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Abstract
Converting unconstrained video sequences into videos that loop seamlessly is an extremely challenging problem.
In this work, we take the first steps towards automating this process by focusing on an important subclass of videos
containing a single dominant foreground object. Our technique makes two novel contributions over previous work:
first, we propose a correspondence-based similarity metric to automatically identify a good transition point in the
video where the appearance and dynamics of the foreground are most consistent. Second, we develop a technique
that aligns both the foreground and background about this transition point using a combination of global camera
path planning and patch-based video morphing. We demonstrate that this allows us to create natural, compelling,
loopy videos from a wide range of videos collected from the internet.

1. Introduction

Loopy videos and animated GIFs have gained tremendous
popularity in the last few years with the ease of video cap-
ture, and the introduction of video sharing services like
Vine.co and Instagram.com. More than 100 million people
watch Vine videos every month, and over one billion loops
are played daily on Vine alone [Vin14]. The typical length
of these videos is surprisingly short – up to six seconds on
Vine and 15 on Instagram. These videos are popular in so-
cial networks, blogs, digital marketing, music clips and art,
because they capture key scene dynamics and can convey
a richer meaning than a single photograph, but are more
concise, portable, and sharable than long videos. Most such
videos are created by cutting a short clip from a longer video.
This frequently leads to abrupt changes from the last to the
first frame, resulting in an uncomfortable experience when
watching them played as a loop. One popular “trick” to avoid
this, is to play the video back-and-forth (by concatenating
a copy of the video in reverse order). While this alleviates
abruptness due to changes in the position of the objects in
the video, the changes in motion are still abrupt, and often
lead to unrealistic motions due to time-reversal.

In contrast, artists, animators, and professional photog-
raphers create strikingly hypnotizing micro-videos by per-
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fectly “closing the loop” to seamlessly transition from the
last frame back to the first frame (e.g., [Inc, Raj, Car]). Cre-
ating perfectly loopy clips from casual video footage can be
highly tedious or even impossible for some videos. It typi-
cally involves manually finding the right cut locations in the
video clip, and aligning the two ends with professional video
editing tools. The goal of our work is to automate these two
steps, and make the process of creating compelling loopy
video clips significantly easier.

The seminal “Video Textures” work by Schödl et
al. [SSSE00] proposed an elegant framework to automate
this process for specific types of content. They showed that
videos with dynamic texture-like characteristics (such as the
flame of a candle) often contain multiple moments with sim-
ilar appearance and dynamics that can be used as transition
points for creating infinite loopy videos. The camera and
background in these videos are static.

In this work, we generalize the Video Textures frame-
work to handle videos “in the wild”. These are typically
captured by hand-held devices and contain arbitrary camera
motion (including translation and zoom) and complex, non-
rigid scene dynamics (including human motion). We focus
on one popular type of content: videos of a dominant moving
foreground, such as a moving person, animal or an object, in
front of a roughly static background (small motion in the
background is usually fine), captured by a moving camera.
Motivated by research on visual attention [FS11] that shows
that people have higher tolerance to inaccuracies in the pe-
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riphery of the point of attention, our key observation is that,
in many cases, finding moments where only the foreground
is similar, is sufficient to produce pleasant looping videos.
In order to handle such challenging videos we replace both
the analysis and synthesis components of the Video Textures
framework with new algorithms. During analysis, we find
moments in the input video where the dominant foreground
is similar both in appearance and dynamics. We start with a
rough segmentation of the foreground in a scene. We develop
a similarity metric based on this segmentation to robustly
assess similarity in the motion and appearance of the fore-
ground between two sets of video frames. In the synthesis
step, we propose a patch-based method to morph between
two video clips using second-order motion constraints for
the foreground and automatic temporal gap estimation based
on the dynamics of the scene. We show compelling results
on several challenging videos downloaded from the internet,
as well as comparisons to previous methods.

2. Related Work

The analysis of scene dynamics in videos is a critical com-
ponent of many video editing tasks, and has been studied ex-
tensively in graphics and vision literature. We focus on the
techniques that are particularly relevant to our work.

Video Transitions Combining multiple video clips is one of
the most common video editing operations, and film editors
have developed a taxonomy of the different kinds of transi-
tions (or “cuts”) used to achieve this (see Goldman [Gol07]
for an overview). While general video editing requires a sig-
nificant amount of skill and time, it can be (semi-) auto-
mated in specific instances. Zheng et al. [ZCA∗09] lever-
age information in a light field to automatically author cine-
matic effects from photographs. Kemelmacher-Shlizerman
et al. [KSSGS11] generate smooth animations from per-
sonal photo albums by aligning and transitioning between
the faces in the photographs. Berthouzoz et al. [BLA12] fo-
cus on editing interview footage, and propose a method that
uses audio-visual features to automatically find good cut lo-
cations. Most of this previous work is applicable only to
specific classes of data (for e.g., faces) and cannot be triv-
ially extended to general video sequences. In contrast, our
technique does not make strong assumptions about the con-
tent of the input video sequences, and, to our knowledge,
is the first general purpose approach for synthesizing realis-
tic video transitions automatically in the presence of camera
motion and complex foreground dynamics.

Video Morphing Transitioning between two shots might re-
quire morphing between the two (especially when the con-
tent is not properly aligned, or has significant differences).
There is a significant amount of literature on image mor-
phing [Gom99], and most techniques compute correspon-
dences between images, and construct motion trajectories
from these correspondences. Both of these are challenging

problems that become especially harder in the presence of
complex camera motion and scene dynamics. Previous work
has tackled this by relying on user input to specify the re-
gion of interest [BAAR12, RWSG13], or correspondences
between pairs of videos [LLN∗14]. These methods cannot
handle regions without correspondences, as often happens
with the backgrounds in our examples. In addition, the syn-
thesized motion trajectories need to be consistent with the
motion in the original footage for the morphed result to look
natural. Many morphing techniques (for e.g., Shechtman et
al. [SRAIS10]) do not account for this, and produce non-
realistic results for general video sequences. In our work,
we compute correspondences between video frames using
the technique of HaCohen et al. [HSGL11]. We morph the
background and the foreground separately to account for the
fact that they might move in different ways. In addition, we
synthesize background motion trajectories using linear inter-
polation (or use linear motion constraints when background
correspondences do not exist), while using parabolic con-
straints to synthesize foreground motion trajectories. Unlike
previous work, this allows us to handle both moving cameras
and fairly general scene dynamics.

Video Textures and Cinemagraphs Video Tex-
tures [SSSE00, KSE∗03, DCWS03, AZP∗05] create
infinitely looping videos by finding similar frames in a
video clip (based on image features), and transitioning
between them using morphing. However, these methods
were designed to work on videos that are shot by a static
camera (or a smoothly moving camera), and where the
dynamics are either local (e.g., a swinging candle flame
or flapping flags) or stochastic in nature (e.g., flowing
water, fire flames). More recent efforts use spatially varying
dynamics to handle multiple motions [LJH13] and to
include manual interaction [TPSK11], but they assume a
static camera. Cinemagraphs are a related form of media
that lie between video and photographs; the salient objects
in the scene remain animated while the surrounding objects
are held still. Recent work has proposed interactive tools for
their creation [TPSK11,BAAR12,JMD∗12]. These methods
work by using one of the video frames for the background
and pasting the moving foreground on top. The inputs to
these methods have to be captured using a static camera,
the motion is often localized or repetitive in nature, and the
methods require some user interaction. Unlike this previous
work, our technique can handle both camera motion and
non-stochastic scene dynamics (including highly structured
motions like human movement). We are able to achieve this
by considering the background and foreground separately
while finding good transition points, and aligning and
morphing them.

3. Overview

Given an input video, V , the goal of our method is to use a
subset of the original frames and produce a shorter video,
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Vout , whose last frame seamlessly transitions to the first
frame to produce a realistic and compelling video loop.
In other words, any differences between the foreground
and background appearance (illumination, location, pose) or
scene dynamics (velocities and higher location derivatives)
between these frames should change as smoothly as possi-
ble so that the transition is not noticeable. We achieve this
using a two step process. In the first step – the analysis stage
– we analyze the input video to automatically choose the
short subset clip that we consider to be most likely to pro-
duce a loop with a smooth transition of the foreground. We
do this by finding frames in the video sequence that have the
most similar foreground regions up to a global rigid align-
ment. This results in a frame pair (a,b) that denotes the start
and end of the subset clip that we use to synthesize the video
loop. While the appearance of the foreground in these frames
is similar, it needs to be aligned properly for the loop to
be seamless. In the second step – the synthesis stage – we
morph the frames around this transition point, i.e., frames
V (a+ k) to V (a) and V (b) to V (b− k), to handle the dif-
ferences in appearance and motion, and synthesize a smooth
transition of both the foreground and the background from
frame b back to frame a. This results in the output loopy
video Vout .

Pre-processing Our system is meant to work on videos “in
the wild", which are often captured with handheld cameras
and contain high frequency camera motion from unintended
jitter. This makes it difficult to make assumptions about
the motion, and so we stabilize the input to remove only
the high frequency component of the camera motion using
Adobe AfterEffects, set to smooth motion. Previous meth-
ods [SSSE00, LTK12, LJH13] do not handle camera motion
and thus stabilize the input videos to eliminate background
motion entirely.

We assume that the input video contains a single dom-
inant foreground motion, and we identify this region us-
ing the motion segmentation algorithm of Papazoglou and
Ferrari [PF13]. We choose this method because it is auto-
matic and is designed with minimal assumptions on the in-
put videos. It consists of an initial estimate based on mo-
tion boundaries followed by refinement based on a spatio-
temporal extension of GrabCut [RKB04]. The per-frame
masks computed by this technique may contain several non-
connected components, and may miss some portions of the
foreground. We smooth the mask with a median filter, fill in
holes by dilating the mask, and choose the main connected
component as the foreground. For each frame V (i), we de-
note the binary mask that we obtain as M(i). For future com-
putation, we also construct a bounding box around it, and
call this bounded portion of the image B(i). This notation is
demonstrated in Fig. 1.

M(i)

V(i)

V(i)

B(i)

Figure 1: At each frame V (i) we compute a foreground mask
M(i) and draw a bounding box B(i) around it.

(a) (b) (c) (d)

Figure 2: Similarity metric. (a) and (b) Pair of bound-
ing boxes containing the foreground mask (colored light
grey). (c) Confidence mask computed using NRDC (colored
light grey). (d) Foreground mask and confidence mask over-
lapped. Only the pixels contained in both masks (colored in
the brightest grey) are used for the for computing the simi-
larity.

4. Analysis – Choosing transition points

We analyze the input video V to choose the pair of frames
(a,b) that we will use as a transition point. The choice of the
transition point plays a key role in the quality of the output.
To create the most natural looking video loops, we would
like to find the pair of frames where the foreground is the
most similar in terms of both appearance and motion. Our
method for choosing this pair of frames is inspired by the
work of Video Textures [SSSE00]. In particular, we choose
this pair of frames by maximizing

(a,b) = argmax
(i, j)

Sapp(i, j)+Smotion(i, j), (1)

where the terms Sapp and Smotion refer to the similarity in
appearance and motion respectively, and are computed on
the bounding box of the foreground in each frame, B(i).

Appearance similarity There are different metrics to assess
the similarity of the foreground of two frames. We can use
pixel-wise metrics like the sum of squared differences (SSD)
of color values, like [SSSE00], but restricted to the bound-
ing boxes. However, these pixel-wise metrics are sensitive
to transformations and deformations. A small inaccuracy of
the segmentation mask might lead to a shift in the bounding
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box, and thus a low similarity score, even if the foreground
appearance is very similar. Even if the bounding boxes are
well aligned, non-rigid deformations of the foreground (due
to motion) may lead to low similarity scores.

Instead, we find correspondences between the fore-
grounds of two video frames and use it as a proxy for ap-
pearance similarity. This is based on the observation that
the more similar the foregrounds are, the more correspon-
dences we are likely to find between the frames. While
there are many methods for finding such correspondences,
in our work, we use the Non-Rigid Dense Correspondence
(NRDC) algorithm [HSGL11]. We choose NRDC for sev-
eral reasons: it is robust to changes in illumination, it is de-
signed for pairs of images where only part of the content is
shared and unmatched regions do not hurt the estimation of
the correspondence, and it provides a confidence map that
indicates which pixels have a correspondence. Given two
bounding boxes B(i) and B( j), we compute NRDC and ob-
tain a confidence map, that indicates whether a pixel in B(i)
has found a correspondence in B( j). Our proposed similarity
is the ratio of foreground pixels that are shared between the
bounding boxes. We compute this as

Spair(i, j) =
∑
x

γ(B(x, i),B(x, j))�M(x, i)

∑
x

M(x, i)
, (2)

where the function γ(·) returns the correspondence confi-
dence from the NRDC algorithm (0 indicates that there is
no confident match, 1 if there is absolute certainty about the
match), � is the element-wise product and M(x, i) is pixel x
of mask M(i). Bounding boxes are scaled to a resolution of
200× 200 for this similarity measure. This computation is
illustrated in Fig. 2.

To increase robustness and temporal coherence we seek
transition points where a sequence of frames have high sim-
ilarity. Similarly to [SSSE00], we capture similarity across
a range of frames by summing it over a temporal window
around a considered transition point:

Sapp(i, j) = ∑
−l≤k≤l

w(k)Spair(B(i+ k),B( j+ k)), (3)

where wk is a Gaussian weight with a standard deviation of
1, and |l| is the size of the neighborhood (in our case |l|= 5).

Motion similarity Sapp (Eq. 3) ensures similar appearance
of the foreground across frames. This is usually sufficient
to ensure temporal smoothness since often the camera fol-
lows the foreground, and therefore it stays in the same re-
gion of the image. However, Sapp does not consider the
global motion of the foreground relative to the background.
This means that in a repetitive motion like a child jumping
on a trampoline, a series of frames where the child is going
upward could potentially be matched to a series of frames
where the child is going downward. If we were to stitch the
clips, this would lead to a non-realistic change in the global

Figure 3: Given frames V1(i) and V2(i), if we used only the
appearance similarity (Eq. 3) within the original bounding
boxes (green boxes), we could potentially transition between
two clips with different foreground motion, leading to a se-
mantically wrong motion. Transforming the bounding boxes
in the second clip according to the motion in the first (red
boxes) and using Eq. 4 results in a low score in this case.

motion. The objective function should also capture the rela-
tive rigid motion of the foreground object with respect to the
background.

We include an additional term Smotion, that ensures the
similarity of this global motion. We do this by transform-
ing the bounding boxes in one of the videos to follow the
relative motion of the other video, and computing the sim-
ilarity using the new bounding boxes. For a pair of frames
V (i),V ( j) we compute the transformation T̂ that best aligns
the foreground in V (i) to the one in V ( j). We then trans-
form the location of the bounding boxes B around frame j,
i.e., B( j± k), to compute the transformed bounding boxes,
B′( j±k). If the global motion of the foreground is similar in
both videos, then the original bounding boxes B( j± k) and
the transformed ones B′( j±k) will be similar, and therefore,
B′( j±k) will overlap largely with the foreground. However,
if the motion in both clips is not similar, then B′( j± k) will
mostly contain background pixels. This process is illustrated
in Figure 3. We use this transformed bounding box to com-
pute the motion similarity between the two frames as:

Smotion(i, j) = ∑
−l≤k≤l

S′app(i+ k, j+ k), (4)

where S′app computes the appearance similarity as in Equa-
tion 3 but using the transformed bounding box B′( j) for the
second frame. We use l = 3 frames to compute the motion
similarity.

Optimizing the similarity function Optimizing Eq. 1 can
be expensive, since it requires computing dense correspon-
dences between every possible pair of frames. In order to
make the method more efficient, we make two important ap-
proximations. First, most pairs of frames are actually bad
candidates for a transition point. Since the similarity mea-
sure behaves smoothly around the good transition points
(because of the averaging over multiple frames), we use a
coarse-to-fine strategy to find the transition points. We eval-
uate Sapp at every fifth pair of frames, and then choose
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Figure 4: Comparison of similarity metrics. For different metrics, we show the chosen transition frames (center) with two
preceding and subsequent frames, after rigid alignment. To visualize the quality of the alignment, each image is generated using
the red and blue channels of one frame and the red channel of the other frame. Well aligned regions appear naturally colored,
while misaligned regions appear oddly colored (green or pink). Using SSD over the whole frame (top) leads to results where
the foreground is misaligned. Using SSD only in the bounding box (middle) is an improvement. The proposed method (bottom)
is significantly better – the foreground is almost perfectly aligned at the cost of errors in the background.

the top 40 to explore at the finest temporal resolution. Sec-
ond, computing Smotion is computationally expensive be-
cause it involves computing correspondences an order of
O(n3) number of times. To avoid such computations, we
use a two-step process: we first compute the top 20 candidate
pairs using Sapp, and then we compute Smotion only on these.
Finally, we avoid short loops by constraining the search to
frames that are at least 20 frames apart (i.e., |i− j+1| ≥ 20).

The total computation time varies depending on the size
of the input video. In our experiments the average is around
2 hours. The average length of our videos is around 200
frames, typically of size 360× 480. Most of this time is
spent computing correspondences with NRDC, and thus a
faster alternative would greatly improve the efficiency of our
method.

We compare the performance of our foreground similar-
ity metric with two baseline techniques on one of our ex-
amples. These techniques are: first, SSD computed on the
entire frame [SSSE00], and second, SSD computed only in
the masked region. These results are shown in Figure 4. Our
method achieves significantly better spatio-temporal align-
ment of the foreground. Our technique for handling residual
misalignments of the foreground, as well as differences in
the background are discussed next.

5. Synthesis – Video Morphing

During the synthesis stage our method takes the transition
point (a,b) (b > a, w.l.o.g.) resulting from optimizing Eq. 1,
and produces an output video Vout that closes the loop seam-
lessly. Our goal is to ensure that the motion and appear-
ance of the foreground change smoothly, while having a rea-

sonable transition of the background. A good transition of
both is in general not possible, and we focus on the fore-
ground. This is based on the assumption that most of the
viewer’s attention is focused on the foreground, and, there-
fore, a smoother foreground transition will be more com-
pelling, as long as the background does not change abruptly.
In this section we describe the video morphing stage of our
method. First, we align the videos using a global, coarse,
rigid alignment of the foregrounds. Second, we use a local,
detailed, non-rigid alignment of the foreground and back-
ground using correspondence guided patch-based synthesis.

5.1. Global rigid alignment via camera planning

Since our similarity measure is based on correspondences,
it does not guarantee the alignment of the foregrounds in
frames V (a) and V (b). We first handle gross global differ-
ences in the alignment by constructing a virtual camera path.
As in Eq. 2, we compute a transformation T̂ , consisting of
a translation and a scale, that best aligns these frames. To
ensure that the transition is smooth, we spread this trans-
formation over a window of frames after V (a) and before
V (b). For this we fit a cubic spline f (t), of length L and
with zero first and second derivatives at the end points, for
each of the three transformation parameters (2-D translation
and 1-D scale), sample these splines to compute interpolated
transformations, and apply them to the frames. The value of
L is half the size of the loop to maximize the size of the
window in which the transformation happens, and achieve a
smoother transition.
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5.2. Local non-rigid alignment via morphing

Applying the transformations to the start and end of the
sub-clip gives us two sets of frames around the transition
point that are rigidly aligned, but there might still be mis-
alignments because of small changes in appearance or non-
rigid motion in the scene. As a result, naïve approaches
like concatenation or cross-fading would create artifacts like
abrupt cuts or ghosting, respectively. Traditional morph-
ing (TM) techniques use a combination of optical flow and
cross-fading to alleviate this problem. However, our input
videos are often noisy, and have large displacements, and
this leads to poor flow results that, as illustrated in the re-
sults section, result in poor synthesis results.

Instead, we generalize the image-based Regenerative
Morphing (RM) technique [SRAIS10] to video morphing. In
RM, intermediate frames are synthesized using patches from
two source frames while preserving local similarity to the
sources and to consecutive frames for temporal coherence.
RM has demonstrated good performance on different sce-
narios, ranging from interpolating nearby views to morphing
entirely different images. However, it is designed to morph
between images, where motions do not need to be realis-
tic. We extend RM to the problem of morphing two roughly
aligned video clips by adding two novel components:

Parabolic motion: RM incorporates correspondences be-
tween frames as morphing constraints. When correspon-
dences exist, pixels in one source can be constrained to move
on a linear path towards their corresponding location in the
second source. In our case, the input contains complex cam-
era motions and non-rigid scene dynamics (for e.g., mov-
ing people), where the linear motion assumption does not
hold and leads to unrealistic dynamics. To tackle this prob-
lem, we generalize this method to use a parabolic motion
for each pixel. A parabola is computed at each pixel by us-
ing correspondences between 4 frames. The motion of the
pixel is generated by sampling along this parabola. As shown
in Fig. 5, this leads to more realistic dynamics of the fore-
ground in the morphed frames, compared to the linear con-
straints originally used in RM.

Separate foreground and background morphing: An-
other simplifying assumption in RM is to use a single mor-
phing process for the entire frame. While this produces rea-
sonable results when morphing images, in videos unnatural
motions are very noticeable and unpleasant. We extend RM
to contain two morphing processes, one for the foreground
and one for the background. Each process models aspects
specific to the foreground and background.

The foreground morph uses parabolic motion (since it is
expected to contain non-rigid objects like people) and a short
transition of fixed size (4 frames). This produces good re-
sults because our input videos are already aligned in the fore-
ground, and the role of morphing is to improve small details.
When there are not enough correspondences to compute a

Figure 5: Linear (top) vs. parabolic (bottom) constraints.
The transition happens around the peak point during the
jump. The parabolic constraints capture the correct dynam-
ics and lead to a natural up-down motion during the tran-
sition, while the linear constraints make the kid “freeze” in
mid-air during the transition.

plausible morph, the foreground is simply concatenated. We
use the NRDC confidence map to decide whether to use cor-
respondences constraints or concatenation. More formally,
we make this decision using Eq. 2 between the two refer-
ence frames used for foreground morph (frames A and B in
Fig. 6), and setting a threshold of 0.6.

The background morph uses linear constraints for the mo-
tion. This is a better assumption for morphing rigid scenes
from different viewpoints, which is often the content of the
background. Also, correspondences in the background may
be arbitrarily far. If the backgrounds of the two frames that
we want to morph are close, a short transition is good. But if
they are far, a longer transition is needed. We choose the win-
dow size of the transition automatically for the background,
adapting to each video. The criterion we use is that the veloc-
ity of the camera (direction and magnitude) should change
as little as possible when introducing the morph. Sometimes
the camera moves fast and there are not enough correspon-
dences in the background to compute a plausible morph. In
this case, the morph uses motion constraints to move pix-
els at the same velocity as before and after the transition.
We use the NRDC confidence map to decide whether to use
correspondences constraints or motion constraints. As in the
foreground morph, we make this decision using Eq. 2, this
time between the two reference frames used for background
morphing (C and D in Fig. 6). The integration of foreground
and background morphing is described in Fig. 6. Once the
foreground region is morphed, it is “pasted" on the back-
ground, or in other words, included as a hard constraint in
the background morph.

6. Experiments

We test our method on a set of videos collected from the
Internet containing a wide range of background and fore-
ground dynamics (Figure 8). The quality of our results are
easier to appreciate in the accompanying supplementary
video. In order to evaluate both the similarity metric and
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Figure 6: Overview of video morphing. The same video sub-clip is shown as two separate clips aligned at the transition point;
the start of V1 and the end of V2 are the same, and we want to make the loop seamless at the transition point. Frames A through
B are used to synthesize the foreground. A longer window – frames C and D – is used to synthesize the background, with the
previously computed foreground as a constraint. This is signified by the small red boxes. For frames where the foreground is
not synthesized (between C−A and between B−D) the foreground constraint is simply the original foreground.

Figure 7: Comparison of morphing techniques. Top: Video Textures. Middle: Traditional morphing. Bottom: Proposed
method. VT morphing is presented for the transition chosen by VT, while the other two show a morph for our transition.

video morphing components of our technique, we compare
to three different combinations of analysis and synthesis
methods. First, we compare to Video Textures (VT) because
it is the most similar end-to-end method. To make it easier
for VT, we stabilize the input to have no motion at all when-
ever the input video allows it. VT uses full-frame similar-
ity to find transition points and a multi-way morphing tech-
nique to align the frames across these transition points. In
unconstrained video sequences like ours, this similarity met-
ric produces poor transition points leading to poor synthesis
results. Second, to evaluate the quality of our similarity met-
ric, we compute loops using the transition points computed
using our similarity metric but align them using traditional
morphing, i.e, warping using optical flow and blending using
cross-fading (referred to as TM). The quality is better than
VT because the chosen transition frames are better aligned,
but the morphing itself leads to artifacts like ghosting in re-
gions with erroneous optical flow. Our third comparison (re-
ferred to as RM) is to using the original RM algorithm in
combination with our transition points and camera path plan-
ning. While RM does not have the same ghosting artifacts as
TM, it was designed for two-frame morphing and is not able
to capture the dynamics of the motion in our videos very

well. In contrast, our video morphing – which extends RM
with parabolic foreground motion constraints, linear motion
or correspondence constraints in the background, and auto-
matic selection of the morphing window – produces results
that are visually more compelling. The differences in these
techniques are much easier to appreciate in video form, and
our supplementary material contains all these comparisons.

Violin This video contains an almost fixed camera, with de-
tailed and structured foreground motions. Parabolic motion
produces a more realistic result than traditional morphing.

Trampoline The small foreground causes a full-frame sim-
ilarity metric to be dominated by the background. By focus-
ing on the foreground we produce a better transition point.
In addition, video morphing the background is challenging
because the scene moves quickly; we use motion constraints
to maintain the same motion during the morph.

Basketball The large scale changes in this video are han-
dled by our foreground-based similarity metric and cam-
era path. Our video morphing technique is best at handling
the complex motions (hands and basketballs) because of the
parabolic motion constraints.
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Figure 8: Morphed results. Results of our technique on a wide variety of examples. From top to bottom, violin, trampoline,
basketball, skydiving, tango, dog, ski-slalom, and back-flip. See supplementary video for input and resulting loopy videos.

Skydiving Our foreground-based similarity metric produces
better transitions. Also, traditional morphing fails because
flow estimation is unreliable due to low texture regions.

Tango In this video, the background moves very slowly
while the foreground moves faster. Our method automati-
cally chooses a large window size of 17 frames to morph the
background, allowing the camera motion to stay slow and
smooth.

Dog In this video there is very small overlap of the fore-
ground, in frames that are well separated, and VT picks a
poor pair of transition frames. This video also illustrates the
importance of the virtual camera path. Using TM, the fore-
ground is morphed and displaced simultaneously, creating
an unrealistic effect.

Ski-slalom The frame is dominated by the background, and
VT does not find good transition points that align the skier
well. Our method is able to produce a nice loop of the skier

using parabolic motion, while interpolating the mountains in
the background using linear motion constraints.

Back-flip This video depicts a gymnast moving in front of
a rapidly changing background. While our method captures
the natural motion of the gymnast, the synthesized back-
ground has artifacts because of the large differences between
the start and end of the clip.

Trampoline-Kid The motion of the bouncing kid in this
example leads to ghosting artifacts in the VT and TM results,
and an unnatural freeze in mid-air in the RM result which are
not present in our results.

7. Limitations

We designed our technique to be fully automatic for real-
world cases by making assumptions about the scene. We as-
sume the foreground is located in one contiguous region and
has roughly consistent motion which is different from the
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background. We also assume that the background has simi-
lar visual properties in the two clips, failing which morphing
produces artifacts; the back-flip result is our worst result in
that respect. Second, our technique relies on a few automatic
computer vision components – i.e., foreground segmenta-
tion [PF13] and correspondences [HSGL11] – that may not
always work. The most fragile component of our technique
is the automatic foreground segmentation. In the supplemen-
tary material we also include results using manual segmen-
tation to illustrate the possible improvement.

8. Conclusions and Future Work

In this paper, we have described an automatic method for
creating infinitely looping clips from casual videos. Our
method is capable of handling complex camera and fore-
ground motions, and we have demonstrated this on a variety
of unconstrained videos downloaded from the internet. Our
method can be easily generalized to stitch two input videos
instead of one, if the two clips capture the same scene under
a similar viewpoint. This could be used for many applica-
tions, like video editing (a generalization of [BLA12]), view
interpolation [BBPP10], or video summarization (e.g., sum-
maries from multiple videos of the same event [APS∗14]).
In addition, different components of our pipeline could be
changed for specific applications. For e.g., the similarity
metric could be modified to evaluate only motion similarity,
instead of motion and appearance. This would allow stitch-
ing videos with similar dynamics but different appearances,
such as different people doing the same dance or practicing
the same sport.
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