
Multi-user Data Sharing in Radar Sensor Networks

Ming Li, Tingxin Yan, Deepak Ganesan, Eric Lyons, Prashant Shenoy,
Arun Venkataramani, and Michael Zink

Department of Computer Science,
University of Massachusetts,

Amherst MA 01003.
{mingli,yan,dganesan,elyons,shenoy,arun,zink }@cs.umass.edu

Abstract
In this paper, we focus on a network of rich sensors

that are geographically distributed and argue that the de-
sign of such networks poses very different challenges from
traditional “mote-class” sensor network design. We iden-
tify the need to handle the diverse requirements of mul-
tiple users to be a major design challenge, and propose
a utility-driven approach to maximize data sharing across
users while judiciously using limited network and compu-
tational resources. Our utility-driven architecture addresses
three key challenges for such rich multi-user sensor net-
works: how to define utility functions for networks with
data sharing among end-users, how to compress and prior-
itize data transmissions according to its importance to end-
users, and how to gracefully degrade end-user utility in the
presence of bandwidth fluctuations. We instantiate this ar-
chitecture in the context of geographically distributed wire-
less radar sensor networks for weather, and present results
from an implementation of our system on a multi-hop wire-
less mesh network that uses real radar data with real end-user
applications. Our results demonstrate that our progressive
compression and transmission approach achieves an order of
magnitude improvement in application utility over existing
utility-agnostic non-progressive approaches, while also scal-
ing better with the number of nodes in the network.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wire-

less communication; C.3 [SPECIAL-PURPOSE AND
APPLICATION-BASED SYSTEMS ]: Real-time and em-
bedded systems

General Terms
Design, Experimentation, Measurement, Performance
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1 Introduction
While much of the focus of the sensor network commu-

nity has been on the design of miniature low-power “mote-
class” wireless sensor networks, there is an equally important
ongoing networking revolution for “rich” powerful higher-
power sensors. This revolution has been driven by two tech-
nology trends. The first trend is the emergence of cheaper,
more efficient and more compact designs of traditionally
large and unwieldy sensors such as radars and cameras [7],
enabling more mobile, solar-powered deployments in remote
locations that lack sensing coverage. The second trend is the
recent success in designing WiFi-based long-range, multi-
hop mesh networks [1, 5], which facilitate ad-hoc remote de-
ployments of these sensors in areas where a wired network
infrastructure is unavailable. These technological develop-
ments have led to several efforts to deploy large-scale, dense,
wirelessly connected networks of powerful sensors, includ-
ing earthquake sensing ([8]), weather monitoring using wire-
less radars ([18]), and road traffic monitoring ([3]).

These emerging large-scale sensor systems (shown in
Figure 1) have important differences from their existing
resource-poor counterparts and raise a number of new re-
search challenges. The first major difference between the
two types of sensor networks is their design objective. Due
to limited energy resources and the need for long lifetime,
the design performance goal in mote-class sensor networks
is to minimize energy consumption. Other resources such as
bandwidth and computation are typically less of a concern
since simple, low data-rate sensors such as those for tem-
perature, humidity, or pressure are used. In contrast, rich
sensors such as radars and cameras generate raw data at hun-
dreds of kilobits or tens of megabits per second. However,
the per-node bandwidth on a shared wireless mesh is lim-
ited. Consequently, the need to optimize network bandwidth
usage is as important as minimizing energy consumption in
such networks.

A second key difference is the diversity of end-users
that the two types of sensor networks are designed to sup-
port. Mote-class sensor networks typically have many tens
of nodes deployed in a small geographic area, and are de-
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Figure 1. Multi-user Sensor Networks

signed to perform one or few tasks efficiently, primarily pe-
riodic data collection. This is both due to the lack of avail-
able resources on the sensors to perform computationally in-
tensive in-network data processing, and due to the limited
geographic area that the sensors span. In contrast, many
rich sensor systems span vast geographies, and are intended
to serve a spectrum of users with different needs. To illus-
trate, users of a large-scale transportation sensor network us-
ing cameras will include traffic police, first responders who
need notification about accidents, commuters who are inter-
ested in traffic congestion on their routes, and even insurance
companies who might desire information about accidents to
settle claims. These different types of users often impose dif-
ferent, and sometimes conflicting, demands on the network.
In a radar sensor network, scientists may desire access to raw
data to conduct research, while meteorological applications
may require data that has undergone intermediate process-
ing, and end-users may only need the “final processed re-
sult”. Further, a tornado detection application will require
timely notifications of important events, while other users
are less sensitive to delay in sensor updates (e.g., end-users
are tolerant to slight delays in weather updates).

Thus, a key challenge in rich sensor networks is to opti-
mize diverse user needs in the presence of limited resources.
One option is to handle the different user needs separately,
but this model ignores one of the most important charac-
teristics of multi-user sensor networks — all the users of a
sensor network operate on thesamedata streams and the
data relevant to one user can potentially be used to han-
dle the needs of other users. Thus, rather than separately
handling user needs, an approach that jointly considers user
needs to maximize data sharing among users is better suited
to make judicious use of the limited computational and net-
work resources. Since the workload seen by such networks
can dynamically vary over time as user needs and interests
change—for instance, the workload imposed by users can in-
crease significantly during an intense storm or a major traffic
problem—such data sharing techniques must also adapt to
dynamic load conditions.

1.1 Research Contributions
In this paper, we describe a novel utility-driven architec-

ture that maximizes data sharing among diverse users in a
sensor network. We believe that maximizing utility across
diverse end-user queries usingmulti-user data sharingtech-
niques (henceforth referred to as MUDS) is a key challenge
for designing more scalable sensor networks. Our architec-
ture is designed for hierarchical sensor networks where sen-
sors are streaming data over a multi-hop wireless network to
a sensor proxy. These incoming data streams at the proxy
are used to answer queries from different users. The proxy
and the sensors interact continually to maximize data shar-
ing across queries while simultaneously adapting to band-
width variations, and changing query needs of users. We in-
stantiate this architecture in the context of ad-hoc networks
of wireless radar sensors for severe weather prediction and
monitoring. Our work has three main contributions:

• Multi-query Aggregation: A key contribution of our
work is multi-query aggregation, where radar data
streams are shared between multiple and diverse end-
user queries, thereby maximizing total end-user util-
ity. We demonstrate that different end-user application
needs, spatial areas of interest, deadlines, and priorities,
can be combined into a single aggregated query, thereby
enabling more optimized use of bandwidth resources.

• Utility-driven Compression and Scheduling: At the
core of our system is a utility-driven progressive data
compression and packet scheduling engine at each
radar. The progressive compression engine enables
radar data to be compressed and ordered such that
information of most interest to queries is transmitted
first. Such an encoding enables our system to adapt
gracefully to bandwidth fluctuations.The utility-driven
scheduler compares the utility of different progressively
compressed streams that are intended for different sets
of queries, and transmits packets such that utility across
all concurrent queries at a radar is maximized.

• Global Transmission Control: In addition to local
utility-driven techniques, our system supports global
utility optimization mechanisms driven by the proxy.
The proxy continually monitors the utility of incom-
ing data from different radars and decides how to con-
trol streams to maximize total utility across the entire
network. Such a global control mechanism enables
the system to adapt to uneven query distribution across
the network, and to deal with disparities in available
bandwidth among different radars due to wireless con-
tention. This is especially important when some nodes
in the network are observing important events such as
tornadoes, and need to obtain more bandwidth than
other nodes that are transmitting data for less critical
queries.

In our experiments, we measure, evaluate and demon-
strate the performance of our architecture and algorithms for
radar sensor networks for severe weather monitoring. We
have implemented the system on a testbed of Linux ma-
chines that form an 802.11-based wireless mesh network.
Using a combination of simulations and experiments with



real and emulated radar traces, we show that our system pro-
vides more than an order of magnitude (11x) improvement
in query accuracy and utility for a 12 node network, when
compared to an existing utility-agnostic non-progressive ap-
proach. Our system also degrades gracefully with network
size — when the network size increases from one nodes to
twelve nodes, the average utility achieved by each radar in
our system only decreases by 25%, whereas the average util-
ity of the existingNetRad[24] approach decreases by 80%.
Further, our system adapts better to bandwidth variations
with only 15% reduction in utility when the bandwidth drops
from 150kbps to 10kbps.

The rest of this paper is structured as follows. Section 2
provides an overview of radar sensor networks and the chal-
lenges in these networks. Section 3 provides an overview
of our architecture, while Section 4 describes the design of
the key components of our architecture. Sections 5 describes
our implementation and evaluation. Finally, Sections 6 and
7 discuss related work and our conclusions.

2 Radar Sensor Networks
In this section, we provide an overview of the diverse end-

user applications that use a radar sensor network, followed
by the formulation of the problem addressed in this paper.

2.1 End User Applications
A network of weather sensing radar sensors can be used

by diverse users such as automated weather monitoring ap-
plications, meteorologists, scientists, teachers and emer-
gency personnel. Several different weather monitoring appli-
cations may be in use, each of which continuously requests
and processes data sensed by various radars:
• Hazardous weather detection:Applications in this class

are responsible for detecting hazardous weather such as
storm cells, tornadoes, hail, and severe winds in real-
time (e.g. [10]). This class of applications focuses
on sharp changes in weather patterns; a tornado detec-
tion application, for instance, looks for sharp changes
in wind speed and direction that are indicative of a tor-
nado.

• 3D wind direction estimation:This application con-
structs a 3D map by computing the direction of the wind
at each point in 3D space. Since a single radar can only
determine wind direction in a single dimension (radial
axis), the application needs to merge data from two or
more overlapping radars in order to estimate the 3D
wind direction. Due to the need to merge data, only
regions of overlap between adjacent radars are useful,
and data from other areas need not be transmitted.

• 3D assimilation:This application integrates data from
multiple radars into a single 3D view to depict areas of
high reflectivity (intense rain) that occur in the region.

We note that the first application is of interest to meteorolo-
gists for real-time weather forecasting, the second is useful
to researchers, while the third is useful to emergency man-
agers to visualize weather in their jurisdiction. In addition to
these applications, end-users may pose other ad-hoc queries
for data or instantiate continual queries that continuously re-
quest and process data to detect certain events or conditions.
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Figure 2. Multi-hop Radar Sensor Networks

2.2 System Model and Problem Formulation
Our MUDS radar sensing network comprises three tiers

as shown in Figure 2 (i) applications and end-users who pose
queries and request field data, (ii) sensor proxies that act as
the gateway between the Internet and the radar sensor field,
execute user queries, and manage the radar sensor network,
and (iii) a wireless network of remote radar sensors that im-
plement utility-driven services and stream their data to the
proxy.

Each radar node comprises a mechanically steerable radar
attached to an embedded PC controller; the embedded PC
with dual-core Intel processor that runs Linux is equipped
with 1GB RAM and a 802.11 wireless interface. A typical
deployment will comprise many tens of radars distributed
over a wide geographic area. The radars are “small” and
are designed to be deployed in areas with no infrastructure
using solar-powered rechargeable batteries; they can also be
deployed on cellphone towers or on building rooftops where
infrastructure such as A/C power is readily available. In ei-
ther case, we assume that the radars connect to the proxy
node using a multi-hop 802.11 wireless mesh network.

Each mechanically steerable radar has two degrees of
freedom(θ,φ) which enable control over theorientationand
thealtitudewhere the radar points and senses data. The radar
scans the atmosphere by first positioning itself to point at an
altitude φ and then conducts ascanby rotatingθ degrees
and scanning while rotating. The MUDS system operates in
rounds, where each round is referred to as anepoch. For this
paper, we assume an epoch of 30 seconds. Before each epoch
begins, the proxy collects all queries for a particular radar.
Each query represents a request for data from a weather mon-
itoring application (e.g., the tornado detection) or from end-
users (who may issue ad-hoc queries). A query can request
any subsetof the region covered by a radar scan—for in-
stance, a tornado detection algorithm may only request data
from regions where intense weather has been detected. Each
query has a priority and a deadline associated with it, which
is then used to to assign aweightto each region that the radar
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Figure 3. Multiple incoming queries in an epoch are first aggregated by the multi-query aggregator at the radar. The merged query and the radar
scan for the epoch are input to the progressive encoder which generates different compressed streams for different regions in the query. The streams
are input to the utility-driven scheduler which schedules packets across all streams whose deadlines have not yet expired.

can scan. The weight represents the relative importance of
scanning and transmitting data from the region in the next
epoch.1 Thus, region-specific weights represent collective
needs of all queries that have requested data in that epoch.
Although the radar follows the 30-seconds sensing epoch,
the deadline of queries is determined by end-user and can
be of arbitrary lengths. A recent work[25] in radar sensor
networks studies requirements from end-users like meteo-
rologists, first responders etc., and shows the deadlines for
different queries. We use this study as a baseline for setting
deadlines for different queries in this paper.

Assuming the weights are computed before each epoch
begins, the radar then scans all regions with non-zero
weights during the epoch. Each scan is assumed to pro-
duce tens of Megabytes of raw data, which is typically much
higher than bandwidth available to each radar in a multi-hop
802.11 mesh network. Thus, the primary constraint at a radar
node is bandwidth, and the radar node must determine how
to intelligently transmit the results of the scan back to the
proxy.

Each proxy is assumed to be a server (or a server clus-
ter) with significant processing and memory resources. The
weather monitoring applications described in Section 2.1 are
assumed to execute at the proxy, processing data streams
from various radars in real-time. Each application is as-
sumed to process data from an epoch and issues per-radar
queries for data that it needs in the next epoch.

Assuming such a system, this paper addresses the follow-
ing questions:
• How can the radar sensor system merge and jointly han-

dle queries with diverse high-level needs such as tor-
nado detection, 3D wind direction estimation and 3D
assimilation?

• Since the raw data from a scan exceeds the available
network bandwidth and this bandwidth can vary signif-
icantly over time, how should a radar node intelligently
compress the raw data prior to transmission?

• How should the radar prioritize the transmission of this
compressed scan result back to the proxy node so that
application overall utility is maximized?

1For instance, a region that is not requested by any query will
receive a weight of zero and need not be scanned by the radar.

• Since the query load on different radars can be un-
even and data from some radars may be more critical
than others during intense storms, how should the proxy
globally control transmissions across radars to ensure
that important data gets priority?

The following section discusses techniques employed by
the MUDS system to address these questions. For simplicity
of exposition and because optimizing the radar scan strategy
is not the goal of our work, we assume each radar points at a
fixed altitudeφ and performs a 360o scan of the atmosphere
resulting in a full 2D scan. It is straightforward to extend the
discussion to three dimensional partial scans where both the
altitudeφ and the rotationθ are varied in a scan. Also, since
our focus is on multi-user data sharing in a wireless envi-
ronment, we do not focus on the design issues of long range
wireless mesh networks, and assume that existing techniques
such as [5, 17] can be used.

3 MUDS System Architecture
The proxy and sensor in the MUDS system interact con-

tinually to maximize utility under query and bandwidth dy-
namics. This interaction has four major parts: (a) a multi-
query aggregation phase at the proxy and radar to compute a
single unified query per epoch, (b) progressive compression
of the radar scan at each radar by using the unified query
as input, (c) a utility-driven scheduling phase at each radar
where packets are prioritized by overall utility gain, and (d)
a global transmission control phase driven by the proxy to
optimize transmissions from different radars.

Multi-query aggregation: The first phase of our system
operation is the multi-query aggregation phase where mul-
tiple user queries in an epoch are combined to generate a
single unified query. This is done both by the proxy as well
as the radars — the proxy uses the unified query for global
transmission control, and the radar uses it for progressive
compression and scheduling. Each user query is associated
with a weight, a spatial region of interest, and a deadline.
The weight of a query is dependent on the priority of the
user (e.g. the National Weather Service is a high priority
user), and the priority of the query to the user (e.g. a tornado
detection query has higher priority during times of severe
weather). Each query is also associated with a spatial area
of interest, for instance, the wind direction estimation query
is only meaningful for overlapping regions between radars.



Queries are executed in batches — queries that arrive within
a single epoch are merged to generate a joint spatial query
map that captures the needs of all concurrent queries. An
example of the spatial map that merges a tornado detection
and a 3D assimilation query is shown in Figure 3. The merg-
ing of queries results in their weights being accumulated for
shared regions of interest. The set of queries in an epoch is
communicated by the proxy to the individual radar sensors
whenever there is a change due to the arrival of new queries.

Progressive compression:Each radar scan produces tens
of Megabytes of raw data that must then be transmitted back
to the proxy node. Since the raw data rate is significantly
higher than the bandwidth available per radar on the mesh,
the data rate must somehow be reduced prior to transmission.
The existingNetRad[24] system employs a simple averaging
technique to down-sample data—neighboring readings are
averaged and replaced by this mean; the larger the number
of neighboring readings over which the mean is computed,
the greater the reduction in data rate. Rather than using a
naive averaging technique, our system relies on the query
map to intelligently reduce the data rate using aprogres-
sive compressiontechnique. The progressive compression
engine uses the unified query map and compresses data in
two steps. First, the weights of different regions in the map
are used to split the radar scan into multiple smaller regions,
such that each region has a fixed weight and a fixed set of as-
sociated queries. Thus, the radar scan in Figure 3 is split into
three regions with weights 1, 2, and 3 respectively. Each of
these regions is then progressively encoded using a wavelet-
based progressive encoder. The encoder compresses and or-
ders data in each region such that most important features in
the data is transmitted first, and less important features are
transmitted later. Finally, the progressively encoded streams
corresponding to different regions are input to a utility-based
scheduler at the radar.

Utility-driven packet scheduling: The utility-based
scheduler schedules packets between different streams from
different epochs, and makes a decision regarding which
packet to send from among the streams. This decision is
based on the weight associated with the stream and the util-
ity of the packet to the queries that are interested in the
stream. For example, stream 3 in Figure 3 is of interest to
both queries; therefore transmitting a packet improves the
utility for both the queries. In order to compute the utility of
a packet, the radar usesa priori knowledge of how applica-
tion utility relates to the mean square error (MSE) of the data.
This provides a mechanism for the scheduler to observeer-
ror in the compressed raw dataand determine how this error
would translate toapplication error. As we describe later,
the mean square error of the data influences utility in differ-
ent ways for different applications. The scheduler computes
the total benefit (computed as the product of marginal util-
ity of the packet and weight assigned) that would result from
transmitting the first packet from each stream, and picks the
stream with greatest increase in benefit. Figure 4 provides an
illustration of the scheduling decision. In the example, 66%
of the first stream has been transmitted but only 33% of the
second stream has been transmitted. Therefore, the differ-
ence in mean square error is likely to be higher by transmit-

Stream 1: Tornado Detection 

Stream 2: 3D assimilation + 
3D wind direction estimation 

66%

33%
Transmit to 

proxy

Utility-based 
Scheduler

Figure 4. In this scenario, 66% of stream 1 and 33% of stream 2
have been transmitted. The scheduler determines the marginal utility
of transmitting a packet from each of the streams for the applications
interested in the streams and decides which packet to transmit next.

ting a packet from the second stream. However, there are two
additional factors to consider. The first stream corresponds
to a tornado detection query, which requires high resolution
data in order to precisely pinpoint the location of the tor-
nado, whereas the second stream corresponds to a 3D assim-
ilation query and 3D wind direction estimation queries, each
of which needs only less precise data. On the other hand,
a packet from the second stream is useful to two concurrent
queries, whereas a packet from the first stream is only useful
for tornado detection. Thus, the decision of what packet to
choose depends on the mean square error of the data, number
of queries interested in the data, weights of the queries, and
importantly, the utility function of the queries.

Global Transmission Control: While the progressive
encoding and utility-driven scheduling at each sensor opti-
mize for multiple queries at a single radar, there is a need
for global control of transmissions to maximize overall util-
ity across the network because radars within the same wire-
less contention domain share the wireless media and con-
tend with each other while transmitting. In particular, this
is useful when queries are not evenly distributed across the
network, and some nodes that are handling higher priority
queries need more bandwidth than others. In this case more
bandwidth should be allocated to the radars that are achiev-
ing higher marginal utility. The proxy uses a simple global
transmission control policy where it monitors the marginal
utility of incoming packets from different radars. If there is
a great imbalance in the marginal utility of streams from dif-
ferent radars, it notifies the radar with lower marginal utility
to stop its stream temporarily. This has the effect of reducing
contention in the network, especially at nodes close to the
proxy, thereby potentially enabling a radar with more impor-
tant data to obtain more bandwidth to the proxy.

4 MUDS System Design
We describe each component of the MUDS architecture

in greater detail in this section.

4.1 Multi-Query Aggregator
The multi-query aggregator is central to the data sharing

goals of our system. Aggregating multiple user queries into
a single aggregated query has two benefits. First, it mini-
mizes the number of scans performed by the radar (which
is time and energy-intensive) since each radar scan is used
to answer a batch of queries. Second, it allows the data in
a single scan to be transmitted once but shared to answer
multiple queries, thereby maximizing query utility in lim-
ited bandwidth settings. In contrast, a system that scans and



transmits data separately for each query would be extremely
inefficient both due to increased scanning overhead, as well
as the duplication of data transmitted.

The proxy batches all queries that are posed in each
epoch, and at the beginning of the next epoch, it sends to
each radar a list of queries that require data from that radar.
An alternative model could have been for the proxy to merge
the queries and transmit only the merged query to the radar
sensor, but we eschewed this option since it would consume
more bandwidth than just sending the queries to the radar.
Each query is specified by a 4-tuple<QueryType, ROI, Pri-
ority, Deadline> that shows the type, region of interest, pri-
ority, and the deadline of the query. In our system, the re-
gion of interest is represented by a sector or a rectangle for
simplicity, although our approach can be easily extended to
handle more arbitrary regions of interest. The priority can
be either specified by the query or implicitly specified by the
proxy — for instance, if the user is a high priority user like
the National Weather Service — or can be determined as a
combination of the two.

The multi-query aggregator then combines multiple user
queries into a single aggregated query plan. The query plan
that is generated is a spatial map in which the spatial area
corresponding to the region covered by the radar is pixelated.
For each pixel in the scan data, the corresponding pixel in the
query plan is a list of 3-tuples<QueryType, Weight, Dead-
line>, that show the type, weight, and the deadline of queries
interested in data sensed at that pixel.

The weight value of a pixel for each query represents the
“importance” of transmitting data sensed from that pixel to
that query. We use a heuristic for determining pixel weights
in order to maximize application utility. Letpi , Ii , anddi
represent the priority, the region of interest, and the deadline
of queryi. Priority pi is represented as a scalar value; region
of interest,Ii , is represented as a 2D map whereIi(u,v) is 1
if the pixel (u,v) is within the region of interest ofi, and 0
otherwise; and deadline,di is in seconds.

Let wi(u,v) represent the weight of pixel(u,v) for query
i. We would like the following three criteria to be satisfied:
i) the weight for the pixel should be greater if the query has
higher priority than other queries, ii) the weight for the pixel
should be greater if the query’s deadline is shorter than other
queries since higher weight will result in the data being trans-
mitted first, and iii) the weight for the pixel should be zero if
the pixel is not in the region of interest of queryi. Thus, the
weightwi(u,v) is defined as:

wi(u,v) = pi Ii(u,v)
1
di

(1)

4.2 Progressive Compression Engine
Data compression is an integral component of rich sen-

sor networks where the data rates can be considerably higher
than available bandwidth. In our system, we use progressive
encoding to compress raw data. Progressive compression of
data yields two benefits: (a) it enables the system to use all
available wireless bandwidth to transmit data, thereby adapt-
ing to bandwidth fluctuations, and (b) it enables us to order
data packets based on utility of data to queries, thereby max-

imizing overall utility.
Progressive encoding (also known as embedded encod-

ing) compresses data into a bit stream with increasing accu-
racy. This means that as more bits are added to the stream,
the decoded data will contain more detail. In our system, we
use a wavelet-based progressive encoding algorithm called
set partitioning in hierarchical trees (SPIHT)[20]. The
choice of a wavelet encoder is well-suited for radar data pro-
cessing applications since meteorological tornado detection
algorithms use wavelet-based processing in order to detect
discontinuities in reflectivity and velocity signals [6, 14].
Moreover, SPIHT orders the bits in the steam such that the
most important data is transmitted first. Thus, the decoded
data can achieve high fidelity even with few packets trans-
mitted.

We provide a brief overview of the SPIHT algorithm next
(refer [20] for a detailed discussion). The input data for the
algorithm is assumed to be a two-dimension matrix. Before
SPIHT encoding, the matrix is first transformed into sub-
bands of different frequencies using the wavelet transform.
Then the subbands are formed into a pyramid in ascending
order of frequency from top to bottom. The subband with the
lowest frequency is on the top of the pyramid. A hierarchical
tree is built on the pyramid, naturally defines the spatial rela-
tionship on the pyramid. Each node of the tree corresponds
to a pixel in current subband. Its direct descendants corre-
spond to the pixels of the same spatial orientation in the sub-
bands in next higher frequency of the pyramid. The SPIHT
encoding iterates through the hierarchical tree starting from
the root node. In each iteration, the most significant bit of
each node is output into a stream and is removed from that
node. In the generated stream, the most important data is at
the head of the stream because most natural images like pho-
tos or radar scans have energy concentrated in the low fre-
quency components so the significance of a point decreases
as we move from the highest to the lowest levels of the tree.

Besides generating the progressive stream, the SPIHT en-
coder also generates an incremental trace of the encoded
stream that shows what the mean square error of the decoded
data would be after sending each byte of the stream. As de-
scribed in the next section, this feature is essential to perform
utility-driven scheduling of packets.

We made a few modifications to the standard SPIHT en-
coder to adapt it to our needs. The progressive encoding en-
gine in our system first splits each scan into multiple regions
such that all pixels in a region share the same list of three
tuples,<QueryType, Weight, Deadline> in the aggregated
query map. Although this may result in an exponential num-
ber of regions with respect to the number of queries in the
worst case, in practice we find the number of regions to be
small for radar queries. Each of these regions is encoded to
generate a progressively compressed stream per region. One
practical problem is that the standard wavelet transform that
expects a square matrix, but each region can be of arbitrary
shape. To deal with this, we use a shape adaptive wavelet
coding scheme[21] to encode each region. The shape adap-
tive wavelet coding encodes arbitrarily shaped object without
additional overhead, i.e., the number of coefficients after the
transform is identical to the number of pixels in the origi-



nal arbitrarily shaped object. After the encoding, the gener-
ated streams are buffered and fed into the local transmission
scheduler.
4.3 Local Transmission Scheduler

At any given time, a radar may have multiple streams that
are buffered and being transmitted by the local transmission
scheduler. The goal of this scheduler is to optimize the trans-
mission order of the data in the streams in order to maximize
overall application utility despite fluctuating bandwidth con-
ditions. We describe this in detail next.

Each stream buffered by the scheduler comprises pack-
ets of the same length (1KB in our implementation). The
local transmission scheduler optimizes the transmission or-
der of the packets based on their marginal utility to the set
of queries corresponding to the stream. The marginal utility
of a packet is the increase in utility resulting from the trans-
mission of that packet. Informally, the utility of a prefix of
a stream is determined by the application error that results
from decoding and processing that prefix.

Formally, let p denote some prefix of a stream and let
i denote a query corresponding to that stream. The utility
Ui(p) of p to queryi is given by

Ui(p)=

{
wi if erri(p) < req erri(p)
wi

maxerri(p)−erri(p)
maxerri(p)−req erri(p) if erri(p) ≥ req erri(p)

(2)
wherewi is the weight of the queryi; erri(p) is the ap-

plication error that results from decoding and processingp;
maxerri(p) is the maximum value of the application error
(computed as the error corresponding to a 1KB prefix of the
stream); andreq erri(p) is the error value below which the
user is satisfied with the result. Thus, the utility decreases
linearly with the application error and stops decreasing when
the user-specified limit is reached. The marginal utility of a
packet to a query is the difference in utility to the query just
before and after sending the packet.

How does the scheduler compute the application error
erri(p)? It is impractical for the scheduler to measureerri(p)
by running the application on each prefix of the stream be-
cause of the huge computation overhead of decompressing
data and executing the application. Thus, we need a sim-
ple and accurate method to determineerri(p) given just the
compressed stream. One possibility is to use a data-agnostic
metric such as the compression ratio as an indicator of appli-
cation error. However, since the progressive encoder could
be encoding different scans with very different features, this
metric is only weakly correlated with application error.

Fortunately, our empirical evaluation confirms that a data-
centric metric, the mean square error of the data stream, is
highly correlated to the application error. We leverage this
observation to estimate application error as follows. We seed
the scheduler with a functionseederri(mse) that maps mean
square error of the decoded data to application error. Such
a function is generated a priori for each application using
training data from past radar scans. In the training proce-
dure, scans are compressed into a progressive stream using
the SPIHT compression algorithm. The stream is cut off at
different prefix lengths, giving us decoded data of varying

fidelity. For each such prefix, the application is run on the
decoded data, and the error of the decoded data as well as
the application error are measured. Based on this measured
data, we build a functionseederri(mse) for each application
and seed each radar with this function.

Finally, during regular operation, the scheduler needs to
computemsecorresponding to the decoded prefix just af-
ter sending the packet. Themsecan be obtained from the
error trace generated by the progressive compressor as de-
scribed in Section 4.2. The scheduler estimateserri(p) as
seederri(mse) by simply performing a lookup table. The
weight of the querywi is incorporated in Equation 2 so that
more urgent queries have higher utility. Note that by con-
struction, all pixels in a region have the same weight.

The total marginal utility of a packetx is its marginal util-
ity across all queries corresponding to the stream. To un-
derstand this, suppose there arem queries corresponding to
a stream. LetUi(p) be the utility of prefixp to queryi just
before sending packetx, andUi(p+ x) just after. Then, the
overall marginal utility of packet is given by

∆U(p) = ∑
i=1···m

(Ui(p+x)−Ui(p)), (3)

where the operator ‘+’ denotes extending the prefix to in-
clude the next packet. Based on Equation 3 the scheduler can
calculate the marginal utility of the packet at the head of each
stream. Given the utility, the scheduler picks in each round
the packet with maximum marginal utility across all packets
at the heads of existing streams, and transmits that packet.
Such a scheduling algorithm can be implemented efficiently
in practice. First, we note that packets within a stream are al-
ready present in order of decreasing marginal utility, so only
the packet at the head of each stream needs to be examined
for a scheduling decision. The marginal utility of the packet
at the head of each stream can be computed efficiently with
a small number of table lookups — one lookup to identify
the MSE difference resulting from transmitting the packet,
and one lookup per query to identify the marginal utility for
the query from decoding the packet. Finally, the packet with
the highest marginal utility across all streams needs to be
chosen. Since the number of streams is small, our imple-
mentation simply uses a linear insert and search procedure;
it is straightforward to use a heap instead.

The above packet scheduling algorithm achieves the max-
imum total utility across all the concurrent streams at each
point in time ifU(p) is concave, i.e., the marginal utility is
strictly decreasing. This can be proved by reducing it to the
knapsack problem[26]. Our empirical evaluation confirms
that the marginal utility decreases with the length of the pro-
gressively encoded stream.

Example: We exemplify our methodology for comput-
ing the seederr() function for the three applications. We
first consider tornado detection. This application uses a
clustering-based technique to detect tornadoes, and gener-
ates the centroids and intensities of each tornado. In or-
der to determine the error in tornado detection, we run the
application on scans that were decoded after compressing
them to different compression ratios. Let the data MSE for



a decoded scan bemse1. There are three cases to consider
to determineseederr(mse1). First, if the result on the de-
compressed scan detects a tornado,t, within 300m of the
result on the raw scan, then this is a positive result. The
choice of 300m as the threshold for positive detection was
made based on discussions with meteorologists. In this case,
tornado detection errortornadoerr(t) is computed as fol-

lows: tornadoerr(t) = |(RI(t)−DI(t))| · d(t)
300 whereRI(t) is

the intensity of the tornado as determined from processing
the raw data,DI(t) is the intensity from processing the de-
coded data, andd(t) is the distance between the actual cen-
troid from the raw data, and the computed centroid from the
decoded data. Second, if a tornado,t, is detected in the de-
coded scan but no tornado is detected in the raw scan within
300m, then it is considered a false positive. In this case,
tornadoerr(t) = DI(t). Finally, if a tornado,t, is detected
in the raw scan but no tornado is detected within 300m of its
centroid in the decoded scan, then this is considered a false
negative, andtornadoerr(t) = RI(t).

The total error,seederr(mse1) is the sum over of the
above errors over all tornadoes detected in the raw scan and
the compressed scan. Determining the error function for the
3D wind direction estimation and 3D assimilation applica-
tions is more straightforward. Here, the applications are run
on the raw radar scan and the decompressed scan, and the
mean square error of the difference between these results is
used as the error for the application.

4.4 Global Transmission Control
While the local transmission scheduler uses the weight

map to optimize what order to transmit packets from each
radar, the global transmission controller performs a decision
across all the concurrent streams on all the radars. Radars
compete with each other for wireless bandwidth in a num-
ber of ways: (i) radars within the same wireless contention
domain contend with each other when transmitting, (ii) in
multi-hop communication, all the nodes in the same rout-
ing branch share the bandwidth of a forwarding node, and
(iii) the proxy’s incoming bandwidth is shared among all the
radars in the network. As a result, maximizing local utility at
each radar may not optimize global utility across all radars
in the network. A radar with higher utility data might have
much lower available bandwidth than a radar with lower util-
ity due to a number of factors.

This necessitates global control of transmissions from
radars, in addition to local utility optimization. Global trans-
mission control in wireless networks has been the subject of
significant work (e.g. [12]). Most of these approaches use
the idea of a conflict graph that captures the interference pat-
terns between nodes in the network. Such a conflict graph
can be used as the foundation for scheduling transmissions
from nodes such that spatial reuse is maximized, in addition
to throughput.

While the use of conflict graphs is the subject of our future
research in the area, we use a simple but effective heuristic
in this work. In our approach, the proxy monitors the incom-
ing streams from the radars, and stops the transmission of
streams that will not improve overall utility much. Specifi-
cally, the proxy stops a stream when its utility reaches 95%

of its maximal utility. The proxy knows the maximum util-
ity since it has a locally generated version of the aggregated
query plan. Since utility is a concave function of the length
of the transmitted data stream, the utility of a stream grows
very slowly after having achieved 95% of its maximal value.
Therefore stopping the stream does not affect overall utility
significantly. However, stopping a stream can benefit other
streams since there will be less channel contention, and less
forwarded data to the proxy. We experimentally demonstrate
the effectiveness of such a threshold-based global transmis-
sion control in Section 5.

5 Experimental Evaluation
In this section, we evaluate the performance of our system

using a radar trace-driven prototype implementation as well
as trace-driven simulations. We use two data traces in our ex-
periments. The first is theOklahoma datasetcollected from
a 4-radar testbed deployed in Oklahoma (obtained from me-
teorologists [4]). Each radar in the testbed generates 107MB
Doppler readings per 360-degree scan every 30 seconds. We
collected 30 minutes of trace data from each radar. To obtain
a larger scale dataset for scalability experiments, we also ob-
tained an emulated radar data set generated by the Advanced
Regional Prediction System (ARPS) emulator. The ARPS
emulator is a comprehensive regional-to-stormscale atmo-
spheric modeling system designed by the Center for Anal-
ysis and Prediction of Storms, which can simulate weather
phenomena like storms and tornadoes, and generate data at
the same rate as the real radars in the Oklahoma testbed. We
emulated 12 radars in the emulator and collected 30 minutes
of trace data from each of them. We refer to this trace as the
ARPS dataset. The ARPS emulator takes days to generate a
30 minute trace, hence larger traces were prohibitively time
consuming. Note that the actual raw data from radars can
be up to an order of magnitude larger than the two datasets
that we used. We were limited to collecting smaller datasets
by the bandwidth and storage capacity in the Oklahoma net-
work, and the speed of the ARPS emulator.

Our radar network prototype comprises 13 radar nodes,
each emulated by a Apple Mac Mini computer with an
802.11 b/g wireless card. We manually configure the nodes
into a 3-hop wireless topology (shown in Figure 5) by set-
ting their routing tables appropriately. The proxy is a server
running a proxy process that collects data from radars and
processes user queries. The other twelve nodes run radar
processes that encode and transmit radar data. To simplify
our protocol design, we use TCP as our transmission proto-
col, since the progressively stream needs to be received reli-
ably and in-order for decoding. Two TCP/IP connections are
built between each radar and the proxy—one for transmitting
data from the radar to the proxy, the other for sending con-
trol information from the proxy to the radar. The progressive
compression engine was adapted from the open-source Qc-
cPack library [9] that provides an implementation of SPIHT
for images.

To evaluate performance of individual components of our
system under controlled conditions, we augment prototype
experiments with simulations using real traces. In order to
evaluate the query processing performance of our system,
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Figure 5. The routing topology of a 13-node wireless testbed with one
proxy and twelve emulated radars.

we implement a query generator. Each generated query is
a 4-tuple< Type,ROI,Deadline,Priority >. TheTypefield
is the application type which can be tornado detection, wind
direction estimation or 3D assimilation. TheROI field shows
the query’s region of interest which is represented by a sec-
tor of the radar’s circular sensing range. TheDeadlinefield
represents the query’s reply deadline in seconds. ThePrior-
ity field represents the query’s priority, which is determined
by the user’s preference to this query. We implemented two
query arrival models: (i) aPoisson arrival modelin which
queries arrive at each radar as a Poisson process with con-
figurable average arrival rate, (ii) adeterministic modelin
which queries arrive at each radar in fixed order at fixed
rate. For the tornado detection query, we designed a addi-
tional model, in collaboration with meteorologists, that mod-
els query patterns during a tornado. In this model, the prior-
ity of the tornado query, and the nodes on which it is posed
depends on where the tornado is predicted to be localized.

5.1 Determining the Utility Function
At the core of our system is a utility function that cap-

tures application-perceived utility as a function of the mean
square error of data being transmitted by the radars. To eval-
uate the utility functions for the three applications, we ran
the applications on lossily compressed versions of the Ok-
lahoma dataset. We lossily compress the data traces to1

2i

of original size withi ranging from 1 to 13. For each of
these compression ratios, we measure the mean square error
of the resulting data after decompression, as well as the ap-
plication error after executing it on the decompressed data.
Given the application error, the utilities for the applications
are generated using Equation 2. Here we use fixed user re-
quirementEuser in the experiments so that the utility func-
tions only need to computed once. We fit piece-wise linear
functions to utility functions, and use these functions as the
utility functions in the rest of our experiments. The graph
on the top of Figure 6 shows the piece-wise utility functions
of the three applications obtained from our empirical evalua-
tion. The bottom graph shows an example of how this utility
function would translate to actual number of packets when a
scan is compressed.

5.2 Impact of Weighting Policy
The weight value of a pixel quantifies the importance of

data sensed from that pixel to the queries. In MUDS sys-
tem, we use Equation 1 to determine the weight of a pixel,
in which the area of interest of the query, its priority as
well as its deadline are taken into account. We compare
this policy against three other weighting policies. We use
a policy that only takes the area of interest into account, i.e.
wAOI = Ii(u,v), as a baseline of our comparison. Then we
consider two variants of our policy: i)wdeadline= Ii(u,v)/di
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Figure 6. Utility functions for the three applications are derived by
compressing and evaluating application performance on traces from
the Oklahoma dataset.

in which the area of interest and the deadline are taken into
account, and iii)wpriority = Ii(u,v)pi in which the area of in-
terest and the priority are taken into account.

We evaluate the four policies using trace-driven simula-
tions with the Oklahoma dataset. Table 1 shows the average
utility per epoch achieved using different weighting policies.
The weighting policy used in MUDS performs the best and
achieves 1.6 folds more utility than the baseline, while the
priority-based policy achieves 30 percent more utility than
the deadline-based policy, which shows that the priority has
higher impact than the deadline. This comparision demon-
strates that our weighting policy decently quantifies the im-
portantce of data.

Policy wAOI wdeadline wpriority wMUDS
Utility 0.612 0.783 0.976 1.633

Table 1. Comparision of different weighting policies.

5.3 Performance of Progressive Compression
In this section, we evaluate two main benefits of the

SPIHT progressive compression algorithm: (i) higher com-
pression rate, and (ii) adaptation to bandwidth fluctuation.

5.3.1 Compression Efficiency
The extreme data generation rates of radar sensors makes

compression an essential component of radar sensor system
design. In this section, we compare the compression effi-
ciency of the SPIHT algorithm that we employ against anav-
eragingcompression algorithm that is currently used in the
NetRadradar system. Each radar scan is represented as a ma-
trix of gates x azimuths, where the radial axis is divided into
gates, and the angular dimension is divided into azimuths.
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Figure 7. Comparison of SPIHT progressive compression against
averaging compression. Each algorithm compresses data to the size that
can be transmitted in one epoch for a given bandwidth.

The averaging compression algorithm compresses data sim-
ply by averaging along the azimuth dimension. In order to
compress datan times, the averaging compression algorithm
averages values fromn adjacent azimuths in the same gate
position . The compressed data hasn times fewer azimuths
than the original data.

We compare the two compression algorithms using trace-
driven simulations with the Oklahoma dataset. Each scan in
the trace is compressed to the sizes that can be sent in one
epoch (30 seconds) under a fixed bandwidthB, i.e.,s= 30·B.
The MSE of the compressed data is measured for different
bandwidth settings ranging from 10kbps to 500kbps. Fig-
ure 7 shows MSE as a function of bandwidth. With in-
creasing bandwidth, the MSE of the SPIHT algorithm de-
creases much more quickly than the averaging algorithm
since SPIHT captures the key features of the radar scan using
very few packets. Even at extremely low bandwidths such as
20kbps, the MSE of the SPIHT compressed stream is 20,
whereas the MSE of the same stream with averaging com-
pression is an order of magnitude higher at 200. This shows
that SPIHT is an extremely efficient compression scheme for
radar data.
5.3.2 Bandwidth Adaptation

Next, we evaluate the ability of SPIHT to adapt to band-
width fluctuations. SPIHT adapts to fluctuations naturally
because of its progressive feature, i.e., data can be decoded
progressively without receiving the entire compressed data
stream. We compare it against a non-progressive compres-
sion algorithm under different levels of bandwidth fluctua-
tion. The non-progressive algorithm is implemented by sim-
ply removing the progressive feature from SPIHT. In other
words, the non-progressive SPIHT encoder first estimates
how much bandwidth is highly likely to be available until
the deadline of the stream, and would compresses data to
that size before transmission. The data can be decoded by
the proxy only after the entire compressed stream is received
since no partial decoding is possible.

Unlike progressive compression where the receiver can
decode even a partially transmitted stream, a non-progressive
compression-based scheme has to rely on a conservative es-
timate of the available bandwidth to ensure the compressed
data can be fully transmitted and received before the query
deadline. We use a moving window estimation algorithm in
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Figure 8. Comparison of progressive compression against non-
progressive compression for different levels of bandwidth fluctuation.
Bandwidth fluctuation follows a normal distribution with mean 40kbps;
standard deviation is varied from 0kbps to 25kbps.

our implementation. The non-progressive encoder considers
a window of bandwidth values in lastw epochs. The values
are sorted in descending order and the 95th percentile value
is taken as the estimated bandwidth. We use a window size
of 20 in the experiments.

We perform a trace-driven simulation using the Oklahoma
dataset where the available bandwidth in each epoch is cho-
sen from a normal distribution with mean 40kbps. The stan-
dard deviation of the distribution is varied from 0kbps to
25kbps in steps of 5, and the resulting MSE from the two
schemes is measured. Figure 8 shows MSE of the decoded
data as a function of the standard deviation of the distribu-
tion. At a standard deviation of zero, the two compression
algorithms achieve the same accuracy since they utilize the
same amount of bandwidth. As the standard deviation in-
creases, the bandwidth utilized by the non-progressive al-
gorithm drops quickly, because it estimates available band-
width conservatively. Therefore, the accuracy of the non-
progressive algorithm degrades much more quickly than the
progressive algorithm. For the highest standard deviation,
the MSE of the non-progressive algorithm is four times more
than that of the progressive algorithm.

Figure 9 gives us a time-series view of how band-
width fluctuation impacts the two schemes. While the non-
progressive scheme has high MSE due to its conservative es-
timate, the MSE for the progressive compression scheme fol-
lows the fluctuations in bandwidth since it is able to exploit
the entire available bandwidth. The R-value for the band-
width and MSE time-series for the progressive algorithm is
−0.79, indicating robust anti-correlation:i.e. bandwidth is
inversely correlated to the MSE.

5.4 Performance of Data Sharing
In multi-user sensor networks with diverse end-user

needs, sharing data among queries greatly improves utility of
the system. We evaluate the ability of our system to handle
two types of data sharing: i) queries with identical regions
of interest but with different deadlines, and ii) queries with
identical deadlines but with overlapping regions of interest.

5.4.1 Temporally Overlapping Queries
We first consider the case where queries have the same

region of interest but have different deadlines. In this case,
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Figure 9. Time series of bandwidth and MSE of decoded data.
Bandwidth fluctuation follows a normal distribution with mean value
at 40kbps and standard deviation of 25kbps.

the progressive compression engine generates a single pro-
gressively compressed stream for both queries. The query
processor decodes the compressed stream as it is received,
and processes the two queries when their deadlines arise. In
contrast, a system using non-progressive compression cannot
easily share data between queries. We compare our approach
against a non-progressive compression scheme in which data
is compressed and transmitted separately for each query in-
dividually.

We evaluate the two schemes using trace-driven simu-
lations with the Oklahoma dataset. Two queries—tornado
detection and 3D assimilation—arrive at a radar every two
epochs. They have different deadlines but both ask for all the
data from a 360-degree scan. The tornado detection query
has a deadline of one epoch, and the 3D assimilation query
has a deadline of two epochs. Figure 10 shows the util-
ity of the two schemes as bandwidth is varied from 10kbps
to 100kbps. At bandwidth of 10kbps, our system achieves
five times the utility of the non-progressive scheme. As the
bandwidth increases, both schemes can get significant data
through to the proxy, therefore the relative utility gains from
our system reduces.
5.4.2 Spatially Overlapping Queries

We next evaluate our system’s ability to handle queries
with the same deadline and overlapping regions of interest.
Regions that are of interest to multiple queries are weighted
higher than regions of interest to just one query, and are
therefore transmitted earlier and with higher fidelity than re-
gions that are only of interest to one of the queries. We com-
pare our scheme to a scheme without data-sharing. For the
non-data-sharing scheme, data for different queries are sent
separately even when there is overlap between the queries.
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Figure 10. Performance for temporally overlapping queries. Two
queries with different deadlines but same region of interest arrive at
the radar every two epochs.
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Figure 11. Evaluation of the impact of data sharing on utility. Two
applications, tornado detection and 3D assimilation, with overlapping
sectors are considered.

We consider two queries, tornado detection and 3D assimi-
lation, each of which requires data from a 180-degree sector.
The degree of overlap between the regions of interest for the
two queries is varied from 0 degrees to 180 degrees in steps
of 30 degrees.

Figure 11 shows the end-user utility achieved by our
scheme and the non-data-sharing scheme as the angle of
overlap of the two queries is varied. As the angle of
overlap increases, the utility gain from our scheme in-
creases. For an overlap of 180 degrees (maximum overlap),
our scheme achieves 21% higher utility than the non-data-
sharing scheme.

5.5 Performance of Local Scheduler
We now evaluate the benefit of the local transmission

scheduler, which always transmits the packet with the high-
est utility gain first. We compare this approach against an
approach that uses a random transmission scheduler, which
picks packets randomly from heads of the data streams. In
the experiments, we simulate one radar and one server and
control the available bandwidth. The tornado detection, wind
direction estimation, and 3D assimilation queries arrive in
round robin order at the radar at the beginning of each epoch.
All queries have the same priority and the same deadline of
three epochs. We run the two systems at bandwidth rang-
ing from 10kbps to 150kbps, and seeded with the Oklahoma
dataset.

Figure 12 shows the average utility per epoch as a func-
tion of bandwidth. For bandwidth lower than 150kbps, the
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Figure 12. Comparison of utility-driven scheduling against random
scheduling.

utility-driven scheduler always achieves higher utility than
the random scheduler, with as much as 100% increase in util-
ity at low bandwidth. As bandwidth increases, the utilities of
the two systems become closer. Our system performs better
under low bandwidth conditions because the most important
data are always sent in the first packets. When bandwidth is
high enough to send all data in high fidelity, e.g., at 150kbps,
there is negligible benefit from utility-driven scheduling.
5.6 Performance of Global Control

Having evaluated the performance of local transmission
control, we next consider global transmission control by the
proxy. Such an optimization is beneficial when there is an
imbalance in query load across different regions in the net-
work. We designed an uneven query pattern as follows - a
tornado detection query with priority=3 arrives at each radar
which isi-hops (i varies from 1 to 3) away from the server in
each epoch, while each of the other radars has a wind direc-
tion estimation or 3D assimilation query with priority=1 in
each epoch. We use the testbed consisting of one server and
twelve radars as shown in Figure 5. Each radar in the testbed
is seeded with a radar trace from the ARPS dataset.

Figure 13 shows the average utility per epoch with in-
creasing number of hops from the proxy. The utility de-
creases for both of the approaches as queries with high pri-
ority arrive at nodes farther from the proxy. This is because
nodes on the edge of the routing topology usually have less
available bandwidth than nodes closer to the proxy, as packet
loss probability increases as packets travel more hops. Thus,
a query arriving at an edge node cannot achieve high utility
because of the limited bandwidth, therefore, the contribu-
tion of the tornado detection query to the overall utility is re-
duced. However, the global control-based approach degrades
much slower than the approach without global control. For
instance, when the tornado query is posed three hops from
the proxy, the global control-based approach achieves twice
the utility of the approach without such control. This shows
that global transmission control provides a simple but effec-
tive approach to deal with imbalanced query loads.
5.7 System Scalability

Until now, we have characterized the performance of indi-
vidual components of our system. We now turn to full system
measurement and evaluation on our testbed. Our goals are
two-fold: i) to demonstrate that our system as a whole scales
well with network size and number of queries per epoch, and,
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Figure 13. Performance of global transmission control. Utility is
shown for differing numbers of hops from the proxy to nodes having
high-priority queries.

ii) to provide a breakdown of the utility gains provided by the
different components of our system.
5.7.1 Impact of Network Size

Our first set of scalability experiments test our system at
different network scales. In the experiments we use different
number of nodes in the testbed shown in Figure 5 — the one
and four node experiments are for a one hop topology, the
eight node experiments are for a two hop topology, and the
twelve node experiments are for a three hop topology. Each
radar is seeded with data traces from the ARPS dataset.

The query distribution for our experiments was designed,
in collaboration with meteorologists, to realistically model
query patterns during a tornado. The three queries — tor-
nado detection, wind direction estimation, and 3D assimila-
tion — arrives at each radar as a Poisson process with av-
erage arrival rate of one query per three epochs and stan-
dard deviation of one query per epoch. The wind direction
estimation queries and 3D assimilation queries are assigned
weights of one or two randomly.

The priority of the tornado query, and the nodes on which
it is posed depends on where the tornado is predicted to
be. Meteorologists use tracking algorithms such as Extended
Kalman Filters to track tornado trajectories, thereby predict-
ing its likely location. Therefore, in our query model, we
assume that the priority of tornado detection queries is three
on radars where the tornado is predicted to be observed by
the tracker, and is one otherwise. To generate this query pat-
tern, we use a visual estimate from the ARPS emulator data
to determine the likely centroid of the tornado.

We compare four schemes in this experiment. The ex-
isting NetRadsystem with averaging compression and con-
servative bandwidth estimation (described in Section 5.3.2)
provides us a baseline for comparison. Then, we consider
three variants of our system: first, we turn on progressive
compression only, then we turn on progressive compression
as well as local transmission scheduling, and finally, we in-
clude global control as well. Figure 14 shows the average
utilities per epoch ofNetRadand the three variations of our
system.

For small networks (1 or 4 nodes), our gains over theNe-
tRad system are primarily due to progressive compression.
For instance, when there is only one radar in the network,
just the addition of progressive compression gives us 3x as
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Figure 14. Scalability to network size. Breakdown of contribution of
each component of our system to the overall utility.

much utility as the NetRad scheme. Both local scheduling
and global control have limited impact for the one and four
node network settings, because there is limited contention
and considerable available bandwidth from each node to the
proxy. Thus, at a network size of one, the addition of local
scheduling achieves only 4% more utility than just having
progressive compression. Global control has no impact at
network size 1, and limited impact at network size 4.

As system size increases, contention between nodes also
increases. There is less available bandwidth per radar and
more bandwidth fluctuation due to increased contention and
collisions, and consequent variations in TCP window size.
As a result, both local scheduling as well as global control
give more gains. The benefit from these schemes increases
with growing network size. For instance, the addition of lo-
cal scheduling to progressive compression increases utility
from 15% at network size four to 38% at network size 12.
The inclusion of global control improves utility by only 4%
at network size 4, but provides a 30% improvement at net-
work of size 12.

Another point to note is the increasing difference in per-
formance between theNetRadscheme and our full system.
With all three techniques enabled, our system achieves more
than an order of magnitude improvement in utility over the
NetRad system for network size at 12. As network size in-
creases from one to twelve, the utility of our system only
decreases by 25%, whereas the utility of NetRad decreases
by 80%; this comparison demonstrates the scalability of our
system.
5.7.2 Impact of Query Load

Our second scalability experiment stresses the query han-
dling ability of our system. We compare our system against
the NetRadsystem under different query loads. Since the
query processor aggregates the same type of queries into a
single query in each epoch, there are at most three queries
posted on each radar per epoch. We run the experiments
on the wireless testbed at network size 12. Each radar node
is seeded with a data trace from the ARPS emulator. We
use constant query arrival rate in the query distribution for
our experiments. In each epoch at most three queries of dif-
ferent types arrive at each radar. The priorities of the wind
direction estimation queries and 3D assimilation queries are
assigned one or two randomly. The priority of tornado detec-
tion queries is three on radars which the tornado is predicted
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Figure 15. System scalability to the query load.

to be observed by the tracker, and is one otherwise. We eval-
uate the two systems under different query rate ranging from
one to three queries per epoch.

Figure 15 shows the average utility per query as a function
of query rate. In our system, as the query rate increases, each
query still gets data with sufficient accuracy to achieve high
utility. Thus, the utility of NetRad system decreases by 25%
when the query rate increases from one to three, whereas the
utility of our system only decreases by 15%. This demon-
strates the scalability of our system to high query load.

6 Related Work
We discuss related work not covered in previous sections.
Radar Sensor Network:The work most related to MUDS

is the Meteorological Command and Control (MC&C)[23]
system deployed in NetRad radar network that schedules
sensing tasks of radars. MC&C allocates resources such as
beam position to satisfy end-user’s needs. Based on the sens-
ing schedules from MC&C, our MUDS system optimizes
data transmission to maximize the total utility gain.

Multi-query Optimization: A few approaches have ad-
dressed multi-query optimization in sensor networks [16,
22]. For instance, [16] considers a limited form of multi-user
sharing where different users request data at different rates
from different sensors, and [22] considers a multi-query opti-
mization for arbitrary SQL queries and do simple data aggre-
grations such as min, max, sum, count and average. In con-
trast, we consider data sharing for considerably more com-
plex applications involving spatial and temporal data shar-
ing, but focuses on the specific set of queries used in radar
sensor networks.

Utility-based Design: There is a growing body of re-
search on utility-based approaches to address different prob-
lems in sensor networks including resource allocation in
SORA [15], and sensor placement [2]. Much of this work
is only peripherally related to our work. For instance, SORA
employs a reinforcement learning and an economic approach
for energy optimization in sensor networks [15]. The work
is not designed for multi-user scenarios.

Data compression:Many techniques have used data com-
pression to reduce communication energy overhead in sensor
networks. For instance, Sadler et al. [19] consider data com-
pression algorithms such as LZW for networks of energy-
constrained devices. However, the use of progressive com-
pression together with multi-query optimization on resource-
rich platforms is a novel approach that has not been studied



in the past.
Utility in Internet-based Systems:For Internet-like net-

works, Kelly [13] pioneered a utility-theoretic framework
for rate control and, in particular, for deconstructing TCP
like protocols. Such approaches have also been used for
jointly optimizing routing and rate control [13, 11]. These
schemes attempt to allocate resources such as bandwidth
across users without consideration to data sharing between
the users. Multicast rate control schemes exploit data sharing
across users; but they apply to a one-to-many environment
unlike MUDS that is designed for many-to-one or many-to-
many environments.

7 Concluding Remarks
In this paper, we focused on a network of rich sensors

that are geographically distributed and argued that the de-
sign of such networks poses very different challenges from
traditional “mote-class” sensor network design. We iden-
tified the need to handle the diverse requirements of mul-
tiple users to be a major design challenge, and proposed
a utility-driven approach to maximize data sharing across
users while judiciously using limited network and compu-
tational resources. Our utility-driven architecture addresses
three key challenges: how to define utility functions for net-
works with data sharing among end-users, how to compress
and prioritize data transmissions according to its importance
to end-users, and how to gracefully degrade end-user utility
in the presence of bandwidth fluctuations. We instantiated
this architecture in the context of geographically distributed
wireless radar sensor networks for weather, and presented
results from an implementation of our system on a multi-
hop wireless mesh network that uses real radar data with real
end-user applications. Our results demonstrated that our pro-
gressive compression and transmission approach achieves an
order or magnitude improvement in application utility over
existing utility-agnostic non-progressive approaches, while
also scaling better with the number of nodes in the network.

Overall, these results demonstrate the significant benefits
of multi-user data sharing in rich sensor networks. While we
have considered only bandwidth optimization in this work,
we are exploring joint radar sensing and bandwidth opti-
mization in our future research. We also believe that the
benefits of data sharing can apply to a wider range of ap-
plications and end-users than we have explored in this work.
We plan to extend our work to camera sensor networks as
well as resource-poor mote-class sensor networks in our fu-
ture research. In the experiments we found out that packet
losses, retransmissions and TCP behavior have a great im-
pact on overall performance of the system. To address this
problem, we will design a hop-by-hop bulk transfer protocol
that optimizes radar data transfers in our future work.

8 Acknowledgments
This research was supported, in part, by NSF grants EEC-

0313747, CNS-0626873, CNS-0546177, CNS-0520729, and
CNS-0325868. We wish to thank our shepherd, Andrew
Campbell, as well as the anonymous reviewers for their help-
ful comments on this paper.

9 References
[1] D. Aguayo, J. Bicket, S. Biswas, G. Judd, and R. Morris. Link-level measure-

ments from an 802.11b mesh network. InProc. SIGCOMM, 2004.

[2] F. Bian, D. Kempe, et al. Utility based sensor selection. InProc. IPSN, 2006.

[3] V. Bychkovsky, K. Chen, M. Goraczko, A. Miu, E. Shih, Y. Zhang, et al. Cartel:
A distributed mobile sensor computing system. InProc. SenSys, 2006.

[4] http://www.caps.ou.edu/. CAPS: Center for Analysis and Prediction of
Storms.

[5] K. Chebrolu, B. Raman, and S. Sen. Long-distance 802.11b links: performance
measurements and experience. InProc. MOBICOM, 2006.

[6] P. R. Desrochers and S. Y. Yee. Wavelet-based algorithm for mesoCyclone de-
tection. InProc. SPIE, 1997.

[7] B. Donovan, D. J. McLaughlin, J. Kurose, et al. Principles and design consider-
ations for short-range energy balanced radar networks. InProc. IGARSS, 2005.

[8] http://www.earthscope.org.

[9] J. E. Fowler. QccPack: an open-source software library for quantization, com-
pression and coding. InProc. SPIE, 2000.

[10] R. Fritchie, K. K. Droegemeier, et al. Detection of hazardous weather phenomena
using data assimilation techniques. In32nd Conference on Radar Meteorology,
2005.

[11] H. Han, S. Shakkottai, C. V. Hollot, R. Srikant, and D. Towsley. Overlay TCP
for multi-path routing and congestion control. InProc. of IMA Workshop on
Measurements and Modeling of the Internet, 2004.

[12] K. Jain, J. Padhye, V. N. Padmanabhan, and L. Qiu. Impact of interference on
multi-hop wireless network performance.Wireless Networks, 2005.

[13] F. Kelly, A. Maulloo, and D. Tan. Rate control in communication networks:
shadow prices, proportional fairness and stability. InJournal of the Operational
Research Society, volume 49, 1998.

[14] S. Liu, M. Xue, and Q. Xu. Using wavelet analysis to detect tornadoes from
doppler radar radial-velocity observations. InJournal of Atmospheric Ocean
Technology, 2006.

[15] G. Mainland, D. Parkes, and M. Welsh. Decentralized, adaptive resource alloca-
tion for sensor networks. InProc. NSDI, May 2005.

[16] R. Muller, G. Alonso, and D. Kossman. Efficient sharing of sensor networks. In
Proc. MASS, 2006.

[17] R. Patra, S. Nedevschi, et al. WiLDNet: design and implementation of high
performance WiFi-based long distance networks. InProc. NSDI, 2007.

[18] B. Philips, D. Pepyne, et al. Integrating end user needs into system design and op-
eration: the center for collaborative adaptive sensing of the atmosphere (CASA).
In Proceedings of the 87th AMS Annual Meeting, San Antonio, TX, USA, Jan.
2007.

[19] C. Sadler and M. Martonosi. Data compression algorithms for energy-
constrained devices in delay tolerant networks. InProc. SenSys, 2006.

[20] A. Said and W. A. Pearlman. A new fast and efficient image codec based on set
partitioning in hierarchical trees.IEEE Transactions on Circuits and Systems for
Video Technology, 6:243–250, 1996.

[21] S. Li, W. Li Shape-adaptive discrete wavelet transforms for arbitrarily shaped
visual object coding.IEEE Transactions on Circuits and Systems for Video Tech-
nology, 10: 725–743, 2000

[22] N. Trigoni, Y. Yao, A. Demers, J. Gehrke, and R. Rajaraman. Multi-query opti-
mization for sensor networks. InProc. DCOSS, 2005.

[23] M. Zink, D. Westbrook, S. Abdallah, B. Horling, V. Lakamraju, E. Lyons, V.
Manfredi, J. Kurose, and K. Hondl Meteorological Command and Control: An
End-to-end Architecture for a Hazardous Weather Detection Sensor Network. In
Proc. EESR, 2005.

[24] M. Zink, D. Westbrook, et al NetRad: Distributed, Collaborative and Adaptive
Sensing of the Atmosphere. Calibration and Initial Benchmarks InProc. DCOSS,
2005.

[25] J. Kurose, E. Lyons, D. McLaughlin, D. Pepyne, B. Philips, D. Westbrook,
M. Zink An End-User-Responsive Sensor Network Architecture for Hazardous
Weather Detection, Prediction and Response InProc. AINTEC, 2006.

[26] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, In-
troduction to algorithmsThe MIT Press, 2001.


