented as a linear combination of eigenvectors of
the transition matrix. In order to provide the most efficient approxima-
tion, the summation can be truncated by choosing some small number
m < n of the eigenvectors, preferably those for whom βk is large. Of
course, since the reward function is not known, it might be difficult to
pick a priori those eigenvectors that result in the largest coefficients.
A simpler strategy instead is to focus on those eigenvectors for whom
the coefficients 1

1−γ(1−λπ
k ) are the largest. In other words, the eigenvec-

tors corresponding to the smallest eigenvalues of the Laplacian matrix
I − P π should be selected (since the smallest eigenvalue of Lπ is 0, the
eigenvalues closest to 0 should be selected):

V π ≈
m∑

k=1

1
1 − γ(1 − λπ

k)
φπ

kα
π
k , (6.2)

where the eigenvalues are ordered in nonincreasing order, so λπ
1 is the

largest eigenvalue. If the transition matrix P π and reward function
Rπ are both known, one can of course construct basis functions by
diagonalizing P π and choosing eigenvectors “out-of-order” (i.e., pick
eigenvectors with the largest βk coefficients above).

The spectral approach of diagonalizing the transition matrix is prob-
lematic for several reasons. One, the transition matrix P π cannot be
assumed to be reversible, in which case diagonalization may result in
complex eigenvalues (and eigenvectors). Second, the transition matrix
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may be unknown. Of course, one can always use samples of the under-
lying MDP generated by exploration to estimate the transition matrix,
but the number of samples needed may be large. Finally, in control
learning, the policy keeps changing, causing one to have to re-estimate
the transition matrix. For these reasons, a different approach to con-
structing bases is now described by diagonalizing the natural random
walk on a graph induced from a MDP.

6.2 Regularization Using Graph Laplacian Operators

The graph Laplacian was introduced in Section 3. Here, we show how it
can be used to regularize or smoothly interpolate functions on graphs
from noisy samples. Let G = (V,E,W ) represent an undirected graph
on |V | = n nodes, where (u,v) ∈ E is an edge from vertex u to v. Edges
are all assumed to have a weight associated with them, specified by the
W matrix. For now, we assume W (u,v) = W (v,u), but this assumption
will be relaxed later. The notation u ∼ v means an (undirected) edge
between u and v, and the degree of u to be d(u) =

∑
u∼vw(u,v). D will

denote the diagonal matrix defined by Duu = d(u), and W the matrix
defined by Wuv = w(u,v) = w(v,u).

The space of functions on a graph forms a Hilbert space, where each
function f : V → R under the inner product2:

〈f,g〉 =
∑
v∈V

f(v)g(v).

The notion of a smooth function on a graph can now be formalized.
The L2 norm of a function on G is defined as

‖f‖22 =
∑
v∈V

|f(v)|2d(v).

The gradient of a function is ∇f(i, j) = w(i, j)(f(i) − f(j)) if there
is an edge e connecting i to j, 0 otherwise. The smoothness of a function

2 As discussed previously, one can also define a weighted inner product that takes into
account the invariant (stationary) distribution of the Markov chain induced by a random
walk on the graph.
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on a graph can be measured by the Sobolev norm [82]:

‖f‖2H2 = ‖f‖22 + ‖∇f‖22
=

∑
v∈V

|f(v)|2d(v) +
∑
u∼v

|f(u) − f(v)|2w(u,v). (6.3)

The first term in this norm controls the size (in terms of L2-norm) for
the function f , and the second term controls the size of the gradient.
The smaller ‖f‖H2 , the smoother is f . In the applications to be con-
sidered later, the functions of interest have small H2 norms, except at
a few points, where the gradient may be large.

For simplicity, let us assume an orthonormal basis (e1, . . . ,e|V |)
for the space R|V |. For a fixed precision ε, a function f can be
approximated as ∥∥∥∥∥∥f −

∑
i∈S(ε)

αiei

∥∥∥∥∥∥ ≤ ε
with αi = 〈f,ei〉 since the ei’s are orthonormal, and the approximation
is measured in some norm, such as L2 or H2. The goal is to obtain
representations in which the index set S(ε) in the summation is as
small as possible, for a given approximation error ε. This hope is well
founded at least when f is smooth or piecewise smooth, since in this
case it should be compressible in some well chosen basis {ei}.

The combinatorial Laplacian L [26] was earlier defined as L =
D −W , where D is a diagonal matrix whose entries are the row sums
of W . Alternatively, the normalized Laplacian L = D− 1

2 (D −W )D− 1
2

is often used, whose eigenvalues lie in [0,2] [26].
One of the key attractive properties of the (combinatorial or nor-

malized) Laplacian is that it is positive semi-definite. Since both the
Laplacian operators, L and L, are also symmetric, the spectral theorem
from linear algebra can be applied, yielding a discrete set of eigenvalues
that are all nonnegative: 0 ≤ λ0 ≤ λ1 ≤ ·· · ≤ λi ≤ ·· · and a correspond-
ing orthonormal basis of real-valued eigenfunctions {ξi}i≥0, solutions
to the eigenvalue problem Lξi = λiξi.

The eigenfunctions of the Laplacian can be viewed as an orthonor-
mal basis of global Fourier smooth functions that can be used for
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approximating any value function on a graph [26]. A striking prop-
erty of these basis functions is that they capture large-scale features of
a graph, and are particularly sensitive to “bottlenecks,” a phenomenon
widely studied in Riemannian geometry and spectral graph theory
[23, 26, 44].

Observe that ξi satisfies ‖∇ξi‖22 = λi. In fact, the variational char-
acterization of eigenvectors (described below) shows that ξi is the
normalized function orthogonal to ξ0, . . . , ξi−1 with minimal ‖∇ξi‖2.
Hence, the projection of a function f on S onto the top k eigenvectors
of the Laplacian is the smoothest approximation to f , in the sense of
the norm in H2. A potential drawback of Laplacian approximation is
that it detects only global smoothness, and may poorly approximate
a function which is not globally smooth but only piecewise smooth,
or with different smoothness in different regions. These drawbacks are
addressed in the context of analysis with diffusion wavelets described
in Section 7.6 [30].

Building on the Dirichlet sum above, a standard variational
characterization of eigenvalues and eigenvectors views them as the solu-
tion to a sequence of minimization problems. In particular, the set of
eigenvalues can be defined as the solution to a series of minimization
problems using the Rayleigh quotient [26]. This provides a variational
characterization of eigenvalues using projections of an arbitrary func-
tion g : V →R onto the subspace Lg. The quotient gives the eigenval-
ues and the functions satisfying orthonormality are the eigenfunctions:

〈g,Lg〉
〈g,g〉 =

〈g,D− 1
2LD− 1

2 g〉
〈g,g〉 =

∑
u∼v(f(u) − f(v))2wuv∑

u f
2(u)du

,

where f ≡ D− 1
2 g. The first eigenvalue is λ0 = 0, and is associated with

the constant function f(u) = 1, which means the first eigenfunction
go(u) =

√
D 1 (see, e.g., top left plot in Figure 6.1). The first eigen-

function (associated with eigenvalue 0) of the combinatorial Laplacian
is the constant function 1. The second eigenfunction is the infimum over
all functions g : V →R that are perpendicular to go(u), which gives us
a formula to compute the first nonzero eigenvalue λ1, namely

λ1 = inf
f⊥√

D1

∑
u∼v(f(u) − f(v))2wuv∑

u f
2(u)du

.
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The Rayleigh quotient for higher-order basis functions is similar:
each function is perpendicular to the subspace spanned by previous
functions. In other words, the eigenvectors of the graph Laplacian pro-
vide a systematic organization of the space of functions on a graph that
respects its topology.

6.2.1 Examples of Graph Laplacian Basis Functions

This section provides an intuitive pictorial overview of the problem
of value function approximation and illustrates some types of bases
produced by the methods described above. Figure 6.1 illustrates one
type of basis function formed by diagonalizing a graph operator called
the normalized Laplacian [26] over an undirected graph, where edges
(s,s′) are created with a unit weight if P (s′|s,a) > 0 or P (s|s′,a) > 0,
where s and s′ are any two reachable states in the two-room MDP,
and a is one of the four compass directions. Each eigenfunction (or
eigenvector) can be viewed as a function mapping each discrete state
to a real number. Notice how these eigenfunctions are highly sensitive
to the geometry of the underlying state space, clearly reflecting the
bottleneck connecting the two rooms.

6.2.2 Diagonalization of the Directed Graph Laplacian

In the previous section, basis functions were created by diagonaliz-
ing an undirected graph. In this section, we show that these ideas
straightforwardly generalize to directed graphs using the directed graph
Laplacian [27]. A weighted directed graph is defined asGd = (V,Ed,W ).
The major distinction between the directed and undirected graph is the
nonreversibility of edges. A directed graph may have weights wij = 0
and wji �= 0. In order to diagonalize a graph operator on a directed
graph, the operator must be made self-adjoint. Since the standard ran-
dom walk operator on a directed graph is not self-adjoint, it is sym-
metrized by using the leading eigenvector associated with the spectral
radius (or largest eigenvalue) 1. This leading eigenvector is sometimes
referred to as the Perron vector and has played a major role in web
search engines.
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A random walk on Gd defines a probability transition matrix P =
D−1W . The Perron-Frobenius Theorem states that if Gd is strongly
connected then P has a unique left eigenvector ψ with all positive
entries such that ψP = ρψ, where ρ is the spectral radius. ρ can be
set to 1 by normalizing ψ such that

∑
iψi = 1. A more intuitive way of

thinking of ψ is as the long-term steady state probability of being in any
vertex over a long random walk on the graph. There is no closed-form
solution for ψ; however, there are several algorithms to calculate it.
The power method [49] iteratively calculates ψ starting with an initial
guess for ψ using the definition ψP = ψ to determine a new estimate.

Definition 6.1. The combinatorial and normalized graph Laplacian
for a directed graph G = (V,E,W ) is defined as

Ld = Ψ − ΨP + P T Ψ
2

, (6.4)

Ld = I − Ψ1/2PΨ−1/2 + Ψ−1/2P T Ψ1/2

2
, (6.5)

where Ψ is a diagonal matrix with entry Ψii = ψi.

To find basis functions on directed state action graphs, we compute
the k smoothest eigenvectors of Ld or Ld. These eigenvectors form Φ
and can be used with any of the approximation methods described in
Section 4. A comparison of the directed and undirected Laplacian for
solving MDPs can be found in [57]. The directed Laplacian requires
a strongly connected graph, however, graphs created from an agent’s
experience may not have this property. In order to ensure that this
property exists, a “teleporting” random walk can be used. With prob-
ability η the agent acts according to the transition matrix P and with
probability 1 − η teleports to any other vertex in the graph uniformly
at random.

6.3 Scaling to Large State Space Graphs

While diagonalization of Laplacian operators is a theoretically attrac-
tive framework for approximating MDPs, it can be computationally
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intractable to apply the framework to large discrete or continuous
spaces. In this section, we describe ways of scaling this approach to
large discrete spaces. We investigate several approaches, ranging from
exploiting the structure of highly symmetric graphs [32, 63], to the use
of sparsification and sampling methods [39] to streamline matrix com-
putations. We first analyze structured graphs that are constructed from
simpler graphs, based on the notion of a Kronecker product [32]. We
describe a general framework for scaling basis construction to large fac-
tored discrete spaces using properties of product spaces, such as grids,
cylinders, and tori. A crucial property of the graph Laplacian is that its
embeddings are highly regular for structured graphs (see Figure 6.3).
We will explain the reason for this property below, and how to exploit
it to construct compact encodings of Laplacian bases. We also describe
an approximate Kronecker decomposition that decomposes any matrix
into a product of smaller matrices.

6.3.1 Product Spaces: Complex Graphs from Simple Ones

Building on the theory of graph spectra [32], we now describe a hierar-
chical framework for efficiently computing and compactly storing basis
functions on product graphs. Many MDPs lead to factored represen-
tations where the space is generated as the Cartesian product of the
values of variables (examples such MDPs were given in Figures 2.1
and 2.2). Consider a hypercube graph with d dimensions, where each
dimension can take on k values. The size of the resulting graph is O(kd),
and the size of each function on the graph is O(kd). Using the hierar-
chical framework presented below, the hypercube can be viewed as the
Kronecker sum of d path or chain graphs, each of whose transition
matrix is of size (in the worst case) O(k2). Now, each factored function
can be stored in space O(dk2), and the cost of spectral analysis greatly
reduces as well. Even greater savings can be accrued since usually only
a small number of basis functions are needed relative to the size of
the graph. Figure 6.2 illustrates the idea of scaling Fourier and wavelet
basis functions to large product graphs.

Various compositional schemes can be defined for constructing com-
plex graphs from simpler graphs [32]. We focus on compositions that
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Fig. 6.2 The spectrum and eigenspace of structured state spaces, including grids, hyper-
cubes, cylinders, and tori, can be efficiently computed from “building block” sub-graphs,
such as paths and circles. This hierarchical framework greatly reduces the computational
expense of computing and storing basis functions.

involve the Kronecker (or the tensor) sum of graphs. Let G1, . . . ,Gn

be n undirected graphs whose corresponding vertex and edge sets are
specified as Gi = (Vi,Ei). The Kronecker sum graph G = G1 ⊕ ·· · ⊕ Gn

has the vertex set V = V1 · · ·Vn, and edge set E(u,v) = 1, where u =
(u1, . . . ,un) and v = (v1, . . . ,vn), if and only if uk is adjacent to vk for
some uk,vk ∈ Vk and all ui = vi, i �= k. For example, the grid graph illus-
trated in Figure 6.2 is the Kronecker sum of two path graphs; the
hypercube is the Kronecker sum of three or more path graphs.

The Kronecker sum graph can also be defined using operations on
the component adjacency matrices. If A1 is a (p,q) matrix and A2 is a
(r,s) matrix, the Kronecker product matrix3 A = A1 ⊗ A2 is a (pr,qs)
matrix, where A(i, j) = A1(i, j) ∗ A2. In other words, each entry of A1

3 The Kronecker product of two matrices is often also referred to as the tensor product.
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is replaced by the product of that entry with the entire A2 matrix. The
Kronecker sum of two graphs G = G1 ⊕ G2 can be defined as the graph
whose adjacency matrix is the Kronecker sum A = A1 ⊗ I2 + A2 ⊗ I1,
where I1 and I2 are the identity matrices of size equal to number of
rows (or columns) of A1 and A2, respectively. The main result that
we will exploit is that the eigenvectors of the Kronecker product of two
matrices can be expressed as the Kronecker products of the eigenvectors
of the component matrices.

Theorem 6.1. Let A and B be full rank square matrices of size r ×
r and s × s, respectively, whose eigenvectors and eigenvalues can be
written as

Aui = λiui, 1 ≤ i ≤ r, Bvj = µjvj , 1 ≤ j ≤ s.

Then, the eigenvalues and eigenvectors of the Kronecker product
A ⊗ B and Kronecker sum A ⊕ B are given as

(A ⊗ B)(ui ⊗ vj) = λiµj(ui ⊗ vj)

(A ⊕ B)(ui ⊗ vj) = (A ⊗ Is + Ir ⊗ B)(ui ⊗ vj) = (λi + µj)(ui ⊗ vj).

The proof of this theorem relies on the following identity regarding
Kronecker products of matrices: (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD) for
any set of matrices where the products AC and BD are well defined.
We denote the set of eigenvectors of an operator T by the notation
X(T ) and its spectrum by Σ(T ). A standard result that follows from
the above theorem shows that the combinatorial graph Laplacian of
a Kronecker sum of two graphs can be computed from the Laplacian
of each subgraph. In contrast, the normalized Laplacian is not well-
defined under sum, but has a well-defined semantics for the Kronecker
or direct product of two graphs. The Kronecker product can also be
used as a general method to approximate any matrix by factorizing it
into the product of smaller matrices [137].

Theorem 6.2. If L1 = L(G1) and L2 = L(G2) are the combinatorial
Laplacians of graphs G1 = (V1,E1,W1) and G2 = (V2,E2,W2), then the



6.3 Scaling to Large State Space Graphs 495

spectral structure of the combinatorial Laplacian L(G) of the Kronecker
sum of these graphs G = G1 ⊕ G2 can be computed as

(Σ(L),X(L)) = {λi + κj , li ⊗ kj}, 1 ≤ i ≤ |V1|, 1 ≤ j ≤ |V2|,

where λi is the ith eigenvalue of L1 with associated eigenvector li and
κj is the jth eigenvalue of L2 with associated eigenvector kj .

The proof is omitted, but fairly straightforward by exploiting the
property that the Laplace operator acts on a function by summing
the difference of its value at a vertex with those at adjacent vertices.
Figure 6.3 illustrates this theorem, showing that the eigenvectors of the
combinatorial Laplacian produce a regular embedding of a grid in 2D
as well as a cylinder in 3D. These figures were generated as follows.
For the grid shown on the left, the eigenvectors were generated as the
Kronecker product of the eigenvectors of the combinatorial Laplacian
for two chains of size 10. The figure shows the embedding of the grid
graph where each state was embedded in R2 using the second and third
smallest eigenvector. For the cylinder on the right, the eigenvectors
were generated as the Kronecker product of the eigenvectors of the
combinatorial Laplacian for a 10 state closed chain and a 5 state open
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Fig. 6.3 Left : This figure shows an embedding in R
2 of a 10 × 10 grid world environment

using “low-frequency” (smoothest) eigenvectors of the combinatorial Laplacian, specifically
those corresponding to the second and third smallest eigenvalues. Right : The embedding
of a “cylinder” graph using two low-order eigenvectors (3rd and 4th) of the combinatorial
Laplacian. The cylinder graph is the Kronecker sum of a closed and open chain graph.
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chain. The embedding of the cylinder shown on the right was produced
using the third and fourth eigenvector of the combinatorial Laplacian.

For the combinatorial Laplacian, the constant vector 1 is an eigen-
vector with associated eigenvalue λ0 = 0. Since the eigenvalues of the
Kronecker sum graph are the sums of the eigenvalues of the individual
graphs, 0 will be an eigenvalue of the Laplacian of the sum graph as
well. Furthermore, for each eigenvector vi, the Kronecker product vi⊗ 1
will also be an eigenvector of the sum graph. One consequence of these
properties is that geometry is well preserved, so for example the com-
binatorial Laplacian produces well-defined embeddings of structured
spaces.

6.3.2 Decomposing Large Graphs Using Approximation
Methods

A variety of other approximation methods can be used to scale
basis construction to large graphs, including matrix sparsification [1],
low-rank approximation [46], graph partitioning [62], and Kronecker
product approximation [137]. We review the latter two methods here.
Kronecker product approximation [137] constructs two smaller stochas-
tic matrices B and C whose Kronecker product B ⊗ C approximates a
given matrix A.

Let Pr = D−1W denote the random walk matrix, as described in
Section 3. Pr can be approximated by a Kronecker product of two
smaller stochastic matrices Pa and Pb, which minimizes the Fröbenius
norm of the error:

f(Pa,Pb) = min
Pa,Pb

(‖Pr − Pa ⊗ Pb‖F ) .

Pitsianis [137] describes a separable LSM to decompose stochastic
matrices, but one problem with this approach is that the decomposed
matrices, although stochastic, are not guaranteed to be diagonalizable.
This problem was addressed by Johns et al. [58], who applied this
approach for learning to solve MDPs. To ensure the diagonalizability
of the decomposed matrices, Johns et al. [58] incorporated an addi-
tional step using the Metropolis Hastings algorithm [15] to approxi-
mate the smaller matrices Pa and Pb by reversible matrices P r

a and P r
b .
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Then, the eigenvectors of the original random walk matrix Pr can be
approximated as the Kronecker product of the eigenvectors of the fac-
torized smaller reversible matrices P r

a and P r
b (since the smaller matri-

ces are reversible, they can also be symmetrized using the normalized
Laplacian, which makes the numerical task of computing their eigen-
vectors much simpler). Using this approach, Johns et al. [58] were able
to reduce the size of the random walk weight matrices by a significant
amount compared to the full matrix. For example, for the well-known
Acrobot control problem illustrated in Figure 2.5, the original basis
matrix was compressed by a factor of 36:1, without significant loss in
solution quality. An important point to emphasize is that the full basis
matrix never needs to be stored or computed in constructing the vertex
embeddings from the smaller matrices. The factorization can be carried
out recursively as well, leading to a further reduction in the size of the
basis matrices.

6.3.3 Graph Partitioning

A general divide-and-conquer strategy is to decompose the original
graph into subgraphs, and then compute local basis functions on each
subgraph. This strategy can be used on any graph, however, unlike
the methods described above, few theoretical guarantees can be pro-
vided except in special circumstances. A number of graph partitioning
methods are available, including spectral methods that use the low-
order eigenvectors of the Laplacian to decompose graphs [91], as well as
hybrid methods that combine spectral analysis with other techniques.

Graph partitioning is a well-studied topic, and there are a large
variety of nonspectral methods as well. METIS [62] is a fast graph par-
titioning algorithm that can decompose even very large graphs on the
order of 106 vertices. METIS uses a multiscale approach to graph par-
titioning, where the original graph is “coarsened” by collapsing vertices
(and their associated edges) to produce a series of smaller graphs, which
are successively partitioned followed by uncoarsening steps mapping the
partitions found back to the lower-level graphs.
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Basis Construction: Dilation Methods

In this section, we introduce another general strategy for constructing
low-dimensional representations of MDPs by using Laplacian operators
to dilate a reward function or initial basis. We describe two dilation
procedures. The simplest dilation algorithm is to use the Krylov space
associated with the Laplacian Lπ of a policy. We contrast this approach
with another approach motivated by the Laurent series decomposition,
where the dilation of rewards is accomplished using the Drazin inverse
of the Laplacian LπD introduced in Section 3.1. In both cases, the
basis is generated from the powers (T)tRπ (where T = Lπ or LπD).
The Krylov space has long been a staple of methods for efficiently
solving systems of linear equations of the form Ax = b. These proce-
dures are highly turned to a specific policy and reward function, and
some attractive theoretical properties can be shown that follow readily
from the geometry of Krylov spaces. Unfortunately, the resulting set
of basis functions are limited in this regard as well. Hence, we describe
a more general framework for constructing a series of multiscale basis
functions, motivated by the framework of wavelet analysis in Euclidean
spaces. A specific algorithm for multiscale basis construction on graphs
using dilation of graph Laplacian operators is presented.

498
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7.1 Krylov Spaces

The principle of dilation is easiest to explain using the well-known
Krylov space of methods [118]. In Section 7.6, we will explain a more
sophisticated approach using wavelets. Unlike the wavelet approach,
which uses just the dyadic powers, Krylov spaces compute all pow-
ers of a matrix. Also, unlike the wavelet paradigm, which constructs a
multiresolution analysis, keeping the bases at every scale separate, the
Krylov bases do not admit a clear multiscale interpretation. Krylov
bases have found much use in eigensolvers, and have been extensively
studied in the context of solving systems of linear equations of the
form Ax = b [41, 49]. Note that reward-specific bases entail some com-
promises: if there are multiple tasks that are to be performed on the
same state (action) space (e.g., navigating to different locations), bases
learned from one goal cannot be easily transferred to another goal loca-
tion. However, by constructing bases sensitive to a reward function, one
gains the advantage of being able to prove (under idealized conditions)
certain guarantees of reconstruction accuracy.

Definition 7.1. The jth Krylov subspace Kj generated by an operator
T and a function f is the space spanned by the vectors:

Kj = {f,Tf,T 2f, . . . ,T j−1f}. (7.1)

Clearly, Kj ⊂ CN. Note that K1 ⊆ K2 ⊆ ·· · , such that for some
m,Km = Km+1 = K. Thus, K is the T -invariant Krylov space gener-
ated by T and f . When T is completely diagonalizable, the projections
of f onto the eigenspaces of T form a basis for the Krylov space K [88].

Theorem 7.1. If a matrix T ∈ Cn × Cn is diagonalizable, and has n
distinct eigenvalues, the nontrivial projections of f onto the eigenspaces
of T form a basis for the Krylov space generated by T and f .

Note that Krylov spaces can be used in situations when matrices are
not diagonalizable. In the next two sections, we study two approaches to
constructing Krylov bases: one uses the Drazin inverse of the Laplacian
LD, and the other uses the Laplacian L directly.
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7.2 Reward Dilation Using Laplacian Operators

The most direct method for constructing bases from Krylov spaces is to
dilate the reward function Rπ using the Laplacian Lπ associated with
a policy π.1

Definition 7.2. Given the Laplacian matrix Lπ and reward function
Rπ, the jth Krylov subspace Kj is defined as the space spanned by the
vectors:

Kπ
j = {Rπ,LπRπ,(Lπ)2Rπ, . . . ,(Lπ)j−1Rπ}. (7.2)

Note that Kπ
1 ⊆ Kπ

2 ⊆ ·· · , such that for some m,Kπ
m =

Kπ
m+1 = Kπ. Thus, Kπ is the Lπ-invariant Krylov space generated by

Lπ and Rπ.

7.2.1 Bellman Error Bases

A closely related idea to reward-sensitive Krylov bases is the con-
cept of the Bellman error basis function (BEBF), studied by sev-
eral researchers, whose theoretical and empirical properties have been
recently investigated by Parr et al. [103, 104]. The intuitive idea is to
select the next basis function in the direction of the error in approxi-
mating a given value function V π. More formally, let wπ

Φ be the set of
weights associated with the weighted least-squares projection defined in
Equation (4.1). Thus, the current approximation to the value function
is then

V π
Φ = Φwπ

Φ.

The Bellman error is then defined as

BE(Φ) = T (V π
Φ ) − V π

Φ = Rπ + γP πΦwπ
Φ − Φwπ

Φ.

The next basis that is added is proportional to the Bellman error, that is

φk+1 = BE(Φ).

1 Once again, we couch this description in terms of dilation using the L
π = I − P π operator,

rather than P π . The resulting bases are the same in either case.
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Since the error is orthogonal to the subspace spanned by the current set
of bases, one can easily show that the resulting set of bases forms (when
suitably normalized) an orthonormal set, and hence constitutes a com-
plete basis. If the initial basis φ1 = Rπ, then it can be proved that the
Bellman error basis is identical to the Krylov basis [104]. Furthermore,
it can be shown that if the Bellman operator T is known exactly, then
this procedure will drive down the error in approximating V π at least
as fast as value iteration (with a unit vector basis). Of course, these
guarantees hold under idealized conditions when T is known exactly
(i.e., P π and Rπ are given). If T has to be approximated from samples,
then the performance of BEBFs is of course subject to sampling error
and noise in the estimation process.

7.2.2 Examples of Krylov Bases of the Laplacian

Figure 7.1 illustrates the first four bases associated with a chain MDP
of 50 states. This problem was previously studied by Lagoudakis and
Parr [69]. The two actions (go left, or go right) succeed with probabil-
ity 0.9. When the actions fail, they result in movement in the opposite
direction with probability 0.1. The two ends of the chain are treated
as “dead ends.” The basis vectors shown are the result of applying
a QR decomposition to orthogonalize the Krylov vectors. Notice that
the first basis function is essentially the reward function (inverted and
scaled to have length 1). One problem with these bases should be appar-
ent: due to their limited support, approximation will be quite slow. We
will describe below how Drazin bases overcomes this problem, result-
ing in their converging significantly faster in the chain domain in the
experiments shown in Section 8.

Figure 7.2 illustrates some sample Krylov basis functions for the
two room MDP, where P π is the optimal policy transition matrix and
Rπ is the associated reward function. A sharp contrast can be made
between the Drazin bases and the Krylov bases by comparing Figure 7.4
with Figure 7.2. Since Krylov bases remain largely dependent on the
reward function initially, their support is largely localized if the reward
function is so (in this case, the reward function was a delta function at
one state). Consequently, in approximation of MDPs, this localization
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Fig. 7.1 The first four Krylov bases for a chain MDP with 50 states. Rewards of +1 are
given in states 10 and 41. Actions are to go left or right, each succeeds with probability 0.9.
The Laplacian associated with the optimal policy is used to dilate the reward function.

can make the progress rather slow, as the experiments in Section 8 will
show. Drazin bases converge much more quickly as the initial terms
are defined over the whole state space. Of course, there are many other
issues that need to be considered as well, such as the computational
complexity, in determining the “right” choice of a basis.

7.3 Reward Dilation Using Drazin Inverse of Laplacian

Recall from Section 3.1 that the discounted value function V π associ-
ated with a policy π can be written in a Laurent series involving powers
of the Drazin inverse of the Laplacian Lπ associated with π. Thus, a
natural set of basis vectors with which to approximate V π are those
generated by dilating Rπ by the powers of (Lπ)D.
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Fig. 7.2 The first four Krylov bases for the “two-room” environment based on dilation of
the reward function using the Laplacian of a policy.

Definition 7.3. The Drazin space associated with a policy π and
reward function Rπ is defined as the space spanned by the set of Drazin
vectors:

Dπ
m = {P ∗Rπ,(Lπ)DRπ,((Lπ)D)2Rπ, . . . ,((Lπ)D)m−1Rπ}. (7.3)

Note that Dπ
1 ⊆ Dπ

2 ⊆ ·· · , such that for some m,Dπ
m =

Dπ
m+1 = Dπ. Thus, Dπ is the (Lπ)D-invariant Krylov space generated

by Lπ and Rπ.
The first basis vector is the average-reward or gain gπ = P ∗Rπ of

policy π. The second basis vector is the product of LDRπ. Subsequent
basis vectors are defined by the dilation of the reward function Rπ

by higher powers of the Drazin inverse LD used in the Laurent series
expansion of V π. The following property is worth noting.
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Theorem 7.2. The product (P π)∗(Lπ)D = 0.

Proof. Expanding the product, we get

(P π)∗(Lπ)D = (P π)∗ ((I − P π + (P π)∗)−1 − (P π)∗) (7.4)

= (P π)∗(I − P π + (P π)∗)−1 − (P π)∗ (7.5)

= (P π)∗ − (P π)∗ = 0 (7.6)

A variety of algorithms for computing the Drazin inverse of a matrix
are reviewed in [20], some of which were described in Section 3.3.4. As
a prelude to describing the multiscale diffusion wavelet framework, we
will show a computational trick called the Schultz expansion that can
be used to compute both the Krylov bases as well as the Drazin inverse
using dyadic powers (powers of two) of an operator. As we will see in
Section 8, Drazin bases can give excellent results in simple problems.
However, the computational complexity of computing Drazin bases
needs to be taken into account. Parallel implementations for computing
pseudo-inverses in general, and the Drazin inverse in particular, have
been developed. These methods enabled generalized inverses can be
computed in O(log2n), assuming there are sufficient processors to com-
pute matrix multiplication in O(logn) [25, 141]. This parallel algorithm
uses an iterative method to compute the Drazin inverse. In Section 7.4,
we will show how this iterative expansion can be effectively computed
using the Schultz expansion.

7.3.1 Examples of Drazin Bases of the Laplacian

Figure 7.3 illustrates the first four Drazin bases associated with a chain
MDP of 50 states. The first basis is the average reward ρ = P ∗Rπ.
Notice, how unlike the Krylov bases, the bases combine both global
and local support. As a consequence, we will see in Section 8 that
convergence is much more rapid. The second basis function is essentially
the reward function (scaled to unit length), which will be important



7.4 Schultz Expansion for Drazin and Krylov Bases 505

0 5 10 15 20 25 30 35 40 45 50
−0.1414

−0.1414

−0.1414

−0.1414

−0.1414

−0.1414

−0.1414

−0.1414

−0.1414
Drazin Bases for Chain MDP

0 5 10 15 20 25 30 35 40 45 50

0.1

0

−0.1

0.2

0.3

0.4

0.5

0.6

0.7
Drazin Bases for Chain MDP

0 5 10 15 20 25 30 35 40 45 50
−4

−3

−2

−1

0

1

2

3
Drazin Bases for Chain MDP

0 5 10 15 20 25 30 35 40 45 50

−0.1

−0.15

0.05

0

−0.05

0.1

0.15

0.2

0.25

0.3

0.35
Drazin Bases for Chain MDP

Fig. 7.3 The first four Drazin bases for a chain MDP with 50 states. Rewards of +1 are
given in states 10 and 41. Actions are to go left or right, each succeeds with probability 0.9.
The Laplacian associated with the optimal policy is used to dilate the reward function.

in reducing the overall error as will be shown in the control learning
experiments.

Figure 7.4 illustrates some sample Drazin basis functions for the
two-room MDP, where P π is the optimal policy transition matrix
and Rπ is the associated reward function. The first basis is the gain
gπ = P ∗Rπ. The second term is the bias hπ. The subsequent bases are
orthogonal to the first two vectors.

7.4 Schultz Expansion for Drazin and Krylov Bases

As a prelude to introducing the general framework of diffusion wavelets,
we motivate one of the key ideas by showing how both Drazin and
Krylov bases can be significantly accelerated by a computational trick
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Fig. 7.4 Drazin bases for the “two-room” environment based on dilation of the reward
function using the Drazin inverse of the Laplacian of a policy.

called the Schultz expansion [14]. Both these methods for basis con-
struction fundamentally involve expanding the reward function Rπ in
terms of a sequence of powers of an operator T . Let us abstractly con-
sider applying the inverse (I − T )−1 (e.g., T = P π) on a function f

(e.g., f = Rπ).

(I − T )−1f = (I + T + T 2 + · · ·)f. (7.7)

Let us consider finitely summable sequences derived from the above
infinite series as follows

(I + T )f = f + Tf

(I + T )(I + T 2)f = f + Tf + T 2f + T 3f

(I + T )(I + T 2)(I + T 4)f = f + Tf + T 2f + T 3 + · · · + T 7f.



7.5 Multiscale Iterative Method to Compute Drazin Bases 507

Denoting the sum of the first 2k terms in this series by Sk, we have
the recurrence relation:

Sk+1 =
2k−1∑
i=1

T i = (I + T 2k
)Sk. (7.8)

Thus, we can rewrite the Neumann series in Equation (7.7) using
the Schultz expansion:

(I − T )−1f = (I + T + T 2 + · · ·)f =
∞∏

k=0

(I + T 2k
)f. (7.9)

In Section 7.6, we describe a general method for computing com-
pressed representations of the dyadic powers T 2k

of an operator. The
Schultz expansion provides an effective way of storing both the Drazin
and Krylov bases. For example, we can rewrite the Neumann series for
the discounted value function as follows

V π = (I − γP π)−1Rπ =
∞∏

k=0

(I + (γP π)2
k
)Rπ. (7.10)

7.5 Multiscale Iterative Method to Compute Drazin Bases

To compute the Drazin bases using the Schultz expansion, we will use
an iterative method called Successive Matrix Squaring (SMS) that was
developed for efficient parallel implementation of general inverses of
matrices [141, 25]. Note that from the definition of Drazin inverse in
Section 3.3.3, we note that if X is a Drazin inverse of A, then it must
satisfy the following properties:

XAX = X, XA = AX, Ak+1X = Ak, (7.11)

where k is the index of A (for Laplacian matrices derived from P π, the
index k = 1). An iterative method can be developed starting with the
last identity, as follows

Xk+1 = X − β(Ak+1Xk − Ak)

= (I − βAk+1)Xk + βAk = SXk+1 + Q, (7.12)
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where S = (I − βAk+1) and Q = βAk. In our case, to compute the
Drazin inverse of the Laplacian LπD = (I − P π)D, we have

Sπ = (I − βA2) = (I − β(I − P π)2), Qπ = β(I − P π). (7.13)

Define the 2n × 2n matrix T as follows

T =
(
S Q

0 I

)
. (7.14)

The SMS algorithm consists of the following iteration:

Tm = (Tm−1)2, (7.15)

whereby the mth term Tm can be written as follows

Tm =

(
Sm

∑2m−1
i=0 SiQ

0 I

)
. (7.16)

The mth approximation to the Drazin inverse is thus given by the
sub-matrix that appears on the top right, namely

AD(m) =
2m−1∑
i=0

SiQ. (7.17)

Now, we can once again apply the Schultz expansion here, and
rewrite this sum as follows

AD(m) =
m∏

k=0

(I + S2k
)Q. (7.18)

Thus, we see that both Drazin and Krylov bases can be effectively
computed by using dyadic powers of an operator. We now turn to
describe a general framework for compressing such powers using the
principles of wavelets [86].

7.6 Dilation and Multiscale Analysis

We now introduce a broad framework for multiscale analysis using ideas
inspired by wavelet analysis [86]. The concept of dilation is at the heart
of wavelet analysis, and was first developed in Euclidean spaces. On the
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real line, a function is dilated by “stretching” the function in time, e.g.,
f(x)→ f(2x). What does it mean to dilate a function on a general
state space, such as a graph or manifold? Dilation in such cases means
the application of an operator, such as the Laplacian matrix Lπ of a
specific policy, or the natural random walk Laplacian Lr = I − Pr =
I − D−1W on a graph. Given a function f on a state space S, dilation
corresponds to applying powers of the operator T to a function f ,
giving rise to Tf , T 2f, . . .. Any given function (e.g., the delta function
δx mapping state x to 1 and taking the value 0 elsewhere) will be
“diffused” by applying powers of an operator to it, where the rate of
dilation depends on the operator.

Figure 7.5 illustrates the rationale for multiscale analysis of opera-
tors. If P represents one step of applying the operator, by the Markov
property, P t represents t steps. For an initial condition δx (i.e, where
x is the starting state), P tδx(y) represents the probability of being at y
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Fig. 7.5 Powers of the diffusion operator T = I − L for the 100 state “two-room” MDP.
Note that for higher powers, the operator matrix is progressively less sparse.
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at time t, conditioned on starting in state x. The matrix P encodes local
similarities between points, and the matrix P t is diffusing, or integrat-
ing, this local information for t steps to larger and larger neighborhoods
of each point. The process {P t}t≥0 can be analyzed at different time
scales. If P is diagonalizable, for very large times, the random walk can
be analyzed through its top eigenvectors. However, eigenvectors are
global, and not suited for analyzing small- and medium-scale behavior.
On the other hand, many interesting features of the data and of func-
tions on the data can be expected to exist at small and medium time
scales. The task of analyzing P t for all times and locations seems to
require either large time in order to compute all powers of P (which
is computationally expensive since, even if P is sparse, its powers are
not), and/or large space to store those powers. However, there is redun-
dancy in time and space in the family {P t(x,y)}t≥0;x,y∈X . There is
a spatial redundancy: if x and y are close and t is large (depending
on the distance between x and y), P t(x, ·) is very similar to P t(y, ·).
Secondly, there is a redundancy across time scales: using the Markov
property, P 2t(x,y) can be computed from knowledge of P t(x, ·) and
P t(·,y). These two properties can be exploited resulting in an efficient
multiscale algorithm called diffusion wavelets [30].

7.7 Diffusion Wavelets

Diffusion wavelets enable a fast multiscale analysis of functions on a
manifold or graph, generalizing wavelet analysis and associated signal
processing techniques (such as compression or denoising) to functions
on manifolds and graphs. They allow the efficient and accurate compu-
tation of high powers of a Markov chain P on the manifold or graph,
including direct computation of the Green’s function, or the inverse of
the Laplacian L−1 = (I − P )−1 (on the complement of the kernel of
the Laplacian).

A multi-resolution decomposition of the functions on a graph is a
family of nested subspaces V0 ⊇ V1 ⊇ ·· · ⊇ Vj ⊇ ·· · spanned by orthog-
onal bases of diffusion scaling functions Φj . If T t can be interpreted as
an operator on functions on the graph, then Vj is defined as the numer-
ical range, up to precision ε, of T 2j+1−1, and the scaling functions are
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smooth bump functions with some oscillations, at scale roughly 2j+1

(measured with respect to geodesic distance). The orthogonal com-
plement of Vj+1 into Vj is called Wj , and is spanned by a family of
orthogonal diffusion wavelets Ψj , which are smooth localized oscilla-
tory functions at the same scale.

Here and in the rest of this section, the notation [L]B2
B1

indicates the
matrix representing the linear operator L with respect to the basis B1

in the domain and B2 in the range. A set of vectors B1 represented
on a basis B2 will be written in matrix form [B1]B2 , where the rows of
[B1]B2 are the coordinates of the vectors B1 in the coordinate system
defined by B2.

The input to the algorithm is a stochastic matrix P , derived from
the natural random walk Pr = D−1W on a weighted graph (G,E,W ),
or the transition matrix P π of a policy π. The powers of P are used to
“dilate,” or “diffuse” functions on the state space, and then define an
associated coarse-graining of the graph. Observe that in many cases of
interest P is a sparse matrix. We usually normalize P and consider T =
ΠPΠ−1 where Π is the asymptotic distribution of P , which is assumed
to exist, is unique and can be chosen to be a strictly positive distribution
by the Perron-Fröbenius Theorem. If P is reversible, Π = D

1
2 , and T

is symmetric. In the other cases, if T is not symmetric, in what follows
any statement regarding eigenvectors should be disregarded.

T is assumed to be a sparse matrix, and that the numerical rank
of the powers of T decays rapidly with the power. A diffusion wavelet
tree consists of orthogonal diffusion scaling functions Φj that are
smooth bump functions, with some oscillations, at scale roughly 2j

(measured with respect to geodesic distance), and orthogonal wavelets
Ψj that are smooth localized oscillatory functions at the same scale.
The scaling functions Φj span a subspace Vj , with the property that
Vj+1 ⊆ Vj , and the span of Ψj , Wj , is the orthogonal complement
of Vj into Vj+1. This is achieved by using the dyadic powers T 2j

as
“dilations” (see, e.g., Figure 7.5), to create smoother and wider (always
in a geodesic sense) “bump” functions (e.g., which represent densities
for the symmetrized random walk after 2j steps), and orthogonalizing
and down-sampling appropriately to transform sets of “bumps” into
orthonormal scaling functions.
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{Φj}Jj=0,{Ψj}J−1
j=0 ,{[T 2j

]Φj

Φj
}Jj=1←

DiffusionWaveletTree ([T ]Φ0
Φ0
,Φ0,J,SpQR,ε)

// Input:
// [T ]Φ0

Φ0
: a diffusion operator, written on the orthonormal basis Φ0

// Φ0 : an orthonormal basis which ε-spans V0

// J : number of levels
// SpQR : function to compute a sparse QR decomposition.
// ε: precision

// Output:
// The orthonormal bases of scaling functions Φj , wavelets Ψj , and
// compressed representation of T 2j

on Φj for j in the requested
range.

for j = 0 to J − 1 do

[Φj+1]Φj , [T 2j
]Φj+1
Φj

←SpQR([T 2j
]Φj

Φj
,ε)

Tj+1 := [T 2j+1
]Φj+1
Φj+1

← ([T 2j
]Φj+1
Φj

[Φj+1]Φj )
2

[Ψj ]Φj ← SpQR(I〈Φj〉 − [Φj+1]Φj [Φj+1]TΦj
,ε)

end

Fig. 7.6 Pseudo-code for construction of a Diffusion Wavelet Tree.

The multiscale construction is now briefly described, and further
details can be found in the original paper [30]. The algorithm is
summarized in Figure 7.6. T is initially represented on the basis
Φ0 = {δk}k∈G; the columns of T are now interpreted as the set of
functions Φ̃1 = {Tδk}k∈G on G. A local multiscale orthogonalization
procedure is used to carefully orthonormalize these columns to get a
basis Φ1 = {ϕ1,k}k∈G1 (G1 is defined as this index set), written with
respect to the basis Φ0, for the range of T up to precision ε. This
information is stored in the sparse matrix [Φ1]Φ0 . This yields a sub-
space denoted by V1. Essentially Φ1 is a basis for the subspace V1

which is ε close to the range of T , and with basis elements that are
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well-localized. Moreover, the elements of Φ1 are coarser than the ele-
ments of Φ0, since they are the result of applying the “dilation” T

once. Obviously |G1| ≤ |G|, but this inequality may already be strict
since the numerical range of T may be approximated, within the speci-
fied precision ε, by a subspace of smaller dimension. The sparse matrix
[T ]Φ1

Φ0
is a representation of an ε-approximation of T with respect to Φ0

in the domain and Φ1 in the range. T can also be represented in the
basis Φ1: with the notation above this is the matrix [T ]Φ1

Φ1
. The next

power [T 2]Φ1
Φ1

= [Φ1]Φ0 [T
2]Φ0

Φ0
[Φ1]TΦ0

is computed. If T is self-adjoint,
this is equal to [T ]Φ1

Φ0
([T ]Φ1

Φ0
)T , which has the advantage that numerical

symmetry is forced upon [T 2]Φ1
Φ1

. In the general (nonsymmetric) case,
[T 2]Φ1

Φ1
= ([T 2]Φ1

Φ0
[Φ1]Φ0)

2.
The columns of [T 2]Φ1

Φ1
are Φ̃2 = {[T 2]Φ1

Φ1
δk}k∈G1 . These are functions

{T 2ϕ1,k}k∈G1 , up to the precision ε. Once again, a local orthonormaliza-
tion procedure is applied to this set of functions, obtaining an orthonor-
mal basis Φ2 = {ϕ2,k}k∈G2 for the range of T 2

1 (up to precision ε), and
also for the range of T 3

0 (up to precision 2ε). Observe that Φ2 is nat-
urally written with respect to the basis Φ1, and hence encoded in the
matrix [Φ2]Φ1 . Moreover, depending on the decay of the spectrum of T ,
|G2| is in general a fraction of |G1|. The matrix [T 2]Φ2

Φ1
is then of size

|G2| × |G1|, and the matrix [T 4]Φ2
Φ2

= [T 2]Φ2
Φ1

([T 2]Φ2
Φ1

)T , a representation
of T 4 acting on Φ2, is of size |G2| × |G2|.

After j iterations in this fashion, a representation of T 2j
onto a

basis Φj = {ϕj,k}k∈Gj
is obtained, encoded in a matrix Tj := [T 2j

]Φj

Φj
.

The orthonormal basis Φj is represented with respect to Φj−1, and
encoded in the matrix [Φj ]Φj−1 . Let Φ̃j = TjΦj , the next dyadic power
of T on Φj+1 can be represented on the range of T 2j

. Depending
on the decay of the spectrum of T , |Gj | << |G|, in fact in the ideal
situation the spectrum of T decays fast enough so that there exists
γ < 1 such that |Gj | < γ|Gj−1| < · · · < γj |G|. This corresponds to
downsampling the set of columns of dyadic powers of T , thought of
as vectors in L2(G). The hypothesis that the rank of powers of T
decreases guarantees that down-sampling will result in coarser and
coarser lattices in this space of columns.
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While Φj is naturally identified with the set of Dirac δ-functions on
Gj ,these functions on the “compressed” (or “downsampled”) graph Gj

can be extended to the whole initial graph G by writing

[Φj ]Φ0 = [Φj ]Φj−1 [Φj−1]Φ0

= · · · = [Φj ]Φj−1 [Φj−1]Φj−2 · · · [Φ1]Φ0 [Φ0]Φ0 . (7.19)

Since every function in Φ0 is defined on G, so is every function in
Φj . Hence, any function on the compressed space Gj can be extended
naturally to the whole G. In particular, one can compute low-frequency
eigenfunctions on Gj in compressed form, and then extend them to the
whole G. The elements in Φj are at scale T 2j+1−1, and are much coarser
and “smoother,” than the initial elements in Φ0, which is how they can
be represented in compressed form. The projection of a function onto
the subspace spanned by Φj will be by definition an approximation
to that function at that particular scale. An example of the use of
diffusion wavelets to compress powers of a diffusion operator is shown
in Figure 7.7.

There is an associated fast scaling function transform: suppose f
is given on G and 〈f,ϕj,k〉 needs to be computed for all scales j and
corresponding “translations” k. Being given f means (〈f,ϕ0,k〉)k∈G is
given. Then, (〈f,ϕ1,k〉)k∈G1 = [Φ1]Φ0(〈f,ϕ0,k〉)k∈G can be computed,
and so on for all scales. The sparser the matrices [Φj ]Φj−1 (and [T ]Φj

Φj
),
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Fig. 7.7 Compressed representation of powers of the transition matrix P π = I − L
π gener-

ated by the diffusion wavelet algorithm for the 50 state chain MDP (Top) and the two-room
MDP (Bottom). From left to right, each row shows successive dyadic powers of the operator.
The optimal policy is used in both plots. Notice that higher dyadic powers are represented by
progressively smaller sized-matrices. In the two-room domain, the 26 = 64th dyadic power
is effectively of size 1, a significant compression from its original size. Entries are displayed
in log10 scale.
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the faster this computation. This generalizes the classical scaling func-
tion transform. If the orthogonal projector onto Vj is denoted by Qj ,
wavelet bases for the spaces Wj can be built analogously by factorizing
IVj − Qj+1Q

T
j+1, which is the orthogonal projection on the complement

of Vj+1 into Vj . The spaces can be further split to obtain wavelet pack-
ets [19]. The wavelets can be considered as high-pass filters, in the
sense that they capture the detail lost from going from Vj to Vj+1,
and also in the sense that their expansion in terms of eigenfunctions of
the Laplacian essentially only involves eigenfunctions corresponding to
eigenvalues in [ε−2j−1,ε−2j+1−1]. In particular, their Sobolev norm, or
smoothness, is controlled.

In the same way, any power of T can be applied efficiently to a func-
tion f . Also, the Green’s function (I − T )−1 can be applied efficiently
to any function, since it can be represented as product of dyadic powers
of T , each of which can be applied efficiently. Simultaneously, the pow-
ers of the operator T and the space X itself are being compressed, at
essentially the optimal “rate” at each scale, as dictated by the portion
of the spectrum of the powers of T which is above the precision ε.

Observe that each point in Gj can be considered as a “local aggre-
gation” of points in Gj−1, which is completely dictated by the action
of the operator T on functions on G: the operator itself is dictating the
geometry with respect to which it should be analyzed, compressed or
applied to any vector.

Diffusion wavelets allow computing T 2k
f for any fixed f . This is

nontrivial because while the matrix representation of T is sparse, large
powers of it are not, as Figure 7.5 illustrated, and the computation
T 2k

f = T · T · · ·(T (Tf)) · · ·) involves 2k matrix-vector products. As a
notable consequence, this yields a fast algorithm for computing the
Green’s function, or fundamental matrix, associated with the Markov
process T , via the Schultz expansion [76]:

(I − T )−1f =
∑
k≥0

T kf =
∏
k≥0

(I + T 2k
)f.

In a similar way one can compute (I − P )−1. For large classes of
Markov chains, this computation can be performed quickly in a direct
(as opposed to iterative) fashion. This is remarkable since in general the
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matrix (I − T )−1 is full and just writing down the entries would take
time O(n2). It is the multiscale compression scheme that allows effi-
ciently representing (I − T )−1 in compressed form, taking advantage
of the smoothness of the entries of the matrix.

7.7.1 Examples of Scaling Function Bases

Figure 7.8 shows examples of scaling function bases constructed by the
diffusion wavelet algorithm [30]. The figure shows scaling functions from
a 6 level diffusion wavelet tree. At the lowest level (top left plot in the
figure), the initial bases are just the unit vector bases. At subsequent

Fig. 7.8 Diffusion wavelet scaling functions based on dilating the optimal policy P π =
I − L

π in the two-room MDP. Reading clockwise, the bases displayed are at levels 1, 3, 4
and 5. At each level, one selected basis function is displayed. Notice how the higher level
bases have larger support, it is important to note that these displays are generated by
projecting the bases onto the original state space. In the diffusion wavelet tree, the bases
at higher levels are stored in compressed form as described in the text.
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levels, the unit vector bases are dilated using the optimal policy, and
the resulting dilated vectors are then orthogonalized to construct the
scaling functions. Notice how the scaling functions get coarser at each
succeeding level, till at the top most level (bottom right plot), they look
like the eigenfunctions shown in Figure 6.1. These bases are stored in
a compressed form, where at each level, the set of basis functions is
represented with respect to the bases at the lower level.

7.7.2 Laplacian Eigenfunction versus Diffusion Wavelet
Bases

Figure 7.9 provides an illustrative example showing where diffusion
wavelet bases excel, and where eigenfunctions of the Laplacian do
poorly. The MDP is an 800 state two-room domain. The top left
panel in Figure 7.9 shows a highly nonlinear “delta” function, which
is significantly better approximated by the diffusion wavelet bases

Fig. 7.9 Left column: Target functions. Middle two columns: Approximations produced
by 5 diffusion wavelet bases and Laplacian eigenfunctions. Right column: Least-squares
approximation error (log scale) using up to 200 basis functions (Bottom curve: Diffusion
wavelets; Top curve: Laplacian eigenfunctions).
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(second panel, top) as compared to the Laplacian (eigenfunction) basis
(third panel, top). The bottom panel shows that the difference between
eigenfunctions and wavelet bases is much less pronounced for smooth
functions. The last column plots the error in reconstruction, measured
on a log scale. The performance of Laplacian eigenfunctions is highly
sensitive here to the smoothness of the target function, a finding which
is highly consistent with known properties of Fourier bases in Euclidean
spaces [86].



8
Model-Based Representation Policy Iteration

We now bring together the basis construction methods described in
Sections 6 and 7 with the approximation methods described in Sec-
tion 4 in an integrated framework for jointly learning representation
and control in MDPs. This framework is referred to as representation
policy iteration (RPI) since the underlying control learning framework
can be thought of as iterating over policies, which is supplemented with
algorithms that iterate over representations. A number of variants of
RPI can be designed: we focus here primarily on model-based meth-
ods in discrete MDPs. Model-free methods that are better suited for
continuous MDPs are discussed in the following sections. Our goal in
this section is to compare bases that result from dilations of Laplacian
operators from a known model and reward function. We primarily inves-
tigate two types of bases: Krylov bases generated from orthogonalizing
the space of vectors resulting from dilating the reward function by pow-
ers of the Laplacian associated with a policy; and Drazin bases that are
generated by expanding the discounted value function in the Laurent
series expansion of powers of the Drazin inverse of the Laplacian of a
policy.

519
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8.1 Representation Policy Iteration: Drazin and
Krylov Bases

Figure 8.1 specifies a more detailed algorithmic view of an overall
framework called Representation Policy Iteration (RPI) [78] for jointly
learning representation and control in MDPs. This particular variant
of RPI uses a transition model and reward function to construct a low-
dimensional representation of a MDP M by dilating the reward func-
tion using the Laplacian operator Lπ = I − P π or its Drazin inverse.
Once the orthogonal basis matrix Φ is found, a low-dimensional Markov
reward process is constructed and solved, whose dimension is k� |S|.
The compressed solution is projected back to the original space, and
a better policy is found. Note that the policy iteration step uses the
uncompressed model P a

ss′ for simplicity. In large MDPs, such model-
based methods would exploit factored representations of transition
matrices, such as a dynamic Bayes net [51]. It is also possible to
reformulate this model-based algorithm using action-value functions
Q(x,a), similar to model-based LSPI [69]. The process continues until
there is no change in the policy from one run to the next. Note that
this constraint may be too severe: a more relaxed constraint is to ter-
minate the algorithm when successive iterations produce compressed
value functions V π

Φ within some desired ε distance.

8.2 Representation Policy Iteration: Diffusion Wavelets

Figure 8.2 presents a variant of RPI using diffusion wavelets to evaluate
the current policy. As described in Section 7, diffusion wavelets can be
used to do a fast inversion of the policy evaluation equation

V π = (I − γP π)−1Rπ.

The Schultz expansion technique is used as described in Section 7.4
to compress the dyadic powers of P π.

8.3 Experimental Results

We begin our experimental analysis of model-based RPI by focusing on
the approximate policy evaluation step, whereby the original MDP M
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Model-Based RPI (M,π,k):

// M = (S,As,P,R): Input (discrete) MDP
// π: Initial policy
// Flag : Convergence condition for policy iteration
// k: Number of basis functions to use

• Repeat

Representation Construction Phase

– Define Laplacian operator L
π = I − P π.

– Construct an |S| × k basis matrix Φ by orthogonalizing
the vectors:

∗ Krylov basis:

Kπ
k = {Rπ,LπRπ,(Lπ)2Rπ, . . . ,(Lπ)k−1Rπ}

∗ Drazin basis:

D
π
k = {(P π)∗Rπ,(Lπ)DRπ,((Lπ)D)2Rπ, . . . ,((Lπ)D)k−1Rπ}

– Form the Markov reward process Mφ = (P π
φ ,Rπ

Φ):

P π
Φ = ΦT P πΦ

Rπ
Φ = ΦT Rπ

Policy Evaluation Phase

– Find compressed solution: (I − γP π
Φ )wΦ = Rπ

Φ.

– Project solution back to original state space: V π
Φ = ΦwΦ

Policy Improvement Phase

– Find the “greedy” policy π′ associated with V π
Φ :

π′(s) ∈ argmax
a

(∑
s′

P a
ss′
(
Ra

ss′ + γV π
Φ (s′)

))

– If π′ �= π set π← π′, set Flag to false, return to Step 2

– Else set Flag to true.

• Until Flag
• Return π.

Fig. 8.1 This figure shows a model-based algorithm for jointly learning representation and
control in discrete MDPs.
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DWT-Based RPI (M,k,π,ε):

// M = (S,As,P,R): Input (discrete) MDP
// π: Initial policy
// Flag : Convergence condition for policy iteration
// k: Number of levels for diffusion wavelet tree construction
// ε: Desired resolution for fast inversion
// Φ0: Initial basis (e.g., unit vectors).
// SpQR: Sparse QR decomposition routine

• Repeat

Representation Construction Phase

• Build a diffusion wavelet tree as described in Section 7.6.

Tπ = DWT (P π,Φ0,k,SpQR, ε)

Policy Evaluation Phase

• Compute a fast direct inverse using the Schultz expansion as
described in Section 7.4

V̂ π = FastDirectInverse(I − γP π,Rπ)

Policy Improvement Phase

• Find the “greedy” policy π′ associated with V̂ π
T :

π′(s) ∈ argmax
a

(∑
s′

P a
ss′
(
Ra

ss′ + γV̂ π
))

• If π′ �= π set π← π′, set Flag to false
• Else set Flag to true.
• Until Flag

Return π.

Fig. 8.2 This figure shows a variant of RPI using fast inversion with diffusion wavelets.

is compressed using bases derived by dilating the reward function Rπ of
a policy π. This analysis is valuable since it tells us how each approach
performs given exact knowledge of the transition matrix P π and reward
function Rπ. We will find that Drazin bases perform surprisingly well,
and outperform Laplacian eigenfunctions and Krylov bases.
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8.3.1 Approximate Policy Evaluation

Figure 8.3 compares Drazin bases with Krylov and proto-value function
(PVF) bases on a simple 20 state closed chain MDP. Here, the reward
was set at 10 for reaching state 1. The discount factor was set at γ = 0.9.
The policy π evaluated was a random walk, so the probability of moving
to either neighbor was 0.5 uniformly. The plots in the figure represent
the following error terms, following the style of evaluation proposed by
Parr et al. [104].

(1) Reward error : The reward error measures the difference
between the actual reward Rπ and the approximated reward
Rπ

Φ (see Definition 5.1), plotted in the figure using the L2-
norm of the vector.

(2) Weighted feature error : The weighted feature error represents
the product of P π

Φ and wΦ, where wΦ was defined as

wΦ = (I − γP π
Φ)−1 rΦ.
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Fig. 8.3 Comparison of Drazin bases versus Krylov bases and PVFs (eigenfunctions of the
combinatorial graph Laplacian) on a 20 state closed chain MDP. The reward for reaching
state 1 was set at +10 for the plots on the left; the right plots show 5 separate runs with
randomly generated rewards (uniform between 0 and 1). The policy evaluated in all cases
was the random walk on the undirected chain graph.
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(3) Bellman error : The Bellman error is the linear sum of the
reward error and the feature error.

The plots reveal interesting differences between these three types of
basis functions. Proto-value functions (PVFs) or the eigenfunctions of
the combinatorial graph Laplacian (computed on the chain’s adjacency
matrix) have a high reward error, since the reward function is a delta
function that is poorly approximated by the PVFs. In this case, PVFs
are essentially the Fourier basis on the discrete circle (cosines), and this
result is a well-known limitation of Fourier bases [86]. However, PVFs
have zero feature error since the bases are made up of eigenvectors of
the combinatorial Laplacian. These are the same as the eigenvectors of
the transition matrix P π in this case (the natural random walk on the
graph), as was shown earlier in Section 3. The Bellman error remains
large until the end when all 20 bases are used, since the reward error
is large.1

Note the reward error for Krylov bases is by definition 0 as Rπ is
a basis vector itself. The feature error plot tells an interesting story:
as Krylov vectors are added, the feature error goes down to 0 show-
ing where an invariant subspace was produced. The Bellman error
goes down to 0 much more quickly than with PVFs. Measured by the
Bellman error, Drazin bases have the best performance overall at this
task. The Bellman error goes down quickly to 0 using just 5 bases, twice
as fast as the Krylov bases and three times more quickly than PVFs.
The reward error initially is high since Rπ is not in the basis (recall the
first term is P πRπ, or the gain of the policy gπ).

The plot on the left in Figure 8.4 shows the 50 state chain MDP
studied previously in [69, 83]. The optimal policy is evaluated. Rewards
are given at states 10 and 41 only. Drazin bases once again are clearly
far superior to the others. The plots on the right in Figure 8.4 compare
the Drazin bases with the Krylov bases on the two-room gridworld
MDP. The value function for the optimal policy was shown earlier in

1 It is important to view these comparative results using the Bellman error with some
caution. Ultimately, in control learning, the goal is to learn an approximately optimal
policy, which can be achieved even in the presence of large Bellman errors. In Section 10,
we will show that PVFs perform excellently in both large discrete MDPs as well as
continuous MDPs.
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Fig. 8.4 Left : Comparison of Drazin and Krylov bases with PVFs on a 50 state chain MDP
with rewards of +1 at states 10 and 41 (the settings are identical to [69]). The optimal
policy was evaluated. Right : Comparison of Drazin bases versus Krylov bases in a 100 state
two-room MDP, whose value function was shown earlier in Figure 3.2. Both bases were
evaluated on the optimal policy. The reward was set at +100 for reaching a corner goal
state.

Figure 3.2. This MDP has 100 states. The agent is rewarded by 100 for
reaching a corner goal state. Compass navigation actions are stochastic,
succeeding with probability 0.9. Drazin bases are again convincingly
superior to Krylov bases in this problem.

8.3.2 Representation and Control Learning

Now we turn to evaluate the model-based RPI method, where both the
representation and control were learned simultaneously. We use the
two-room MDP once again. Figure 8.5 compares the performance of
Drazin versus Krylov bases. Each curve shows the reduction in error in
the approximated value function as a function of the number of itera-
tions in policy iteration, given a specific number of bases. Drazin bases
clearly perform better, achieving 0 error at a much earlier point, with
just 10 bases. Krylov bases generate a large error given 10 bases, and
need 15 bases to achieve 0 error. Using a weighted L2-norm, Drazin
bases converge, whereas Krylov bases generate a much larger error and
do not converge (the convergence condition was set to 0.01 for the
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Fig. 8.5 Experimental comparison of model-based RPI using Drazin versus Krylov bases
in the two-room domain using the model-based RPI algorithm described in Figure 8.1.
Top: Error was measured by comparing the L2-norm of the approximated value function
with respect to the optimal value function. Bottom: A weighted L2-norm was used with
respect to the invariant distribution ρπ of the policy being evaluated at each iteration.
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weighted L2-norm). The weighted least-squares projection was com-
puted using Dρπ as defined in Equation (4.11). This result is not sur-
prising given the local support of the initial Krylov bases, versus the
more global support of the Drazin bases.

8.3.3 Comparison of Drazin versus Krylov Bases

Although Drazin bases performed better than Krylov bases, they are
more expensive to generate as they require computing the Drazin
inverse (or the long-term limiting matrix P ∗). Computing the Drazin
inverse or P ∗ for each policy involves significant computational
resources. However, there are iterative parallelizable algorithms for
computing Drazin inverses [141] described in Section 7, which could
partially alleviate the computational burden. Also, in the context of
policy iteration, if the policy and the associated transition matrix
change locally (e.g., a few states), then it is possible to reuse the pre-
vious Drazin inverse and modify it based on the local changes. Specif-
ically, if the transition matrix P π changes locally, then the Drazin
inverse of the new policy can be computed more quickly, i.e., ≈ O(n2),
than having to start from scratch (which is an O(n3) computation
for a MDP with |S| = n states). Additionally, a variety of aggregation
methods have been developed that enable computing P ∗ in ergodic
MDPs efficiently by decomposing P into a set of censored Markov
chains [70].

8.3.4 RPI with Diffusion Wavelets

Finally, we turn to evaluating the RPI method using the diffusion
wavelet algorithm as a means of doing policy evaluation. Figure 8.6
illustrates the approach on a larger 21 × 21 two-room MDP. In this
procedure, the diffusion wavelet tree is constructed directly from the
transition matrix P π of the policy currently being evaluated. The com-
pressed representation of the dyadic powers of the transition matrix of
the final learned optimal policy is displayed. Additional comparisons on
larger problems of DWT-based policy iteration with standard iterative
methods like cgs in MATLAB are given in [76].
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Fig. 8.6 Experimental evaluation of model-based RPI using diffusion wavelets in a 21 × 21
two-room domain. Top: Dyadic powers of the learned optimal policy transition matrix
(entries are displayed in log10). Note that the 27 = 128th power is just a 1 × 1 matrix.
Bottom: Learned optimal value function and optimal policy. The results are identical to
direct inversion within the desired precision of ε = 10−6.

8.3.5 Factored Model-Based Approaches

Model-based basis construction methods depend on knowing the transi-
tion model and reward function. In experiments not shown here, it was
found that sampling errors in estimating the transition model could
degrade the performance. To scale such approaches to large MDPs
requires exploiting significant structure in the transition matrix, such
as using a factored dynamic Bayes net [51]. A number of studies have
explored the problem of basis construction in factored MDPs [66, 108].
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Basis Construction in Continuous MDPs

Thus far, the construction of bases was restricted to discrete MDPs. In
this section, we turn to discuss basis construction in continuous MDPs,
which present significant challenges not encountered in discrete state
spaces. We will restrict our discussion primarily to Laplacian eigenfunc-
tion bases. We describe an extension of the graph Laplacian to continu-
ous spaces called manifolds. A central result called Hodge theorem shows
that the eigenfunctions of the manifold Laplacian provides a complete
basis for all square-integrable (smooth) functions on a manifold. In
practice, the basis functions can only be computed and stored on sam-
pled real-valued states, and hence must be interpolated to novel states.
We discuss sampling methods for interpolation of eigenfunction and
wavelet bases on continuous spaces. We describe one standard method
to extend Laplacian eigenfunctions from sample points to new points
called the Nyström interpolation method. This approach has been stud-
ied previously in kernel methods [142] and spectral clustering [9].

9.1 Continuous Markov Decision Processes

A continuous state Markov decision process (MDP) M = 〈S,A,
P a

ss′ ,Ra
ss′〉 is defined by a set of states S ⊂ Rd, a set of discrete actions A,

529
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a transition model P a
ss′ specifying the distribution over future states

s′ when an action a is performed in state s, and a corresponding
reward model Ra

ss′ specifying a scalar cost or reward. Usually, con-
tinuous control tasks are specified by some underlying controller or
plant st+1 = f(st,at,σt) which specifies a functional mapping of a state
st into a new state st+1 in response to the control or action selected
at and some (parametrically modeled) noise term σt. In this paper,
we do not assume either the continuous control system or the noise
model is known. Given a policy π : S → A mapping states to actions,
its corresponding value function V π specifies the expected long-term
discounted sum of rewards received by the agent in a state s when
actions are chosen using the policy. Any optimal policy π∗ defines the
same unique optimal action-value function Q∗(s,a) which satisfies con-
tinuous Bellman equation:

Q
∗
(s,a) =

∫
s′
P a

ss′

(
Ra

ss′ + max
a′

γQ∗(s′,a′)
)

ds′.

A more detailed treatment can be found in standard treatises on MDPs
[110]. We do not discuss the extension of MDPs to continuous actions,
where the Bellman equation is often referred to as the Hamilton–
Bellman–Jacobi (HJB) equation [93].

9.2 Riemannian Manifolds

There is a rich and well-developed theory of the Laplace operator on
manifolds, which is briefly summarized in this section. The Laplace-
Beltrami operator has been extensively studied in the general setting of
Riemannian manifolds [115]. Riemannian manifolds have been actively
studied recently in machine learning in several contexts, namely in
semi-supervised learning [8], in designing new types of kernels for super-
vised machine learning [67] and faster policy gradient methods using
the natural Riemannian gradient on a space of parametric policies
[5, 61, 105]. The Laplacian on Riemannian manifolds and its eigen-
functions [115], which form an orthonormal basis for square-integrable
functions on the manifold (Hodge’s theorem), generalize Fourier anal-
ysis to manifolds. Historically, manifolds have been applied to many
problems in AI, for example, configuration space planning in robotics,
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but these problems assume a model of the manifold is known [71, 72],
unlike here where only samples of a manifold are given.

It has been known for over 50 years that the space of probability
distributions forms a Riemannian manifold, with the Fisher informa-
tion metric representing the Riemann metric on the tangent space.
This observation has been applied to design new types of kernels for
supervised machine learning [67] and faster policy gradient methods
using the natural Riemannian gradient on a space of parametric poli-
cies [5, 61, 105]. Recently, there has been rapidly growing interest in
manifold learning methods, including ISOMAP [131], LLE [116], and
Laplacian eigenmaps [8]. These methods have been applied to nonlinear
dimensionality reduction as well as semi-supervised learning on graphs
[8, 28, 144].

9.2.1 Manifolds

This section introduces the Laplace-Beltrami operator in the general
setting of Riemannian manifolds [115], as an extension of the graph
Laplacian operator described earlier in the more familiar setting of
graphs reviewed in Section 3. The material in this section is purely
intended for review, and it is not necessary to understand the Nyström
interpolation method described later.

Formally, a manifold M is a locally Euclidean set, with a homeo-
morphism (a bijective or one-to-one and onto mapping) from any open
set containing an element p ∈M to the n-dimensional Euclidean space
Rn. Manifolds with boundaries are defined using a homeomorphism
that maps elements to the upper half plane Hn [74]. A manifold is a
topological space, i.e., a collection of open sets closed under finite inter-
section and arbitrary union. In smooth manifolds, the homeomorphism
becomes a diffeomorphism, or a continuous bijective mapping with a
continuous inverse mapping, to the Euclidean space Rn.

In a smooth manifold, a diffeomorphism mapping any point p ∈M
to its coordinates (ρ1(p), . . . ,ρn(p)) should be a differentiable func-
tion with a differentiable inverse. Given two coordinate functions
ρ(p) and ξ(p), or charts, the induced mapping ψ : ρ ◦ ξ−1 : Rn → Rn

must have continuous partial derivatives of all orders. Riemannian
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manifolds are smooth manifolds where the Riemann metric defines
the notion of length. Given any element p ∈M, the tangent space
Tp(M) is an n-dimensional vector space, that is, isomorphic to Rn.
A Riemannian manifold is a smooth manifold M with a family
of smoothly varying positive semidefinite inner products gp,p ∈M,
where gp : Tp(M) × Tp(M)→ R. For the Euclidean space Rn, the tan-
gent space Tp(M) is clearly isomorphic to Rn itself. One example
of a Riemannian inner product on Rn is simply g(x,y) = 〈x,y〉Rn =∑

ixiyi, which remains the same over the entire space. If the space is
defined by the set of probability distributions P (X|θ), then one exam-
ple of a Riemann metric is given by the Fisher information metric
I(θ) [67].

9.2.2 Hodge Theorem

Hodge’s theorem [115] states that any smooth function on a compact
manifold has a discrete spectrum mirrored by the eigenfunctions of ∆,
the Laplace-Beltrami self-adjoint operator. On the manifold Rn, the
Laplace-Beltrami operator is ∆ =

∑
i

∂2

∂x2
i

(often written with a — sign
for convention). Functions that solve the equation ∆f = 0 are called
harmonic functions [4]. For example, on the plane R2, the “saddle”
function x2 − y2 is harmonic. Eigenfunctions of ∆ are functions f such
that ∆f = λf , where λ is an eigenvalue of ∆. If the domain is the unit
circle S1, the trigonometric functions sin(θ) and cos(θ) form eigen-
functions, which leads to Fourier analysis. Abstract harmonic analysis
generalizes Fourier methods to smooth functions on arbitrary Rieman-
nian manifolds. The smoothness functional for an arbitrary real-valued
function on the manifold f :M→ R is given by

S(f) ≡
∫

M
| ∇f |2 dµ =

∫
M
f∆fdµ = 〈∆f,f〉L2(M),

where L2(M) is the space of smooth functions on M, and ∇f is the
gradient vector field of f . We refer the reader to [115] for an intro-
duction to Riemannian geometry and properties of the Laplacian on
Riemannian manifolds. Let (M,g) be a smooth compact connected
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Riemannian manifold. The Laplacian is defined as

∆ = divgrad =
1√

detg

∑
ij

∂i

(√
detg gij∂j

)
,

where g is the Riemannian metric, detg is the measure of volume on the
manifold, ∂i denotes differentiation with respect to the ith coordinate
function, and div and grad are the Riemannian divergence and gradient
operators. We say that φ :M→ R is an eigenfunction of ∆ if φ �= 0 and
there exists λ ∈ R such that

∆φ = λφ.

If M has a boundary, special conditions need to be imposed. Typical
boundary conditions include Dirichlet conditions, enforcing φ = 0 on
∂M and Neumann conditions, enforcing ∂νφ = 0, where ν is the nor-
mal to ∂M. The set of λ’s for which there exists an eigenfunction is
called the spectrum of ∆, and is denoted by σ(∆). We always consider
eigenfunctions which have been L2-normalized, i.e., ‖φ‖L2(M) = 1.

The quadratic form associated to the Laplacian is the Dirichlet
integral

S(f) :=
∫

M
‖grad f‖2dvol

=
∫

M
f∆fdvol = 〈∆f,f〉L2(M) = ‖grad f‖L2(M),

where L2(M) is the space of square-integrable functions on M, with
respect to the natural Riemannian volume measure. It is natural to
consider the space of functions H1(M) defined as follows

H1(M) =
{
f ∈ L2(M) : ‖f‖H1(M) := ‖f‖L2(M) + S(f)

}
. (9.1)

So clearly H1(M) � L2(M) since functions in H1(M) have a
square-integrable gradient. The smaller the H1-norm of a function,
the “smoother” the function is, since it needs to have small gradient.
Observe that if φλ is an eigenfunction of ∆ with eigenvalue λ, then
S(φλ) = λ: the larger is λ, the larger the square-norm of the gradi-
ent of the corresponding eigenfunction, i.e., the more oscillating the
eigenfunction is.
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Theorem 9.1(Hodge [115]). Let (M,g) be a smooth compact con-
nected oriented Riemannian manifold. The spectrum 0 ≤ λ0 ≤ λ1 ≤
·· · ≤ λk ≤ ·· · ,λk → +∞, of ∆ is discrete, and the corresponding eigen-
functions {φk}k≥0 form an orthonormal basis for L2(M).

In other words, Hodge’s theorem shows that a smooth function f ∈
L2(M) can be expressed as

f(x) =
∞∑
i=0

aiei(x),

where ei are the eigenfunctions of ∆, i.e., ∆ei = λiei. Smoothness can
be defined as

S(ei) = 〈∆ei,ei〉L2(M) = λi.

In particular, any function f ∈ L2(M) can be expressed as

f(x) =
∞∑

k=0

〈f,φk〉φk(x),

with convergence in L2(M) [98].

9.3 Sampling Techniques

The smoothness of functions on a manifold as defined by Equation (9.1)
determines the number of samples necessary to approximate the func-
tion up to a given precision. This number of samples is independent of
the number of points explored. Consider the following simple example.
Suppose the state space is the interval [0,1], and that the function f is
band-limited with bandwidth B. This means that the Fourier transform
f̂ is supported in [−B,B]. Then by the Whittaker-Shannon sampling
theorem [86], only B/(2π) equispaced samples are needed to recover V
exactly. Suppose we have observed samples S ′ in a space S, and that
the function f is smooth so that a subset S ′′ much smaller than S ′

would suffice to determine f . We propose two simple methods in order
to select S ′′.
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Purely random sub-sampling : We fix |S ′′|, and select |S ′′| points uni-
formly at random in S ′. For very large |S ′| one would expect that the
points in S ′′ are going to be well-spread in S ′.

Well-spread random net : The previous algorithm has two main draw-
backs: first, it is not clear how to select |S ′′|, even if in theory this
number can be determined by knowing the complexity of the value
function to be approximated. Second, the points in S ′′ are not going to
be necessarily well-spread in S ′: while it is true that for large |S ′|, with
very high probability, no two points in S ′′ are going to be very close,
it is not true that the points in S ′′ are going to be roughly equidistant
nor well equidistributed in balls contained in S ′.

In order to guarantee that the set of points is well-spread, we con-
sider the following construction. We define an ε-net of points in S ′ to
be a subset S ′′ such that no two points are closer than ε, and that for
every point y in S ′, there is a point in S ′′ which is not farther than
ε from y. One can construct a (random) ε-net in S ′ as follows. Pick
x0 ∈ S ′ at random. By induction, for k ≥ 1 suppose x0,x1, . . . ,xk have
been picked so that the distance between any pair is larger than ε. If

Rk := S ′
∖(

k⋃
l=1

Bε(xl)

)
,

is empty, stop, otherwise pick a point xk+1 in Rk. By definition of
Rk the distance between xk+1 and any of the points x0, . . . ,xk is not
smaller than ε. When this process stops, say after k∗ points have been
selected, for any y ∈ S ′ we can find a point in S ′′ not farther than ε, for
otherwise y ∈ Rk∗ and the process would not have stopped. One can
prove upper bounds of the distance between the eigenfunctions of the
Laplacian on S ′ and the eigenfunctions of the Laplacian on S ′′, which
depend on ε and the order of the eigenfunction. We will explore the
effectiveness of these sampling methods for learning basis functions in
continuous MDPs in the next section.

9.4 Learning Eigenfunctions Using Nyström Extension

To learn policies on continuous MDPs, it is necessary to be able
to extend eigenfunctions computed on a set of points ∈ Rn to new
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unexplored points. We describe here the Nyström method, which can
be combined with iterative updates and randomized algorithms for low-
rank approximations. The Nyström method interpolates the value of
eigenvectors computed on sample states to novel states, and is an appli-
cation of a classical method used in the numerical solution of integral
equations [6]. The eigenfunction problem can be stated as∫

D
K(x,y)φ(y)dy = λφ(x), ∀ x ∈ D, (9.2)

where D can be any domain, e.g., R. Using the standard quadrature
approximation, the above integral can be written as∫

D
K(x,y)φ(y)dy ≈

n∑
i=1

wik(x,si)φ̂(si), (9.3)

where wi are the quadrature weights, si are n selected sample points,
and φ̂ is an approximation to the true eigenfunction. Combining
Equations (9.2) and (9.3) gives us

n∑
i=1

wik(x,si)φ̂(si) = λ̂φ̂(x). (9.4)

By letting x denote any set of n points, for example, the set of
quadrature points si itself, the kernel k(si,sj) becomes a symmetric
matrix. This enables computing the approximate eigenfunction at any
new point as

φ̂m(x) =
1

λ̂

n∑
i=1

wik(x,si)φ̂m(si). (9.5)

Let us instantiate Equation (9.5) in the context of the normal-
ized Laplacian L = I − D− 1

2WD− 1
2 . First, note that if λi is an eigen-

value of L, then 1 − λi is the corresponding eigenvalue of the diffusion
matrix D− 1

2WD− 1
2 . Applying the the Nyström extension for comput-

ing the eigenfunctions of the normalized Laplacian Lφi = λiφi, we get
the equation

φi(x) =
1

1 − λi

∑
y∼x

w(x,y)√
d(x)d(y)

φi(y), (9.6)
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Fig. 9.1 This figure illustrates the Nyström interpolation method for extending eigenfunc-
tions on samples to new states. Left : The 3rd eigenvector of the Laplacian plotted on a
set of samples (shown as filled dots) drawn from a random walk in the inverted pendulum
domain, as well as its Nyström interpolated values. Right : The Nyström interpolated 6th
eigenvector illustrated on the entire state space as well as on the actual samples (again
shown as filled dots).

where d(z) =
∑

y∼zw(z,y), and x is a new vertex in the graph. Note
that the weights w(x,y) from the new state x to its nearest neighbors
y in the previously stored samples is determined at “run time” using
the same nearest neighbor (NN) weighting algorithm used to compute
the original weight matrix W . An extensive discussion of the Nyström
method is given in [39], and more details of its application to learning
control in MDPs are given in [84].

Figure 9.1 illustrates the basic idea. Note that the Nyström method
does not require recalculating eigenvectors — in essence, the embedding
of a new state is computed by averaging over the already computed
embeddings of “nearby” states. In practice, significant speedups can
be exploited by using the following optimizations. We have empirically
observed that roughly only 10% of the overall samples needed for learn-
ing a good policy are necessary to construct basis functions. Once the
bases is defined over these sub-sampled states, the Nyström extended
embeddings of the remaining 90% of training samples needs to be cal-
culated only once, and henceforth can be cached during repeated runs
of policy iteration. During testing, the Nyström embeddings of novel
states encountered must be computed, but since the eigenvectors are
defined over a relatively small core set of sample states, the extensions
can be computed very efficiently using a fast NN algorithm.



10
Model-Free Representation Policy Iteration

We now discuss a model-free variant of the representation policy
iteration (RPI) framework. We will primarily focus on Laplacian eigen-
function bases (PVFs) as well as diffusion wavelets, described in
Sections 6 and 7. We will exploit the decomposition approach described
in Section 6, and illustrate how Laplacian eigenfunction bases can be
used successfully in a multiagent MDP with over 106 states. One of
the challenges in applying these methods in continuous MDPs is that
basis functions are generated from graphs constructed by sampling a
continuous space. We will apply the sampling and interpolation meth-
ods described in Section 6 and present results comparing Laplacian
eigenfunction bases to parametric bases, such as radial basis functions,
on standard benchmark continuous control tasks. In some cases, large
speedups are possible with automatically generated bases. We also show
positive results on a 4-dimensional Acrobot control task using diffusion
wavelets. Here, we show how Krylov bases can be used to tri-diagonalize
a symmetric graph Laplacian operator, and speed-up the generation of
multiscale wavelet bases.

538
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10.1 Model-Free Representation Policy Iteration

Having described a variety of methods for constructing basis functions
from operators, we now describe a model-free variant of the RPI
framework previously introduced in Section 8. Figure 10.1 describes
the overall algorithm. For the sake of concreteness, this procedure
assumes that bases are constructed by diagonalizing or dilating an
operator such as the normalized graph Laplacian. In the sample col-
lection phase, an initial random walk (perhaps guided by an informed
policy) is carried out to obtain samples of the underlying manifold
on the state space. The number of samples needed is an empirical
question. Given this set of samples, in the representation learning
phase, an undirected (or directed) graph is constructed in one of sev-
eral ways: two states can be connected by a unit cost edge if they
represent temporally successive states; alternatively, a local distance
measure such as k-NN can be used to connect states, which is par-
ticularly useful in the experiments on continuous domains reported
below. From the graph, PVFs are computed using one of the graph
operators, for example, the combinatorial or normalized Laplacian.
The smoothest eigenvectors of the graph Laplacian (i.e., associated
with the smallest eigenvalues) are used to form the suite of PVFs.
The number of PVFs needed is a model selection question, which
will be empirically investigated in the experiments described later.
The encoding φ(s) : S → Rk of a state is computed as the value of
the k PVFs on that state. To compute a state action encoding, a
number of alternative strategies can be followed: the figure shows
the most straightforward method of simply replicating the length
of the state encoding by the number of actions and setting all the
vector components to 0 except those associated with the current
action.

10.2 Scaling to Large Discrete MDPs

In this section, we build on the general framework for scaling
basis construction to large factored spaces described in Section 6.3,
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RPI (πm,T,N,ε,k,O,D):

// πm: Policy at the beginning of trial m
// T : Number of initial random walk trials
// N : Maximum length of each trial
// ε : Convergence condition for policy iteration
// k: Number of proto-value basis functions to use
// O: Type of graph operator used
// D: Initial set of samples

Sample Collection Phase

• Off-policy or on-policy sampling: Collect a data set of samples
Dm = {(si,ai,si+1, ri), . . .} by either randomly choosing actions (off-
policy) or using the supplied initial policy (on-policy) for a set of T
trials, each of maximum N steps.

• (Optional) Subsampling step: Form a subset of samples Ds ⊆ D
by some subsampling method such as random subsampling or tra-
jectory subsampling.

Representation Learning Phase

• Build a diffusion model from the data in Ds. In the simplest case
of discrete MDPs, construct an undirected weighted graph G from
D by connecting state i to state j if the pair (i, j) form temporally
successive states ∈ S. Compute the operator O on graph G, for
example the normalized Laplacian L = D− 1

2 (D −W )D− 1
2 .

• Diagonalization: Compute the k smoothest eigenvectors of O on
the graph G. Collect them as columns of the basis function matrix
Φ, a |S| × k matrix.

• Dilation: Build the diffusion wavelet tree from O, and select k
scaling functions and wavelets. Collect them as columns of the basis
function matrix Φ, a |S| × k matrix.

Control Learning Phase

• Using a standard parameter estimation method (e.g. Q-learning or
LSPI), find an ε-optimal policy π that maximizes the action value
function Qπ = Φwπ within the linear span of the bases Φ using the
training data in D.

• Optional: Set the initial policy πm+1 to π and call
RPI(πm+1,T,N,ε,k,O,D).

Fig. 10.1 This figure shows a generic algorithm for jointly learning representation and con-
trol, where representations are specifically constructed by diagonalizing (or dilating an
initial basis with) a graph operator, such as the normalized graph Laplacian.
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where we exploit the spectral properties of the graph Laplacian in
constructing embeddings that are highly regular for structured graphs
(see Figure 6.3). In particular, as we saw previously, the eigenspace
of the Kronecker sum of two graphs is the Kronecker product of the
eigenvectors of each component graph.

10.2.1 Constructing Complex Bases from Simpler Bases

We can construct complex basis functions for large graphs out of the
simpler bases for the “building block” component graphs. Recall that
basis functions in this context are column eigenvectors of the diagonal-
ized representation of a graph operator, whereas embeddings φ(s) are
row vectors representing the first k basis functions evaluated on state s.
By exploiting the property that (A ⊗ B)T = AT ⊗ BT , it follows that
embeddings for structured graphs can be computed as the Kronecker
products of embeddings for the constituent state components. As a con-
crete example, a grid world domain of size m × n can be represented
as a graph G = Gm ⊕ Gn, where Gm and Gn are path graphs of size m
and n, respectively. The basis functions for the entire grid world can
be written as the Kronecker product φ(s) = φm(sr) ⊗ φn(sc), where
φm(sr) is the basis (eigen)vector derived from a path graph of size m
(in particular, the row sr corresponding to state s in the grid world),
and φn(sc) is the basis (eigen)vector derived from a path graph of size
n (in particular, the column sc corresponding to state s in the grid
world).

Extending this idea to state action pairs, the basis function φ(s,a)
can written as eI(a) ⊗ φ(s), where eI(a) is the unit vector corre-
sponding to the index of action a (e.g., action a1 corresponds to
e1 = [1,0, . . .]T ). Actually, the full Kronecker product is not necessary if
only a relatively small number of basis functions are needed. For exam-
ple, if 50 basis functions are to be used in a 10 × 10 × 10 hypercube,
the full state embedding is a vector of size 1000, but only the first 50
terms need to be computed. Such savings imply PVFs can be efficiently
computed even in very large structured domains. For a factored state
space s = (s1, . . . ,sm), we use the notation si to denote the value of the
ith component. We can restate the update rules for factored RPI and
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LSPI as follows

Ãt+1 = Ãt + φ(st,at)
(
φ(st,at) − γφ(s′

t,π(s′
t))
)T

= Ãt + eI(at) ⊗
∏
⊗
φi(si

t)

×
(
eI(at)

∏
⊗
φi(si

t) − γeI(π(s′
t)) ⊗

∏
⊗
φi(s′

t
i)

)T

.

The corresponding update equation for the reward component is

b̃t+1 = b̃t + φ(st,at)rt = b̃t + rteI(at) ⊗
∏
⊗
φi(si

t).

10.2.2 Experimental Results: Blocker Domain

We now present a detailed study using a much larger factored multia-
gent domain called the “Blockers” task, which was studied in [119]. This
task, which was illustrated in Figure 2.1, is a cooperative multiagent
problem where a group of agents try to reach the top row of a grid, but
are prevented in doing so by “blocker” agents who move horizontally
on the top row. If any agent reaches the top row, the entire team is
rewarded by +1; otherwise, each agent receives a negative reward of −1
on each step. The agents always start randomly placed on the bottom
row of the grid, and the blockers are randomly placed on the top row.
The blockers remain restricted to the top row, executing a fixed strat-
egy. The overall state space is the Cartesian product of the location
of each agent. These experiments on the blocker domain include more
difficult versions of the task not studied in [119] specifically designed
to test the scalability of the Kronecker product bases to “irregular”
grids whose topology deviates from a pure hypercube or toroid. In the
first variant, shown on the left in Figure 2.1, horizontal interior walls
extend out from the left and right side walls between the second and
third row. In the second variant, an additional interior wall is added in
the middle as shown on the right.1

1 In the Blocker domain, the interior walls are modeled as having “zero width,” and hence
all 100 states in each grid remain accessible, unlike the two-room environment.
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The basis functions for the overall Blocker state space were com-
puted as Kronecker products of the basis functions over each agent’s
state space. Each agent’s state space was modeled as a grid or a cylin-
der (for the “wrap-around” case). Since the presence of interior walls
obviously violates the pure product of cylinders or grids topology, each
individual agent’s state space was learned from a random walk. The
overall basis functions were then constructed as Kronecker products of
Laplacian basis functions for each learned (irregular) state grid.

Figure 10.2 compares the performance of the factored Laplacian
bases with a set of radial basis functions (RBFs) for the first Blocker
domain (shown on the left in Figure 2.1). The width of each RBF was
set at 2|Sa|

k , where |Sa| is the size of each individual agent’s grid, and k
is the number of RBFs used. The RBF centers were uniformly spaced.
The results shown are averages over 10 learning runs. On each run, the
learned policy is measured every 25 training episodes. Each episode
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Fig. 10.2 This figure compares RPI using factored Laplacian eigenvector basis functions
with LSPI using hand coded radial basis functions (RBF) on a 10 × 10 “wrap-around”
Blocker domain. There were 3 agents and 2 blockers, resulting in a space of >106 states.
Both approaches were tested using 100 basis functions.
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begins with a random walk of a maximum of 70 steps (terminating ear-
lier if the top row was reached). After every 25 such episodes, RPI is run
on all the samples collected thus far. The learned policy is then tested
over 500 test episodes. The graph plots the average number of steps
to reach the goal. The experiments were conducted on both “normal”
grids (not shown) and “wrap around” cylindrical grids. The results
show that RBFs converge faster, but learn a worse policy. The factored
Laplacian bases converge slower than RBFs, but learn a substantially
better policy.

10.3 Experimental Results of RPI in Continuous MDPs

In this section, we present experimental results applying the model-
free RPI algorithm to continuous MDPs. We compare the automati-
cally generated basis functions with parametric hand-tuned bases in
standard benchmark MDPs. A more detailed evaluation of RPI can
be found in [83]. A crucial question here is how to build a graph by
subsampling the set of states visited during the initial learning period.
We discuss this sampling problem next.

10.3.1 Graph Construction from Point Sets in Rn

Given a continuous MDP, samples are collected using some policy,
either a random walk or a more informed policy from a previous round
of RPI. Given a data set {xi} in Rn, different weighted graphs can be
constructed from this point set. There are different choices of edges
and for any such choice there is a choice of weights on the edges. In the
experiments below, the following construction was used. Edges were
inserted between a pair of states xi and xj if:

• xj is among the k-NNs of xi, where k > 0 is a parameter.

Weights were assigned to the edges in the following way:

• W (i, j) = α(i)e−
‖xi−xj‖2

Rn

σ , where σ > 0 is a parameter, and
α a weight function to be specified.



10.3 Experimental Results of RPI in Continuous MDPs 545

Observe that for undirected graphs, since xj can be among the
K-NNs of xi but xi may not be among the K-NNs of xj , the above
construction will still yield asymmetric weight matrices. An additional
symmetrization step is needed where the weight matrix W is replaced
by the symmetric W + W T . If the states {xi} are drawn uniformly
from a Riemannian manifold, then it is shown in [8] that the above con-
struction, with α = 1, approximates the continuous Laplace-Beltrami
operator on the underlying manifold. If {xi} is not drawn uniformly
from the manifold, as it typically happens in MDPs when the space is
explored by an agent, it is shown in [68] that a pre-processing normal-
ization step can (must) be performed that yields the weight function α,
so that the above construction yields an approximation to the Laplace-
Beltrami operator. Various ways of normalizing the weight matrix are
explored elsewhere [83]. Here, it is assumed that the operator T used
is the normalized Laplacian L = D− 1

2 (D −W )D− 1
2 .

A brief comparison of Laplacian eigenfunctions or PVFs with RBFs
is now given. Radial basis functions (RBFs) are a popular choice of basis
functions for both discrete and continuous MDPs. The comparison of
PVFs and RBFs is restricted to the inverted pendulum and mountain
car domains. To choose a suitable set of parameters for RBFs, the kernel
widths were fine-tuned to find the best performing setting for RBFs. For
PVFs, the number of bases and the scaling of the state space dimensions
were varied to find the best performing setting. Generally speaking,
the results below demonstrate that PVFs are significantly quicker to
converge, by almost a factor of two in both the inverted pendulum and
mountain car domains. Asymptotically, both approaches converge to
the same result. These comparisons are meant to be suggestive, and
not definitive. For example, fine-tuning the centers of the RBF bases,
or incorporating the scaling factors used in the experiments with PVFs
may produce better results with RBFs.

Inverted pendulum: Figure 10.3 compares the performance of PVFs
with a linear RBF approximation architecture for the inverted pen-
dulum domain, for a varying number of RBF architectures, with 15
PVFs. PVFs converge significantly faster to the final goal of balancing
the pendulum for 3000 steps: PVFs take 20 trials to converge, but RBFs
take roughly twice as long.
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Fig. 10.3 This figure compares model-free RPI using automatically generated PVF bases
with LSPI using hand-tuned RBF bases. Left : A comparison of 15 PVFs with several choices
of RBFs on the inverted pendulum task, focusing on the initial 100 episodes averaged over
100 runs. Right : A comparison of 25 PVFs and 13 RBFs on the mountain car task. Higher
number of RBFs produced worse results.

Mountain car : As with the inverted pendulum, the parameters for
RBFs were determined by fine-tuning the kernel width, although the
differences are less significant than in the inverted pendulum domain.
Figure 10.3 plots the best performing RBF architecture (13 basis func-
tions) compared with the PVF approach (25 basis functions). Given
sufficient training experience, both converge to approximately the same
result, although PVFs seem to converge to a slightly better result.
However, as with the inverted pendulum results, PVFs converge signif-
icantly quicker, and clearly outperform RBFs for smaller numbers of
samples.

10.4 Krylov-Accelerated Diffusion Wavelets

When an operator T is diagonalizable, the Krylov bases spanned by T
and a function f are spanned by the projection of f onto its eigenspaces
[88]. This insight can be used to develop faster algorithms for eigenspace
projection, such as the well-known Lanczos method [49]. In other words,
rather than directly projecting on the eigenspaces of a diagonalizable
operator, Lanczos methods can be used to construct a highly compact
tridiagonal representation of the operator T , constructed by restrict-
ing it to the Krylov space spanned by powers of T and a function f .
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This idea can be applied to accelerate the construction of scaling func-
tion bases and wavelets, as recently shown in [79].

The Acrobot task [129] is a two-link under-actuated robot, that is,
an idealized model of a gymnast swinging on a high bar. The only action
available is a torque on the second joint, discretized to one of three val-
ues (positive, negative, and none). The reward is −1 for all transitions
leading up to the goal state. The detailed equations of motion are given
in [129]. The state space for the Acrobot is 4-dimensional. Each state is
a 4-tuple represented by (θ1, θ̇1,θ2, θ̇2). θ1 and θ2 represent the angle of
the first and second links to the vertical, respectively, and are naturally
in the range (0,2π). θ̇1 and θ̇2 represent the angular velocities of the
two links. Notice that angles near 0 are actually very close to angles
near 2π due to the rotational symmetry in the state space.

The time required to construct Krylov-accelerated diffusion
wavelets with regular diffusion wavelets is shown in Figure 10.4 (left
plot). There is a very significant decrease in running time using the
Krylov-subspace restricted Lanczos tridiagonal matrix. In this experi-
ment, data was generated doing random walks in the Acrobot domain,
from an initial sample size of 100 to a final sample size of 1000 states.
The performance of regular diffusion wavelets with Krylov-accelerated
wavelets is shown on the right plot. This experiment was carried out
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using a modified form of RPI with on-policy re-sampling. Specifically,
additional samples were collected during each new training episode
from the current policy if it was the best-performing policy (in terms
of the overall performance measure of the number of steps), otherwise
a random policy was used. Note that the performance of Krylov-
accelerated diffusion wavelets is slightly better than regular diffusion
wavelets.



11
Related Work and Future Challenges

In this section, we briefly summarize related work in a number of dif-
ferent areas, including methods for approximating value functions to
algorithms for constructing low-dimensional representations. We also
outline a number of challenges that need to be addressed in scaling
the proposed methods to larger MDPs: some of these directions have
already been studied to some extent and where relevant, we discuss
recent results.

11.1 Related Work

11.1.1 Value Function Approximation

Value function approximation with a fixed handcoded basis has been
studied by many researchers. Largely, our presentation has been
restricted to linear basis functions. However, there is a substantial lit-
erature on nonlinear methods for value function approximation using
neural networks with fixed basis functions. Bertsekas and Tsitsiklis [12]
provide a detailed review of nonlinear neural network methods. There
has also been significant work on nonparametric methods for approx-
imating value functions, including nearest neighbor (NN) methods
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[50] and kernel density estimation [100]. Nonparametric kernel meth-
ods based on Hilbert spaces have also been applied to value function
approximation, including support vector machines [38] and Gaussian
processes [42, 111], where the kernels are pre-specified.

11.1.2 Representation Discovery

The basis construction methods described here can be applied to con-
struct representations from data over a broad range of problems in
AI, as described in [80]. The problem of representation discovery has
a long history in AI. Amarel [3] was an early pioneer, advocating the
study of representation learning through global state space analysis.
Amarel’s ideas motivated much subsequent research on representation
discovery [128, 135], and many methods for discovering global state
space properties like “bottlenecks” and “symmetries” have been stud-
ied [89, 90, 112]. The approaches described in this paper can be viewed
as providing a formal framework showing how the geometrical analysis
of a state space analysis can be transformed into useful representations
for solving sequential decision problems.

There have been several attempts at overcoming the limitations of
traditional function approximators, such as radial basis functions. In
particular, it has been recognized that Euclidean smoothing methods
do not incorporate geometric constraints intrinsic to the environment:
states close in Euclidean distance may be far apart on the manifold.
Dayan [35] proposed the idea of building successor representations.
While this approach was restricted to policy evaluation in simple
discrete MDPs, and did not formally build on manifold or graph–
theoretic concepts, the idea of constructing representations that are
faithful to the underlying dynamics of the MDP was a key motiva-
tion underlying this work. Drummond [40] also pointed out the non-
linearities that value functions typically exhibit, and used techniques
from computer vision to detect nonlinearities. Neither of these studies
formulated the problem of value function approximation as approx-
imating functions on a graph or manifold, and both were restricted
to discrete MDPs. There have been several attempts to dynamically
allocate basis functions to regions of the state space based on the
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nonuniform occupancy probability of visiting a region (e.g., [64]), but
these methods do not construct the basis functions adaptively. Finally,
there has also been research on finding common structure among the
set of value functions on a given state space, where only the goal
location is changed [45], assuming a probabilistic generative (mixture)
model of a value function, and using maximum likelihood estimation
techniques.

11.1.3 Manifold and Spectral Learning

The approach of diagonalizing graph operators builds on recent work
on manifold and spectral learning, including diffusion maps [28, 29, 31],
ISOMAP [131], LLE [116], and Laplacian eigenmaps [8, 60]. One major
difference is that these methods have largely (but not exclusively)
been applied to nonlinear dimensionality reduction and semi-supervised
learning on graphs, whereas this paper focuses on approximating (real-
valued) value functions on graphs. Although related to regression on
graphs [99], the problem of value function approximation is fundamen-
tally different: the set of target values is not known a priori, but must
be inferred through an iterative process of computing an approximate
fixed point of the Bellman backup operator, and projecting these iter-
ates onto subspaces spanned by the basis functions. Furthermore, value
function approximation introduces new challenges not present in super-
vised learning or dimensionality reduction: the set of samples is not
specified a priori, but must be collected through active exploration of
the state space.

11.2 Future Work

This paper described recent work on solving Markov decision processes
(MDPs) by simultaneously learning representation (basis functions)
and control. Several approaches to constructing basis functions were
described, principally by diagonalizing a Laplacian operator or by dilat-
ing a given basis or reward function using (the generalized inverse of) a
Laplacian operator. Several Laplacian operators were described, rang-
ing from those directly based on the transition matrix of a given policy
to the natural random walk on a graph induced by the MDP on a set
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of sample states. Many extensions of these ideas are possible, and are
being actively explored. Some of these ongoing investigations are briefly
explored here.

11.2.1 Drazin Inverse of Laplacian Operators

A novel representation based on the Drazin inverse (or group inverse)
of the Laplacian was shown to be useful, both in exactly solving MDPs
as well as in approximating them. The approach was motivated by
the theoretical result showing that the discounted value function can
be written as a Laurent series involving powers of the Drazin inverse
of the Laplacian [110]. While this approach was shown to be highly
effective on small discrete MDPs given the transition model and the
reward function, its approximation properties have yet to be studied
in the case when the model must be learned from simulation data.
Furthermore, computing the Drazin inverse can be computationally
intractable in large MDPs. An interesting challenge is to develop algo-
rithms that exploit the factored state structure or hierarchical task
structure of large MDPs in scaling the computation of Drazin bases.
There are also some interesting results showing that Drazin inverses
can be updated incrementally when P changes slightly (e.g., a sin-
gle row changes), without having to recompute the whole inverse
again [70].

11.2.2 Transfer Learning

There are many examples of sequential decision problems in the lit-
erature, including robot navigation where multiple objects need to be
retrieved in the same environment, and information retrieval where the
Markov chain representing the web graph remains the same, but the
retrieval goals change. A fundamental issue in basis construction that
we have not addressed is how well a set of bases transfer from one prob-
lem to another. Work on this problem is beginning to be addressed by
a number of researchers. For example, recent studies have investigated
how well proto-value functions (PVFs) can be transferred across related
tasks [43, 133].
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11.2.3 Algorithms for Learning Representation and Control

This paper largely focused on combining basis construction meth-
ods with least-squares-based approximate policy iteration methods. As
described in Section 4, there are a whole host of other ways of approxi-
mately computing policies in MDPs, including those that are based on
convex optimization. An interesting challenge is to combine the basis
construction methods described here with linear programming meth-
ods for solving MDPs [36] or reproducing kernel Hilbert space (RKHS)
methods [42].

11.2.4 Basis Construction in Average-Reward MDPs

Largely, the proposed basis construction methods were evaluated in
the discounted MDP framework. There are many interesting applica-
tions where the average-reward framework is more appropriate than the
more commonly studied discounted framework, as discussed in [56, 110].
As described in Section 3, the Laplacian framework applies nicely to
average-reward MDPs. In fact, the first two terms in the Drazin bases
can be viewed as the average-reward approximation to a discounted
MDP. A more comprehensive investigation of dimensionality reduction
in average-reward MDPs is needed.

11.2.5 Exploiting Task Structure

It is well-known that task structure can be exploited in solving large
MDPs [7]. It is possible to extend the approaches described here to
semi-Markov decision processes (SMDPs), where actions are tempo-
rally extended, such as “exiting a room”. For the graph-based approach,
temporally extended actions result in longer “distal” edges connect-
ing nonadjacent vertices (such as the vertices corresponding to interior
states in a room with those representing the “door” state). Osentoski
and Mahadevan [102] show that constructing PVFs over state-action
graphs using these distal edges can significantly improve the perfor-
mance over PVFs constructed over state graphs with only primitive
actions. Recently, promising results have been obtained on large hier-
archical MDPs such as the AGV domain shown earlier in Figure 2.4,
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where the basis functions are automatically constructed from the hier-
archy [101]. The key idea is to construct a compressed graph at higher
levels, and generate embeddings at more abstract levels by reusing
embeddings from lower level subtasks.

11.2.6 Theoretical Analysis

Theoretical guarantees on the efficiency of constructing geometry-
sensitive or reward-sensitive basis functions in approximating value
functions and models need to be further investigated. The Drazin bases
were motivated by the asymptotic convergence of the Laurent series to
the discounted value function. However, the empirical results suggest
that in practice, the Laurent series converges rather rapidly in many
cases. A finite-dimensional analysis of this expansion would be valu-
able in understanding the properties of Markov chains for which fast
convergence holds. Furthermore, both Drazin and Krylov bases were
largely evaluated only for the model-based case. It is important to
theoretically characterize their behavior when models have to be esti-
mated from sampled transitions. For the graph-based basis construction
methods, there is a rapidly growing literature showing how the vari-
ous graph Laplacians converge to the Laplace-Beltrami operator on
the underlying manifold. For example, Hein [53] shows that under non-
uniform sampling conditions, the random walk Laplacian converges to
a weighted Laplace-Beltrami operator. These results need to be com-
bined with exploration techniques to investigate the conditions under
which these sampling conditions can be met in the context of MDPs.

11.3 Summary

This paper described methods for automatically compressing Markov
decision processes by learning a low-dimensional linear approximation
defined by an orthogonal set of basis functions. A unique feature of
this paper is the use of Laplacian operators, whose matrix representa-
tions have non-positive off-diagonal elements and zero row sums. The
generalized inverses of Laplacian operators, in particular the Drazin
inverse, was shown to be useful in the exact and approximate solution of
MDPs. This paper also described a broad framework for solving MDPs,
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generically referred to as representation policy iteration, where both the
basis function representation for approximation of value functions as
well as the optimal policy within their linear span are simultaneously
learned. Basis functions were constructed by diagonalizing a Laplacian
operator, or by dilating the reward function or an initial set of bases
by powers of the operator. The idea of decomposing an operator by
finding its invariant subspaces was shown to be an important principle
in constructing low-dimensional representations of MDPs. Theoretical
properties of these approaches were discussed, and they were also com-
pared experimentally on a variety of discrete and continuous MDPs.
Challenges for further research were briefly outlined.
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