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ABSTRACT
Ubiquitous physiological sensing has the potential to pro-
foundly improve our understanding of human behavior, lead-
ing to more targeted treatments for a variety of disorders. The
long term goal of this work is development of novel compu-
tational tools to support the study of addiction in the context
of cocaine use. The current paper takes the first step in this
important direction by posing a simple, but crucial question:
Can cocaine use be reliably detected using wearable electro-
cardiogram (ECG) sensors? The main contributions in this
paper include the presentation of a novel clinical study of co-
caine use, the development of a computational pipeline for in-
ferring morphological features from noisy ECG waveforms,
and the evaluation of feature sets for cocaine use detection.
Our results show that 32mg/70kg doses of cocaine can be de-
tected with the area under the receiver operating characteristic
curve levels above 0.9 both within and between-subjects.
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INTRODUCTION
In recent years, the ability to continuously monitor the activi-
ties, health, and lifestyle of individuals using sensor technolo-
gies has reached unprecedented levels. Wearable “on-body”
sensors now enable routine and continuous monitoring of a
host of physiological signals including heart rate, blood pres-
sure, respiratory rate, blood glucose and more. Commercial
sensors manufactured by companies including Zephyr [23]
are now commonly available to the everyday consumer for
personal fitness and health applications.
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Such ubiquitous physiological sensing has the potential to
profoundly improve our understanding of human behavior,
leading to more targeted treatments for a variety of disor-
ders. This work focuses on the development of novel compu-
tational tools to support the study of addiction in the context
of cocaine use. Current clinical studies of addictive behav-
ior around cocaine use are limited to collecting data through
subjective, retrospective self-reports [5]. In addition to being
vulnerable to recall bias and intentional misrepresentation,
this methodology may fail to capture important aspects of ad-
diction that an individual patient is not consciously aware of
including context-dependent triggers.

In contrast, continuous sensing technologies provide a new
window into patients’ daily lives - one through which an indi-
vidual’s behavior might be more completely, accurately, and
dynamically viewed as it evolves in real-time. We posit that
such an approach has the potential to yield new insights on
unique aspects of an individual’s addictive behavior as well
as the extent to which specific environmental factors (people,
places, and things) contribute to relapse, leading to highly
individualized and dynamic markers of treatment response.
While such an approach offers considerable promise, rigor-
ous, well-controlled studies are required to establish the clin-
ical utility of the technology in complex use cases like un-
derstanding cocaine addiction. The current work takes the
first step in this important direction by posing a simple, but
crucial question: Can cocaine use be reliably detected using
wearable on-body sensors?

To begin to answer this question, it is important to under-
stand the effect of cocaine on physiology, and the state-of-art
in uncovering specific physiological features that could be in-
dicative of cocaine use. By virtue of its peripheral actions on
the sympathetic nervous system, it is well known that cocaine
produces robust changes in primary indices of cardiovascular
function (e.g., increases in heart rate) [19]. However, overall
heart rate is also known to be easily confounded by a vari-
ety of other real-world behaviors such as exercise or stress.
The topic of how cocaine affects morphological features of
ECG waveforms is thus of great interest and the literature on
the effects of cocaine provides support for a number of such
features [9, 14, 15, 21, 19].

Building on this body of prior work from the cocaine litera-
ture, we select ECG as the most promising sensing modality
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for the detection of cocaine use. In this work, we evaluate
the ability of machine learning methods to detect cocaine use
based on two fundamentally different representational frame-
works. The first framework is a fully data-driven approach
where the underlying detector has access to complete ECG
waveforms. The key benefits of such a framework are that
it eliminates the need for feature extraction from ECG wave-
forms, which is non-trivial both because of the noisy nature of
the data, as well as waveform variations across subjects. The
second framework we consider is knowledge-based in that it
leverages features that have been explored in prior studies of
cocaine’s effect on the heart. We study six different features
of ECG waveforms that have been shown to correlate with
cocaine use in the literature. These features (described in de-
tail in the following sections) include the RR interval, QT
interval, QTc interval, PR interval, QRS interval, and T wave
amplitude.

This paper makes the following primary contributions to
wearable ECG-based sensing and cocaine use detection:

• The presentation of a novel clinical study of cocaine use
conducted at the Yale Center for Clinical Investigation’s
Hospital Research Unit (YCCI-HRU) in which a unique
set of wireless ECG data were collected from experienced
cocaine users.

• The development of a computational pipeline for inferring
morphological features from noisy ECG waveforms col-
lected using a wearable ECG sensor (the Zephyr BioHar-
ness 3).

• The evaluation of ECG feature sets from the knowledge-
based and data-driven detection frameworks using both
within-subject and between-subject protocols.

The clinical study involved six subjects, each of whom par-
ticipated in a multi-week protocol involving multiple experi-
mental conditions. The subjects wore the Zephyr BioHarness
3 chest band for extended time periods including baseline ses-
sions (following several days of habituation) and cocaine use
sessions with multiple dosage levels. The resulting ECG data
is quite noisy and also subject to signal dropout. Standard
algorithms for morphological analysis of intensive care unit
(ICU) quality ECG data were found to be inadequate when
applied to wireless ECG data, motivating the development of
a customized feature extraction pipeline that includes signifi-
cant filtering and smoothing. Our results show that wearable
ECG-based cocaine use detection can be reliably performed
both within and between subjects. We achieve average AUC
rates over 0.9 at the 32mg/70Kg dosage level and over 0.8 at
the 8 and 16mg/70Kg dosage levels using a combination of
features.

BACKGROUND AND RELATED WORK
In this section, we provide background information on the
physiological effects of cocaine use, and review prior work
from the ubiquitous computing community that has made use
of wearable ECG for personal health sensing.

Effects of Cocaine Use: Cocaine addiction is associated
with largely predictable and highly characteristic physiologi-
cal, behavioral, and subjective effects [17]. Such effects de-

Figure 1. This figure illustrates two ECG periods. The peaks and
troughs of the PQRST complex are labeled on the left period. Several
ECG features that have been reported to undergo changes in the pres-
ence of cocaine use are also illustrated including the RR interval, the QT
interval, the PR interval, the QRS interval and the T wave height.

rive directly from cocaine’s well-established pharmacologi-
cal mechanism of action: it is an indirect agonist/monoamine
reuptake inhibitor. By virtue of its peripheral actions on
the sympathetic nervous system, cocaine produces robust
and predictable changes in primary indices of cardiovascu-
lar and neurological function (increases in heart rate, sys-
tolic, and diastolic blood pressure and pupillary diameter).
As a “psychostimulant”, cocaine also produces a character-
istic profile of centrally-mediated, behavioral effects includ-
ing increased arousal, alertness, decreased somnolence/sleep,
increased talkativeness, decreased appetite, and involuntary
motor activity ranging from non-specific increases in gen-
eral activity level to highly repetitive and stereotypical move-
ments, both simple and behaviorally complex.

In this work, we focus on the acute physiological effects
of cocaine use on the heart. There is substantial evidence
from human studies that cocaine use causes changes in car-
diovascular function that are observable in electrocardiogram
(ECG) signals [9, 14, 15, 19]. Figure 1 illustrates two peri-
ods of a typical ECG signal. We can see that each period is
characterized by the presence of three peaks (P, R, T) and two
troughs (Q, S), which are collectively known as the PQRST
complex. Traditional ECG analysis focuses on how various
relationships between the locations and heights of these peaks
and troughs changes in response to differing conditions. Sev-
eral such changes have been observed in subjects under the
influence of cocaine.

As already mentioned, cocaine use has a robust effect on heart
rate, causing it to increase significantly [19]. An increased
heart rate manifests as a reduced ECG period length. Due to
the ease of detecting the peak of the R wave, which is typi-
cally the highest peak in the ECG signal, the ECG period is
usually measured using the RR interval as shown in Figure
1. While heart rate is known to increase with cocaine use re-
sulting in a decrease in RR interval, this feature is obviously
confounded by any other activity that influences heart rate
(activity, stress, etc) and thus has limited usefulness in prac-
tice. Cocaine has also been reported to have an effect on the
QT interval [19]. Some research has also made use of a “cor-
rected” QT interval, QTc, meant to partially normalize out the
effect of heart rate. QTc is typically computed as the length of
the QT interval divided by the square root of the length of the
RR interval (Bazett’s correction) [22]. However, the literature
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is contradictory as to whether QTc increases or decreases in
the presence of cocaine. Magnano et al., [15] suggests that
QTc prolongs in the presence of cocaine while Levin et al.,
[14] suggests that QTc shortens. Magnano et al. have also
reported changes in the height and shape of the T-wave in
the presence of cocaine. Animal studies have pointed to ad-
ditional effects of cocaine on the PR and QRS intervals [10,
18]. The PR, QRS and T wave height (TH) are also illustrated
in Figure 1. In this work, we focus our knowledge-based de-
tection framework around these six ECG features (RR, QT,
QTc, TH, PR and QRS) since they are well supported by the
literature regarding the effect of cocaine on the heart.

Wearable ECG for Health and Activity Sensing: A sub-
stantial body of work has explored the use of ECG using
wearable chestbands, primarily in the context of understand-
ing physiological stress [1, 11], assessing cognitive load [8]
and detection of arrhythmias caused specifically by atrial fib-
rillation [2, 3, 12]. The work on physiological stress focus
primarily on the use of heart rate-based features to determine
an individual’s stress level. Hong et al [11] aim to predict
physiological stress using simple ECG-based features (aver-
age and median of heart-rate, ECG amplitude, and RR inter-
val) combined with a set of features derived from accelerom-
eter and galvanic skin response (GSR) sensors. Haapalainen
et al [8] estimate cognitive load experienced by an individ-
ual using a combination of sensors to monitor ECG, elec-
troencephalogram (EEG), GSR, heat-flux, eye-movements
and change in pupil size. They observed that the best feature
for cognitive load level classification for most of the subjects
was derived from the median absolute deviation of ECG. Re-
search on atrial fibrillation has looked at extraction of specific
features from the QRS complex. For example, [2, 3] uses
QRS duration and PR interval to detect atrial fibrillation.

Our work clearly builds on past research regarding the effects
of cocaine on the electrophysiology of the heart by focus-
ing our knowledge-based detection framework around a set
of ECG-based features that is well supported by the litera-
ture. While most of the previous studies, involving mobile
and on-body physiological sensing, used heart rate and heart
rate variability as features [1, 7, 11] only few studies used
limited forms of morphological features [2, 3]. To the best of
our knowledge our ECG feature set is the most extensive ever
used. Unlike past studies from both the cocaine literature and
the mobile sensing literature, we also consider a data-driven
detection framework where detectors are built directly from
complete ECG waveforms.

COCAINE USE STUDY DESIGN
As part of an ongoing National Institute on Drug Abuse-
approved cocaine use study at Yale University, we have col-
lected data from six medically healthy, non-treatment seek-
ing, experienced cocaine users. Subjects typically participate
in the study for a two week period. The study consists of
multiple components that we describe in this section.

Dry-Out Period: When subjects are first admitted to the unit,
they undergo a “dry-out” period to ensure that the acute influ-
ence of previous drug use does not affect the results of the

study. All subjects undergo a “dry-out” period that lasts for
several days.

On-Body Sensor System: During the study protocol, the
subjects wear a Zephyr Bioharness 3 chest band [23] which
provides several raw (ECG, chest band diameter, accelerome-
ter) and derived (RR interval, heart rate, respiratory rate) mea-
surements. These chest bands are designed to be comfortable
and less intrusive to wear than Holter monitors. We focus on
the raw ECG data only in this work.

Our system encompasses two levels of data logging. The first
level is on the sensor itself. The second is on a smartphone.
The data on the sensor is downloaded at the end of each day
and uploaded to a secure server. The sensor also transmits
summary packets to the phone, which are periodically trans-
mitted wirelessly to the secure server. The redundancy of-
fered by logging via the phone as well as on the sensing de-
vice proved extremely useful since we found that the device
failed to log locally on two occasions, but we were able to
retrieve data transmitted from the phone.

Cocaine Administration Sessions: Subjects participate in a
single 6-hour cocaine administration experiment comprised
of several sessions. In this work, we use ECG data collected
from a baseline session, three fixed-dose cocaine administra-
tion sessions and three cocaine self-administration sessions.
These sessions appear in the same order for all subjects. Sub-
jects wear the sensor system for all sessions. The baseline
session is conducted at the end of the dry-out period and im-
mediately before cocaine administration. It provides ECG
measurements in the complete absence of cocaine. The three
fixed-dose sessions last 20 minutes each. At the start of each
of the these three sessions, the subjects receive a single-bolus
intravenous (IV) injection of cocaine. The three cocaine ses-
sions use a fixed-order, ascending dose regimen of 8, 16, and
32 mg per 70kg respectively with a 100kg cap per adjusted
dose. This procedure is based on extensive prior experience,
which has shown these doses and procedures to be safe, well
tolerated, valid, behaviorally relevant, and test-retest reliable
[20].

The main purpose of the baseline and fixed-dose sessions
is to assess subjects for participation in subsequent cocaine
self-administration sessions. Physiological (ECG, respira-
tion) and behavioral (visual analog ccale self-ratings) assess-
ments are conducted at five-minute intervals throughout each
session. An advanced cardiac life support certified research
nurse and a basic life support certified research assistant are
also present. Subjects who exhibit a heart rate greater than
160 beats per minute, diastolic blood pressure greater than
110 mm Hg, systolic blood pressure greater than 180 mm Hg,
and/or have evidence of clinically significant cardiac ectopy,
arrhythmia, or other dangerous symptoms are excluded from
further self-administration sessions.

The three self-administration sessions give subjects some
control over the amount of cocaine they can receive. Each
self-administration session uses one dosage level (8mg, 16mg
or 32mg). The order of the dosage levels is randomized. The
subject can click a button to receive an IV cocaine infusion
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(a) Noise (b) Dropout (c) Baseline Drift

Figure 2. This figure depicts some of the issues that occur when using a wearable ECG device. The data are inherently noisy compared to ICU-quality
ECG that uses careful skin preparation as well as adhesive electrodes. Various forms of signal dropout occur in our data, including cases that manifest
as extreme noise. The data are also subject to baseline drift even over short time scales.

at the given dosage level within each self-administration ses-
sion. There is a minimum period of 5 minutes enforced be-
tween subsequent infusions. All cocaine self-administration
sessions take place at the YCCI-HRU. A saline lock, or pe-
ripheral intravenous device, is used for infusions of cocaine.
Saline locks are maintained by trained research personnel in
accordance with local, institutional policies and procedures.

In this work, we make use of the ascending dose regime in the
baseline and fixed-dose sessions to explore the ability to dis-
criminate between ECG waveforms from the baseline condi-
tion (no cocaine), and ECG waveforms from each of the three
fixed dose sessions (8, 16, and 32 mg). We also explore the
ability to discriminate between the ECG waveforms from the
baseline session and those obtained from the complete set of
cocaine sessions (the ascending dose regime combined with
the self-administration sessions).

At the time of writing this paper, six subjects have completed
the protocol. While the numbers may seem small, we note
that in-patient studies on drug use are considerably harder to
run and much more costly than typical user studies involving
wearable sensors. Also, despite the low number of subjects,
we are collecting hours of ECG waveform data per subject
comprising thousands of heartbeats. We believe that the vol-
ume of data we have currently obtained is sufficient to explore
the problem of cocaine use detection and provide an initial an-
swer to our motivating question of whether cocaine use can
be reliably detected based on wearable ECG sensor data.

DATA CHARACTERISTICS AND PROCESSING
We begin by presenting the noise characteristics of the ECG
data obtained in our study to illustrate the challenges it
presents. We then describe our data processing pipeline
and how it extracts the features required to support both the
data-driven and knowledge-based detection frameworks in
the presence of these noise sources.

Noise Characteristics: We present several examples of raw
data obtained from our sensing and data acquisition pipeline
in Figure 2. This figure illustrates various difficulties with
the use of a sensor like the Zephyr BioHarness chest band
where no skin preparation is used and the electrodes are not
adhesive. Figure 2(a) gives an indication of how noisy the raw
data is in the best case. We also often see ECG periods that

have larger-scale distortions where the R wave may still be
evident while the other peaks and troughs are not discernible.
Such distorted periods would not pose a difficulty for features
based on the RR interval only (heart rate), but they do pose
challenges when attempting to extract the complete PQRST
complex. Fortunately, these distorted periods appear to be
transients and don’t frequently occur in long runs.

Figure 2(b) shows an example of signal dropout resulting in
extended intervals of extreme noise. These intervals are easy
to identify because their characteristics differ widely when
compared to normal signals. They contain no useful informa-
tion and no features can be extracted from them. They typ-
ically result from large-scale disturbances to the sensor like
completely removing or readjusting the chest band.

Finally, Figure 2(c) shows the degree to which the signal
baseline drifts over short time spans. The baseline is also
observed to drift over longer time spans. The long-run drift
is likely due to slippage of the sensor over time. It is unclear
what causes the short-run drift, but it is likely a hardware is-
sue with the sensor itself. Again, the drift is a minor issue
when extracting features based on the RR interval, but needs
to be accounted for when extracting and standardizing mor-
phological features.

Data Processing and Feature Extraction: Several ECG
data processing toolkits provide functions to extract the
PQRST complex from raw ECG waveforms (e.g. ECGBag
[4]). However, we found that these toolkits are geared to
the high-quality signals typical of ICU-grade sensors. While
they can often be used to extract R peak locations, they lack
robustness to noise and dropout when attempting to extract
morphological features from signals obtained from the class
of consumer-grade wearable ECG sensors that we use in this
work. On the other hand, chest band-based ECG sensors have
excellent ease of use in ambulatory settings when compared
to multi-lead ECG devices like Holter monitors that also use
adhesive electrodes.

It is also interesting to note that while consumer-grade de-
vices such as the Zephyr Bioharness have been available for
some time, most existing work only uses the ECG signal to
extract basic features based on the RR interval like heart rate
and heart rate variability. This is likely due to the difficulty of
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Figure 3. This figure illustrates the primary steps in our sensing, data acquisition and data processing pipeline. Raw ECG measurements are transmitted
wirelessly to a smartphone and also downloaded directly to a server to provide redundancy. We first segment ECG periods using RR intervals. To deal
with noise in the signals, we compute local averages over 30 second sliding windows. We apply peak detection to the smoothed waveforms and discard
those that do not have the correct configuration of peaks and troughs. We apply feature extraction and standardization followed by classification. The
above steps apply only to features in the knowledge-based framework. For features in the data-driven framework the local averaging step is directly
followed by classification

extracting more nuanced morphological features in the pres-
ence of substantial noise. One aim in the current work is to
bridge the gap between traditional ECG analysis based on
features that require identification of the complete PQRST
complex (as is common in the electrocardiology literature),
and the analysis of ECG signals obtained from consumer-
grade sensors. We illustrate the main components of the data
processing and feature extraction pipeline that we have devel-
oped to deal with these issues in Figure 3. We describe the
components in detail below.

Period Extraction: The easiest way to extract each complex
is to split the ECG waveform into individual RR intervals.
The R peak is easily localized because it clearly stands out as
the highest amplitude peak in the raw ECG signal. We use
the ECGBag [4] toolbox to identify the location of R wave
peaks in the raw ECG trace. We use the R peak locations to
segment the entire raw ECG trace into RR intervals. We re-
move spurious R peaks by computing the heart rate using the
time between two adjacent R peaks, and discard those that
fall outside normal heart beat range (50 - 150 bpm). This ef-
fectively removes much of the extreme noise due to drop out.
However, the RR intervals that are extracted from the raw
data are of non-uniform length since they vary inversely with
heart rate. After storing the RR interval feature, we standard-
ize all periods by resampling them to 100 samples per period,
effectively removing all information about heart rate.

Smoothing by Local Averaging: To smooth out the effect of
inherent noise as well as transient distorted ECG waves, we
average the standardized waveforms within thirty second slid-
ing windows. It is very important to note that this smoothing
procedure is not appropriate for detecting transient morpho-
logical changes in ECG waveforms, which are often of in-
terest in arrhythmia detection. It is appropriate in our case as
the reported effects of cocaine on the electrophysiology of the
heart are persistent over time scales of several minutes [13].

Figure 4. Example filtered and smoothed ECG period with extracted
PQRST locations.

Having obtained the length-standardized and smoothed RR
intervals, we remove the DC offset of each period separately
to deal with baseline drift. We also divide by the standard
deviation within each individual sample to normalize out any
drift in overall amplitude. Figure 4 shows an example of the
result of smoothing that can be contrasted with the raw data
shown in Figure 2(a).

Peak Detection: Given the cleaned signal, we next need to
identify the elements of the PQRST complex. To do this,
we apply a standard peak detection algorithm to the absolute
value of the smoothed and standardized waveforms. We take
the five largest peaks and assign them the labels PQRST in
temporal order. Waveforms that do not exhibit a peak-trough-
peak-trough-peak sequence expected of the PQRST complex
are filtered out as described below.

Filtering: When individual waves are as pronounced as the
example shown in Figure 4, the PQRST complex is relatively
easy to identify, as described above. However, we find that
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(a) Morphological Features (b) Waveform Features

Figure 5. Figure (a) shows histograms represented as heat maps for each morphological feature as a function of dosage level (darker colors indicate
higher frequency) for Subject 3. Figure (b) shows sample ECG waveforms, also from Subject 3, illustrating the effect of cocaine dosage level on the
shape of the waveform.

some of the peaks are harder to detect than others, and resid-
ual noise in the waveform sometimes results in too many or
too few peaks being detected. Since the subsequent feature
extraction step is highly sensitive to incorrect identification
of the PQRST complex, we apply several filtering steps to
discard potentially problematic waveforms. First, we filter
out any waveforms that do not result in exactly three peaks
and two troughs in the correct sequence. Second, we filter
out waveforms where one or more waveform values is more
than three standard deviations away from the sliding window
mean. Such waveforms may exhibit the correct sequence of
peaks and troughs, but the presence of extreme values is likely
due to noise and the detected peaks are then not reliable.

Feature Extraction: Given the standardized, smoothed and
filtered periods with identified PQRST complex locations, the
feature extraction step is straightforward. We have already
obtained the RR interval length (prior to standardization) as
a byproduct of the ECG period segmentation step. We define
the QT, PR and QRS interval to be the distance between the
identified locations of the Q and T peaks, P and R peaks and Q
and S peaks, respectively.1 These distances are all measured
in the standardized waveform space where the RR interval
length has been completely normalized away. To calculate
QTc in its standard units, we then need to multiply our QT in-
terval (where RR has be normalized away) by the square root
of the original RR interval length. Finally, the T wave height
is simply obtained as the height of the standardized waveform
at the location identified as the peak of the T wave. Figure
5(a) shows example histograms of each of these feature val-
ues across dosage levels for one subject. The histograms are
represented as heat maps. Each column of each figure repre-
sents the distribution over feature values for a single dosage
level. Higher frequencies are displayed as darker colors. We
can see that some features like RR, TH and QT show distinct

1We note that the electrocardiology literature recommends slightly
different procedures for computing the QT, PR and QRS interval
lengths based on where tangent lines to the individual waves inter-
sect the baseline. We do not use this approach because numerical
estimates of the tangent lines remain noisy even for our smoothed
samples.

changes between the baseline (first column) and cocaine use
(second to fifth column) sessions.

Data Volume: The table below shows the total number of
samples available for each subject and each session follow-
ing all data processing steps.

Subject B 8 16 32 A
1 1224 258 1024 60 7883
2 2232 1489 915 1015 11945
3 1916 1830 999 1459 13630
4 1362 731 296 299 7950
5 131 405 1524 1454 21458
6 647 317 98 784 16148

Table 1. Number of data cases per subject for the baseline, 8mg, 16mg,
and 32mg sessions, as well as for all cocaine sessions combined (fixed
dose and self-administration)

COCAINE DETECTION
The final stage of our computational pipeline is detection of
cocaine use. In this section we discuss the feature sets used,
how we frame the cocaine use detection problem as a classi-
fication problem and describe our classification model.

Knowledge-Based and Data-Driven Detection: As de-
scribed in the introduction, we consider two different detec-
tion frameworks that differ in the features they use. The pre-
vious section described at length how we compute the RR
interval and the five morphological features (QT, QTc, PR,
QRS, TH) that are supported by the literature on cocaine.
These features form the core of our knowledge-based detec-
tion framework.

The second detection framework we consider is a purely data-
driven framework where the feature representation for a pe-
riod is the complete vector of ECG waveform amplitudes.
For all the reasons described in the previous section, the
use of raw ECG waveforms in the data-driven framework
is not advisable. Instead, we use the length-normalized and
smoothed waveforms produced by the first two steps of the
pre-processing pipeline. In the data-driven framework, each
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data case consists of a vector of 100 feature values represent-
ing the amplitude of the ECG waveform at each of the stan-
dardized time points. We refer to these features as the wave-
form features and use the abbreviation W.

The use of the complete waveform itself is motivated by the
fact that we observe substantial differences in the shape of the
ECG waveform across the four sessions (baseline, 8, 16, and
32 mg/70kg cocaine) in most subjects. These differences are
illustrated in Figure 5(b) using examples waveforms drawn
from the middle of each session. We can see that for this
subject, as the cocaine dosage level increases, there are large-
scale morphological changes in the ECG waveform includ-
ing QT prolongation and T-wave flattening. The differences
are substantial enough to suggest that discrimination between
sessions should be easy given the full waveform representa-
tion, at least within subjects. Other subjects exhibit qualita-
tively similar changes as a function of cocaine dose.

The advantage of the fully data-driven approach is that even
with the steps we have taken to reduce noise in the ECG sig-
nals, the peak detection step can still be quite sensitive. Us-
ing full waveforms allows us to avoid (or supplement) the
peak detection-based features with a feature representation
that does not require such processing and should thus be more
robust to residual noise in the signals. The only drawback is
that the number of individual features is obviously larger than
when using single morphological features. However, there
is no issue whatsoever fitting models to 100 features given
that we have thousands of available data cases. In addition,
the number of features is still low enough for detection al-
gorithms to eventually run in real-time on a smart phone or
other embedded system.

Cocaine Detection as Classification: Given a particular fea-
ture representation, we view the problem of constructing a
detector for cocaine use as a standard binary classifier learn-
ing problem. We use the four experimental conditions in our
study (baseline, 8, 16, and 32 mg/70kg cocaine) to form four
sets of binary classification problems: baseline vs 8mg, base-
line vs 16mg, baseline vs 32mg, and baseline vs all dosage
levels combined. Within each problem, we construct classi-
fiers based on each of the RR, QT, QTc, PR, QRS, TH and W
features separately. In this work, we consider the problem
of detecting cocaine use independently for each smoothed
ECG period derived from each 30 second window. Each
data case consists of a feature vector xn extracted from the
smoothed waveform and a corresponding class label yn in-
dicating which of the two sessions the data case belongs to.
When using the RR, QT, QTc, PR, QRS or TH features, the
feature vector xn consists of one element only. When using
the waveform features W , the feature vector xn is length 100,
containing the 100 waveform amplitudes. We also consider
feature vectors containing all the morphological features (QT,
QTc, PR, QRS and TH) and all of the morphological features
combined with the waveform features.

Classification Model: In solving the detector construction
problem, we can apply any existing binary classification
model. In this work, we select a standard linear logistic re-
gression classifier [6]. Given a feature vector x consisting

of D features, the binary logistic regression classifier returns
the probability that the feature vector belongs to the positive
class. Letting Y represent the label for the instance x, logistic
regression computes the class probability as shown below. ✓
is a length D vector of feature weights. It is easy to see that
the classifier has a linear decision boundary specified by the
weights ✓.

P (Y = 1) =

1

1 + exp (�(✓>x+ b))
(1)

The default classification rule when using linear regression
is to predict that the data case belongs to the positive class
if P (Y = 1) > 0.5. Learning the weights of the logistic
regression classifier is accomplished by maximizing the log
likelihood of the training data using numerical optimization
[6]. This is a continuous, convex optimization problem with
no constraints. It can be solved using any gradient-based op-
timizer. In this work, we use the limited memory Broyden
Fletcher Goldfarb Shanno (BFGS) algorithm [16]. Given a
data set D = {(yn,xn)}1:N , the log likelihood function is
defined as shown below. We assume the labels for the two
classes are �1 and 1.

L(✓, b|D) = �
NX

n=1

log

�
1 + exp(�yn(✓

>
xn + b))

�
(2)

The term within the sum is known as the logistic loss. It upper
bounds the zero-one loss and is very similar to the hinge-loss
function used in support vector machines (SVMs) [6]. While
the slightly different properties of the logistic loss mean it
does not yield a support vector property, this is irrelevant in
the linear case since the model is explicitly parameterized in
weight-space. Further, there is known to be very little differ-
ence between a learned linear logistic regression model and
a learned linear SVM when the amount of available data is
large. One advantage of linear logistic regression over the
linear SVM is that it directly outputs probabilities, which are
often more desirable in medical domain applications such as
ours.

We do expect that non-linear classifiers including kernel lo-
gistic regression or kernel support vector machines will im-
prove cocaine detection performance further. However, we
leave an investigation of alternative classification models for
future work. In this work, we instead focus on an evaluation
of the utility of different features and feature combinations
when used with the linear logistic regression model.

EXPERIMENTS AND RESULTS
In this section, we present experiments and results comparing
multiple feature sets on the four classification problems intro-
duced in the previous section: baseline vs 8mg (Bv8), base-
line vs 16mg (Bv16), baseline vs 32mg (Bv32), and baseline
vs all dosage levels combined (BvA). We consider two exper-
imental conditions for each problem. In the within-subjects
condition, we train and test detectors separately for each sub-
ject. In the between-subjects condition, we use each subject
as the test subject in turn, and train the detector on data from
the remaining subjects. We assess detection performance us-
ing the area under the receiver operating characteristic curve
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Figure 6. This plot shows the results of within-subjects cocaine detection for all feature sets and four classification tasks. We see that the within-subjects
detection task can be reliably solved with average AUC values approaching the maximum of 1.0 at the higher dosage levels for some feature sets.

(AUC) since there are sample imbalances between the classes
both within and between subjects. Table 2 summarizes the
feature sets that we use in our analysis. KB indicates fea-
tures from the knowledge-based framework while DD indi-
cates features from the data-driven framework.

Identifier Description Framework
RR RR interval length KB
QT QT interval length KB
QTc Corrected QT interval KB
PR PR interval length KB
QRS QS interval length KB
TH Height of T wave KB
W Waveform Features DD
AM All morphological features

(QT, QTc, PR, QRS, TH)
KB

AM+W All morphological features
plus waveform features

DD/KB

Table 2. Summary of Feature Sets

Within-Subject Cocaine Detection: In this section, we look
at within subject classification where the classifier is trained
and tested on data from the same subject. While training a
classifier for each individual user of such a detection system
is clearly not practical, studying within-subject classification
sheds light on which features work best if we ignore between-
subject variability in baseline ECG waveform structure, ha-
bituation, and cardiac response to cocaine.

In the within-subjects setting, we split the data for each of
the four classification problems (Bv8, Bv16, Bv32 and BvA)
into a training and testing set for each each subject. Splitting
the data for each subject randomly is not a valid protocol and
will result in inflated accuracy since the features and labels
are highly correlated in time. Instead, we divide each sub-
ject’s data for each session into two equal halves. We use the
first half of both session to train the classifier and the sec-
ond half of both session to test the classifier. We train and
test detectors separately for each subject using this protocol.
We report the mean AUC averaged across subjects as well
as the standard error of the mean in Figure 6 for each of the
four classification problems and each of the nine feature sets.
The features are ordered from highest average AUC across
the four tasks to lowest average AUC.

First, we see that the detection problem can often be more ac-
curately solved when the dosage level is higher than when it is

lower. This is certainly the case with the waveform features.
It is consistent with the pattern of increasing morphological
deformation as a function of dosage presented in Figure 5(b).
Determining why this pattern is not observed consistently for
all features will require further investigation.

In terms of the feature sets, we see that the RR interval length
performs the best on average among the sets of features we
have investigated, followed closely by the waveform features
and the combination of the waveform features and morpho-
logical features. The AUC differences between these three
feature sets are not statistically significant as evidenced by
the overlapping error bars. Importantly, the average AUC
across all four classification problems is above 0.8 out of a
maximum of 1.0, and for the waveform features, the AUC
for baseline vs 32mg is nearly equal to 1.0. We note that the
performance ranking of the morphological features generally
agrees with the degree of overlap in the feature distributions
across dosage levels as seen in Figure 5(a). Among the mor-
phological features, T and QT perform best. These two fea-
tures along with RR exhibit the least overlap in feature distri-
butions.

Before moving on to the between-subjects case, we pause to
consider the potential of the RR feature as a basis for cocaine
detection outside of the clinical setting. While the RR in-
terval has very good performance in the clinical setting, it is
obviously confounded by any other activity that results in an
increase of base heart rate, as mentioned previously. The fact
that the waveform features yield essentially the same accu-
racy while completely removing the effect of heart rate is thus
very encouraging. It implies that there are significant differ-
ences in the shape of the ECG waveform in the presence and
absence of cocaine. Since gross heart rate is so easily con-
founded, we do not consider the RR interval to be a viable
feature for practical use in a cocaine detection system.

Between-Subject Cocaine Detection:We now turn to
between-subjects cocaine detection. In these experiments we
use all of each subject’s data as test data, training on all of
the data from the remaining subjects. We report the mean
AUC averaged over all subjects as well as the standard error
of the mean. We restrict our attention to the three best sets
of features identified in the within-subjects experiment. We
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Figure 7. This plot shows the results of between-subjects cocaine detec-
tion for the three best feature sets found in the within subjects analysis
and all four classification tasks. We see that the AUC results are again
approaching the maximum of 1.0 at the higher dosage levels.

exclude the RR interval from consideration for the reasons
discussed above.

These results again show that the average AUC is always
above 0.8 for the best feature set and again approaches the
maximum possible value of 1.0 at the higher dosage levels.
In this case, we see that the combined feature set AM+W
performs best. The performance gain of AM+W over W in
this case indicates that there is some benefit to combining
the waveform and morphological features in the between-
subjects case. This is not surprising as there are some sig-
nificant differences between the characteristics of the ECG
waveforms from different subjects (one subject has an aver-
age R peak height nearly 1.5 times higher than the other sub-
jects, for example.)

DISCUSSION AND CONCLUSIONS
The results presented in the previous section support a very
positive answer to the motivating question driving our current
research: we can indeed reliably detect cocaine use based on
data from wearable ECG sensors using appropriately chosen
features. While results obtained in the within-subjects setting
are quite remarkable, collecting data to learn a customized
detector for every individual is clearly not feasible outside of
the clinical setting. However, the fact that high detection ac-
curacy was also obtained in the between-subjects setting at
higher dosage levels is extremely promising. We expect that
the between-subjects results can be further improved given
training data from additional subjects. We also expect that
clustering subjects according to their ECG waveforms and
building detectors at the cluster level will help to account for
between-subjects variability in basic ECG waveform charac-
teristics.

There are several additional exciting areas for future research.
At the sensing level, we are interested in exploring what ad-
ditional information we might obtain from other modalities
such as galvanic skin response that may also correlate with
cocaine use. At the data processing level, we plan to investi-

gate solving the ECG period segmentation and PQRST com-
plex extraction problems as joint inference problems in a uni-
fied probabilistic model. We expect that this will result in
improvements in our solutions to both sub-problems. At the
detection level, we plan to investigate non-linear classifica-
tion methods including kernel logistic regression and kernel
support vector machines, which will likely lead to improve-
ments in detector reliability. We also plan to re-cast the co-
caine use detection problem as a structured prediction prob-
lem as opposed to many independent classification problems.
This will allow us to smooth predictions over longer time in-
tervals, likely leading to further performance improvements.

In the clinical setting, there are several additional problems
that we are interested in adapting our current methods to. A
more difficult problem than detecting whether an individual
is under the influence of cocaine is identifying the precise
instant the drug was administered. This will require data
from additional subjects since, while we have many ECG
periods, there are relatively few infusion events per subject.
Another problem is predicting the cumulative concentration
of the drug through time. While there are discrete infusion
events, cocaine diffuses out of the bloodstream with a half-
life measured in tens of minutes. Learning to predict ef-
fective concentrations is difficult because we currently lack
ground truth training data on the concentration of cocaine
in the bloodstream. However, it may be possible to apply
currently available mathematical models of cocaine diffusion
and metabolization to compute estimated effective concentra-
tions given the discrete time course of infusions. Finally, our
current study also includes the collection of survey-type data
from subjects at five minute intervals during self administra-
tion including questions that probe an individual’s perception
of their level of cocaine intoxication. We plan to explore how
well these self assessments correlate with estimated and pre-
dicted effective concentrations.

Finally, looking toward the use of this technology outside
of the clinical setting presents several additional challenges.
First, the subjects were seated for the duration of the cocaine
administration sessions since the infusions were delivered in-
travenously. If this constraint were removed, we would ex-
pect to see additional noise in the ECG data due to increased
motion of the sensor. Our pre-processing pipeline has not
been evaluated in such settings yet, but we expect that it
would easily handle more frequent noise of the type we have
already encountered. There is also an opportunity to use ac-
celerometer data from the chest band to assist with filtering
out ECG samples with potential artifacts due to motion of
the subject. Second, there are significant differences between
the intravenous cocaine administration method used in our
study and real-world self administration methods and forms
of the drug. This may result in different lag times between ad-
ministration of the substance and it’s observable effect on the
cardiovascular system. However, we expect the effects to be
similar to those we have observed in our study at equivalent
effective concentrations.
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