
Leveraging Graphical Models to Improve Accuracy and

Reduce Privacy Risks of Mobile Sensing

Abhinav Parate Meng-Chieh Chiu

Deepak Ganesan Benjamin M. Marlin

Department of Computer Science

University of Massachusetts, Amherst

Amherst, MA 01003-9264

{aparate,joechiu,dganesan,marlin}@cs.umass.edu

ABSTRACT
The proliferation of sensors on mobile phones and wearables has
led to a plethora of context classifiers designed to sense the individ-
ual’s context. We argue that a key missing piece in mobile infer-
ence is a layer that fuses the outputs of several classifiers to learn
deeper insights into an individual’s habitual patterns and associ-
ated correlations between contexts, thereby enabling new systems
optimizations and opportunities. In this paper, we design CQue,
a dynamic bayesian network that operates over classifiers for indi-
vidual contexts, observes relations across these outputs across time,
and identifies opportunities for improving energy-efficiency and ac-
curacy by taking advantage of relations. In addition, such a layer
provides insights into privacy leakage that might occur when seem-
ingly innocuous user context revealed to different applications on
a phone may be combined to reveal more information than origi-
nally intended. In terms of system architecture, our key contribu-
tion is a clean separation between the detection layer and the fusion
layer, enabling classifiers to solely focus on detecting the context,
and leverage temporal smoothing and fusion mechanisms to further
boost performance by just connecting to our higher-level inference
engine. To applications and users, CQue provides a query inter-
face, allowing a) applications to obtain more accurate context re-
sults while remaining agnostic of what classifiers/sensors are used
and when, and b) users to specify what contexts they wish to keep
private, and only allow information that has low leakage with the
private context to be revealed. We implemented CQue in Android,
and our results show that CQue can i) improve activity classifica-
tion accuracy up to 42%, ii) reduce energy consumption in classify-
ing social, location and activity contexts with high accuracy(>90%)
by reducing the number of required classifiers by at least 33%, and
iii) effectively detect and suppress contexts that reveal private in-
formation.
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1. INTRODUCTION
The past decade has seen unprecedented growth in sensor-rich

mobile phones and wearable accessories such as fitness monitors,
sleep monitors, heart monitors and others. With the proliferation
of such devices, there has been significant emphasis on techniques
to draw higher-level inferences from continuous sensor data as we
move around in our day-to-day lives. Research has shown that sev-
eral aspects of our behavior can be inferred including physical ac-
tivity, sleep behavior, social context, movement patterns, emotional
or affective context, and mental disorders, with varying degrees of
accuracy.

The growing landscape of high-level inferences presents an in-
teresting opportunity: can we combine these inferences to obtain
deeper insights into individual behavior? Intuition suggests that
the outputs of individual inference algorithms must be correlated
across space and time; after all, they sense various dimensions of
an individual’s habits, behaviors and physiology all of which are
inter-linked. As a simple example, take the case of an individual’s
mobility patterns and how much of it can be inferred without using
any location sensor such as GPS, cell tower or WiFi. Location is of-
ten correlated to social context — the fact that phones of colleagues
are in proximity (detected via bluetooth) can indicate that the likely
location is the workplace whereas the fact that a family member’s
phone is nearby means that one is likely at home. Similarly, lo-
cation relates to activity context — a user may be more sedentary
at work than at other times during the day, therefore one could in-
fer that the most likely location is the workplace by observing the
level of activity. More broadly, almost all inferences are related in
one way or another — studies have shown that sleep (or lack of
it) affects our mood and productivity, social interactions influence
our emotional context, addictive behavior is correlated to specific
locations and social interactions, and so on

The existence of a rich interaction graph between inferences presents
an opportunity and a challenge. On one hand, a model of the re-



lations across the different inferences can be leveraged to gain in-
sights into individual behavior, thereby enabling new systems opti-
mization opportunities. For example, a high level inference frame-
work might observe relations between semantic location and activ-
ity levels, and learn that an individual has mostly sedentary behav-
ior at the workplace. This provides two opportunities to optimize
inference of the location context, “work": a) energy-efficiency can
be improved by relying primarily on activity inference rather than
expensive GPS, and b) accuracy can be improved when there is sig-
nificant error (e.g. indoor settings) by fusing it with activity levels.

On the other hand, the ability to leverage relations across infer-
ences comes with a steep price tag — loss of privacy. A mobile
application that purports to merely be using the accelerometer to
detect activity levels may indeed be inferring your location. More
disturbing is the possibility that a single application developer may
have several applications, one that monitors sensors for activity
level, and perhaps another that uses bluetooth, which may be lever-
aged in conjunction to reveal much more than from the seemingly
innocuous individual applications. Compounding this issue is the
fact that we do not have tools that allow us to reason about how
much of privacy exposure occurs from revealing seemingly innocu-
ous sensor data if the adversary were to have a good model of the
relations across contexts.

In this paper, we present a mobile “big data” inference frame-
work, CQue, that takes as input streams of inferences from di-
verse on-body and smartphone-based sensors, and provides a uni-
fied way for exploiting and exploring relations across these infer-
ences. CQue can be used in several ways: a) an inference algorithm
can leverage CQue to improve accuracy and/or energy-efficiency,
while remaining agnostic of how this is achieved, b) a user can is-
sue “what if" queries that explore the extent of privacy leakage of
sensitive information that might be possible if certain sensor data
were revealed to one or more applications, and c) a user can specify
privacy policies to provide a first order protection against privacy
leakage of sensitive information to the untrusted applications.

In terms of system architecture, the key benefit of CQue is that it
separates detection from fusion. Existing classifiers are largely de-
signed in a stovepipe manner to address a specific context sensing
goal as best as possible. While they start with detection of the spe-
cific activity (e.g. conversation, walking, etc), real-world vagaries
often result in spurious state transitions due to several confounding
factors. To address these issues, classifiers often rely on other sen-
sor sources that can identify confounders and reduce errors. CQue
provides a clean separation between the detection layer and the fu-
sion layer — in this way, a classifier can be designed to just focus
on detecting the phenomena of interest, and leverage fusion mech-
anisms to further boost performance by just hooking into CQue.

To users and applications, CQue offers a simple context query-
ing interface with support for several types of queries. A “context
query" can request different contexts, while optionally specifying
constraints such as confidence requirements and delay bounds. For
example, a query might request sedentary activity context with 90%
certainty and a maximum notification delay of two minutes. CQue
uses the query constraints to reason about how to duty-cycle in-
ference algorithms, and how much temporal history to leverage to
improve accuracy and confidence. A “what if" query provides a
measure of potential leakage of sensitive information if applica-
tions were allowed access to specific sensor sources. For example,
a query can request the expected leakage of “home" location con-
text if an application had access to accelerometer and bluetooth
data. Internally, CQue would execute such a query by providing
a measure of the correlation between the outputs of inference al-
gorithms that operate on accelerometer and bluetooth data, and the

specific location context that the user does not wish to reveal. Fi-
nally, through privacy policies, a user can specify a context as pri-
vate that should not be revealed, and suppress the non-private con-
texts in real-time that can be used to infer private context using
correlations among these contexts. A user can specify this policy
specific to an application or a group of applications that can poten-
tially collude.

Our results show that:

• CQue can answer context queries with high confidence and
improve accuracy up to 42% by performing fusion of infor-
mation from multiple context-inference algorithms

• When energy is limited, CQue can lower execution costs for
multiple context queries by exploiting context relations to
run fewer inference algorithms. If energy is plentiful, CQue
can decide what context algorithms in addition to the query
set should be executed to improve accuracy.

• CQue is effective in assessing privacy risks and provides pri-
vacy while ensuring high utility to the applications.

The rest of the paper is organized as follows. §2 describes the
prior work done in the related research areas. In §3, we provide
an high-level overview of the CQue query engine along with the
description of how a context query can be specified in our frame-
work. In §4.1, we describe the relationship model used by CQue.
Rest of §4 describes the components of CQue query engine in de-
tail that are responsible for optimizing multiple context queries and
addressing privacy. We describe the implementation details and the
experimental evaluation of CQue in §5 and §6 respectively. We dis-
cuss possible extensions of this work in §7. Finally, the conclusions
are provided in §8.

2. RELATED WORK
In this section, we describe three areas of related work — model-

driven sensor data acquisition, context inference for mobile phones
and privacy in temporal data.
Graphical models for sensor data acquisition: There has been
substantial work on leveraging spatial and temporal models of cor-
relations between distributed sensor sources to optimize sampling
and communication in a sensor network [3, 5, 6, 12, 14]. For ex-
ample, BBQ [6] uses a Dynamic Bayesian Network to select the
minimum number of sensor nodes for data acquisition such that it
can answer range queries within query-desired confidence bounds.
Meliou et al [14] extend this work to sensor network routing where
a query can be answered with desired confidence bounds while
traversing the minimum number of nodes in a network spanning
tree. Graphical models are also used in [5], which explored the
problem of answering range queries while minimizing the energy
cost of sampling sensors, and in [3], where sensors use models to
reduce the communication costs by transmitting samples to a base
station only when the ground truth is significantly different from
the prediction made by the model. The similarities with prior ef-
forts are only in that they leverage DBNs — we use DBNs in a
novel application context which is for real-time inference on a mo-
bile phone to enable energy-accuracy-delay tradeoffs and protect
privacy.
Context-Sensing: Our work is closest to ACE [15] that proposes
a context sensing engine that exploits relationships among contexts
to infer an energy-expensive context from a cheaper context. The
central difference between ACE and CQue is that the former uses
Associate Rule Mining to learn rules among contexts (e.g. Driving
) ¬At Home), but such mining approaches cannot take a context



classifier’s uncertainty into account. The ability to take uncertainty
into account is critical when using classifiers that operate on raw
sensor data — for example, if a classifier may detect Driving with
a low confidence, say 0.7, GPS may detect At Home with an error
radius of 100m, and so on. In these cases, the rules would assume
perfect context information whereas CQue would use the uncer-
tainty in inferring the relations. Thus, a probabilistic approach is
strictly superior to a rule based one.

Also related to CQue are efforts to develop a context-sensing en-
gine for phone that can be used by applications to request contexts
[4, 13]. The Jigsaw context sensing engine [13] comprises of a set
of sensing pipelines for accelerometer, microphone and GPS. More
recently, Kobe [4] proposed a context querying engine for mobile
phones that can be used to plugin different classifiers, and that bal-
ances energy consumption, latency and accuracy of the classifiers
by offloading computation to the cloud. Unlike these approaches,
CQue can leverage probabilistic relations across contexts.

CQue is complementary to prior work on context sensing en-
gines which have largely explored optimizations of individual clas-
sifiers (e.g. [2, 11, 13, 20]). CQue allows individual classifiers to
be easily integrated without worrying about how to leverage other
contexts to improve performance and efficiency.
Privacy in temporal data: There has been some work in ad-
dressing privacy where the adversary is aware of the temporal cor-
relations [8, 17, 19]. MaskIT [8] presents a privacy-preserving
mechanism to filter a stream of contexts that can be used to answer
context queries requested by the phone applications. It presents
two privacy checks to decide when a user context can be released
while providing privacy guarantees against an adversary knowing
temporal correlations modeled as a Hidden Markov model(HMM)
of user contexts.

Our goal in this work is not to to prove privacy guarantees or
design new privacy metrics, rather our argument is that the use of
DBN enables considerably more flexible privacy policies in com-
parison with an HMM-based approach. When MaskIT identifies
that a privacy breach might occur, it suppresses all contexts at that
time without considering which subset of them might contribute to
the breach. In contrast, CQue enables more fine-grained reasoning
of which specific context(s) lead to a privacy breach such that only
that information can be suppressed.

3. CQUE OVERVIEW
The CQue framework has been designed with the goal of pro-

viding an easy-to-use abstraction to application developers and end
users, both for exploiting correlations across inference to improve
energy-efficiency and accuracy, as well as to use these correlations
to ascertain privacy leakage or contextual insights. This goal is ac-
complished using a high level query language and an underlying
execution environment running as a service on the phone. In the
following, we provide an high-level overview of the CQue frame-
work.

Context Query Interface. At the top level of CQue are ap-
plications that issue context queries using a high-level declarative
query language. CQue provides a simple query language for the ap-
plications to request contexts. Consider the following three queries:

Q1. (drive | accel+gyro+gps, 240s, 0.8)

Q2. (home? | accel+gyro)

Q3. (home? | with friends)

The first query requests the context drive, and includes three
other optional fields. The keywords accel, gyro and gps suggest that

Dynamic Bayesian Network

Sensors

Query Set
Q1: (drive | accel+gyro), (walk | accel+gyro), (stationary| accel+gyro)
Q2: (with friends | bluetooth), (with spouse | bluetooth)
Q3: (at-office | wifi+gps,120s,0.9)

Query Interface

Fitness App Do not 
Disturb App

Movie Recommender
App

Q1 Q2 Q3

Dynamic Query Execution Engine
(cost- accuracy - privacy optimization)

offload dynamic 
plan evaluation 
to cloud

offload DBN
learning to 
cloud

user privacy 
settings

Walking S2
H2 Driving AtHomeS1

H1
S3
H3

Figure 1: High-level overview of the framework describing the
workflow

any combination of classifiers that use those sensors may be used
in answering the query (to ensure that the app only uses sensors for
which it has approval from the user). These keywords could also
refer to other inferences, if the application needs more explicit con-
trol over other contexts that should be fused. Finally, the query can
also replace this with a ‘*’ which would let CQue automatically
choose sensors and classifiers to optimize the system. The value
‘240s’ in the query is the delay tolerance and denotes that the ap-
plication can tolerate the maximum delay of 240 seconds for each
record in the query response. The query processor uses this delay
window to improve the confidence in the output context value. The
query can also provide a confidence threshold. In the above exam-
ple, the query processor will output context as soon as it reaches
confidence of ‘0.8’, provided it is within the delay tolerance pe-
riod. If confidence values associated with the context output are
lower than the query-desired confidence threshold, the context is
reported as ‘unknown’.

The next two queries marked by ’?’ are privacy queries and pro-
vide a measure of information gain in queried context "home" if
any inference algorithm operating over accelerometer and gyro-
scope sensors were used (Q2) or if with friends inference algorithm
was used (Q3). In turn, this measure provides a privacy score, an
indicator of privacy leakage. Note that in providing a privacy score,
CQue is limited to using inference algorithms that are available in
its library.

CQue Architecture. The central tenet of CQue is an architec-
tural separation between the mechanisms that inference algorithms
use to improve performance. Inference algorithms are often de-
signed in a stovepipe manner and integrate a combination of the
following components: a) feature extraction, which involves ex-
tracting time-domain or frequency-domain features from the raw
sensor data, b) classification, where they look at a short tempo-
ral sequence and detect a particular event or state, for example,
walking, running, cycling, smoking, etc, c) temporal consistency
mechanisms such as Hidden Markov Models (HMMs) to correct



mis-classifications that occur in the classification, and d) context
fusion where they leverage other information such as location or
time to provide additional input to correct classification errors.

In contrast to the stovepipe approach, our design separates these
components into a cleaner, layered architecture where any classifier
can simply hook into CQue, and leverage temporal consistency and
context fusion mechanisms to improve performance. CQue models
temporal consistency with a time-series of previous observations,
and uses active learning mechanisms to automatically determine
when user input is needed to improve this model. CQue also auto-
matically determines the relationships between a classifier output
and all other observations from other classifiers/sensors that it has
access to, and determines when and how to use additional obser-
vations to improve accuracy. In short, it can make the process of
designing a new inference algorithm a lot easier for a designer.

Execution Environment. The execution environment of CQue
is shown in Figure 1 and consists of following core components: (i)
a graphical model, namely, Dynamic Bayesian Network, and (ii) a
query processor. The Dynamic Bayesian Network (DBN) is the at
the core of CQue and plays an important role in making various de-
cisions during query processing. The DBN provides a model of the
relationships across multiple contexts for the phone user and keeps
track of the time-series of observations for various contexts. It then
uses context relationships to boost confidence in observations made
by individual classifiers or to correct them. The second component
is a query processor which is responsible for interaction with appli-
cations including receiving context queries and generating the re-
sponses to the queries. In addition, depending on the current state
of the DBN and the time-series of observations, the query proces-
sor needs to determine which context-inference algorithms should
be executed such that it can provide best answers for the queries
within the specified constraints. These decisions are made by the
query processor at every time step during execution. As shown in
Figure 1, the result of these decisions are the signals S

1

, S
2

, ..., S
n

indicating which context-algorithms be executed. Finally, upon ob-
serving the output of selected context-inference algorithms, query
processor enforces user-specified privacy policies (defined in §4.2)
by deciding a maximal set of queried contexts whose values can be
released to the applications without violating the privacy policies.

In addition to the query execution, the query processor is respon-
sible for sampling human-provided context values during the learn-
ing phase of the DBN. Such human input can be minimized through
active learning to only obtain input at appropriate times to improve
the structure of the DBN. These human inputs shown as signals
H

1

, H
2

, ..., H
n

in Figure 1 are provided to the context-inference
algorithms that can use it to retrain themselves to personalize for
the phone user.

4. THE EXECUTION ENVIRONMENT
The execution environment of CQue is responsible for i) mod-

eling and learning the relationships across contexts, ii) multi-query
optimization such that uncertainty in queried contexts is minimized
while operating within the budget and delay constraints of a query,
and iii) executing privacy queries and enforcing privacy policies.
In the following, we describe each component of the execution en-
vironment in detail.

4.1 Inference Framework
The core learning framework in CQue is a Dynamic Bayesian

network (DBN), which is a class of Bayesian networks that can rep-
resent a time-series of random variables to model temporal consis-
tency. A DBN can describe both temporal and static relationships

Time t-1 Time t

X3,t-1 X3,t

X2,t-1 X2,t

X1,t-1 X1,t

Figure 2: An example of 2-step Dynamic Bayesian Network.
The nodes in the graph model the set of random variables X =

{X
1

, X
2

, X
3

}.

among random variables at different time instances. This model is
represented as a directed acyclic graph consisting of nodes corre-
sponding to each random variable at each time instance. The static
dependencies across random variables at time instance t are repre-
sented by edges connecting nodes corresponding to these random
variables. The temporal dependencies are represented by transition
edges connecting nodes at time instance t � 1 with nodes at time
instance t. Each node in this graph has a conditional probability
table (CPT) describing dependencies on its parent nodes. Figure 2
shows an example of 2-step DBN for two time slices which can be
unrolled to accommodate a time-series of any length by duplicating
the time-slices and transition edges. We use notation X to denote
the set of random variables. We use Xt to denote set of nodes rep-
resenting random variables X at time instance t and use X1...t as
short notation to describe time series of nodes X1, ...,Xt. With
this notation, the joint probability distribution for a time series of
nodes is given by

Pr(X1...t) = Pr(X1)

tY

t=2

Pr(Xt|Xt�1)

In the above equation, probability Pr(Xt|Xt�1) is computed
using the DBN.

DBN Model for CQue. In CQue, we have three types of DBN
nodes — sensors, classifier-provided context, and real-world con-
text. The goal of the DBN is to model relationships across real-
world contexts while taking into account the uncertainty associated
with the classifier-provided contexts. We considered two criteria
in constructing the DBN model: a) classifiers are black boxes, and
we do not assume knowledge of what sensors they utilize, what
sampling rates they use, how they duty-cycle sensors to save en-
ergy, and what features they extract, and b) we wish to keep the
model simple and low complexity so that DBN inference can be
performed in real-time on the mobile phone.

To address these considerations, classifiers and sensors are sepa-
rated from the DBN into a different layer. Figure 3 shows an exam-
ple where classifiers provide the probability of a context through
observation nodes called virtual evidences, O, to the DBN. The un-
certainty in evidence is accounted in these observation nodes using
Pearl’s method [18]. In this method, for some context X

i

and cor-
responding observation node O

i

, if L(x) gives the likelihood of
classifier stating that X

i

= x if X
i

is actually in state x and if
L(x) gives the likelihood of a classifier stating that X

i

= x if X
i

is not in state x, then the conditional probabilities for observation
node O

i

given the current state for real world context X
i

satisfies:

Pr(O
i

= x|X
i

= x) : Pr(O
i

= x|X
i

6= x) = L(x) : L(x)

With these conditional probabilities and given a series of virtual
evidences O1...t, we can compute the joint probabilities for time
series of real world contexts X1...t as follows:
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Figure 3: A model separating DBN from the layer of sensors
and classifiers, where classifiers provide virtual evidences to the
DBN.

Pr(X1...t,O1...t) = Pr(X1|O1)

tY

t=2

Pr(Xt|Xt�1)Pr(Ot|Xt)

This model has several benefits: a) it is computationally cheap both
when classifiers are turned on or off since it avoids the complexity
of modeling sensor and classifier variables in the DBN itself, b) it
requires no additional human labels for modeling these variables
while training the DBN, and c) it can easily be extended to handle
multiple classifier implementations for the same context without
changing the DBN structure.

DBN usage in CQue. The output of the DBN is used in several
ways by CQue.

1. Filtering/Smoothing Most of the contexts that we observe
in the real world have some temporal consistency i.e they
last for some time period. Such temporal relationships can
be used to correct intermittent misclassifications made by
context-inference algorithms. Since a DBN models tempo-
ral consistency with the time-series of previous observations,
a DBN can correct the current output and reduce the proba-
bility of a context taking an incorrect value. Apart from the
temporal consistency, a misclassification can be corrected us-
ing relationships with other contexts if the observations are
available for them.

2. HindSight The previous case described using history to cor-
rect output at the current time. Similarly, a DBN can be used
to improve the confidences in historical observations, which
perhaps had low confidence. Future observations with high
confidence can be used to improve the confidence of previous
observations. This capability can be exploited when queries
specify a higher delay tolerance threshold.

3. Value of Information The DBN can also be used to assess
the value of a context-inference algorithm. Value of infor-
mation (VOI) is defined as the expected gain in certainty for
the random variables in DBN if an additional observation is
made. This is useful for the query processor, which can de-
cide what context observation can provide highest utility.

4.2 Query Processor
The query processor is responsible for i) multi-query optimiza-

tion i.e. achieving the confidence requirements of context queries
while operating within query constraints, ii) execution of privacy
leakage queries, and iii) enforcement of user-defined privacy poli-
cies. Multi-query optimization in CQue raises following challenges:

a) how to choose the inference algorithms to execute given the bud-
get?, and b) how to handle different delay tolerance requirements
of queries? In addition, privacy queries and policies require us to
answer: a) how to execute privacy queries?, and how to enforce pri-
vacy policies? We address these question in the rest of this section.

Which inferences to execute given a budget?
The CQue query processor needs to execute the set of inference
algorithms that provides maximum value of information (VOI) for
the queried contexts within the budget constraints. The budget is
typically in the form of energy since inference algorithms consume
energy, but in cases where the user is interrupted to provide labels,
the budget may be the number of interruptions allowed per day.

Due to the relationships across contexts, the set providing max-
imum VOI may be larger than the query set as some contexts that
are not part of the query set may be useful to improve the inference
accuracy for contexts that are in the query set. Similarly, this set
can be smaller than the query set if some of the queried contexts
are strongly implied by other contexts in the query. In addition,
the set of inferences that provides the maximum VOI can change
over time, depending on the user’s current context as well as dy-
namics in the user’s behavior patterns. In this section, we describe
an adaptive approach to deciding the set of inferences that need to
be executed to satisfy query demands while remaining within the
budget.

The problem of selecting the optimal set of context-algorithms
to execute given a budget and the set of queries can be formalized
as follows. Let Q be the set of context queries, let E

t�1

be the
set of context classifiers undergoing execution currently and v be
the corresponding classifier outputs. Let F(Q, E, E

t�1

, v) be the
utility function giving the VOI of the contexts, E, for the query
set where E is the subset of observation nodes O in the DBN. Let
C(E) give the cost of executing algorithms for contexts in E. If B
is the maximum budget, then our goal can be defined as identifying
a set E

t

i.e. the set of context classifiers to be executed next such
that:

E
t

= arg max

E✓Ot:C(E)B
F(Q, E, E

t�1

, v) (1)

Since our goal is to have high certainty for query set Q, we consider
the information gain for query set Q (also called VOI) as the utility
function which is given by:

F(Q, E, E
t�1

, v) = H(Q|E
t�1

= v)�H(Q|E, E
t�1

= v)

(2)
where H(.) is the entropy function. We must note that computing
optimal-set of classifiers to be executed at the next iteration is an
NP-hard problem[10]. We solve this optimization problem using
a greedy approach as described in Algorithm 1. The results by
Nemhauser et al. [16] and Krause et al. [10] have shown that a
greedy algorithm provides a solution within the constant factor (1�
1

e

) of the optimal solution for a general bayesian network.
Our extension of optimization problem to the DBN does not

change the results as long as we select nodes E
t

from a set S such
that the nodes corresponding to S in DBN are independent to each
other given the query set Q. In a DBN, we select E

t

from a set of
observation nodes O

t

where each observation node is connected to
the DBN only through a parent hidden node. Hence, any path be-
tween any two observation nodes is always blocked by one of the
parent hidden nodes. Thus, any two observation nodes in DBN are
d-separated [21] and hence, independent of each other.

We note that Algorithm 1 gives near-optimal solution when each
classifier is assigned a unit cost. In a specific scenario, there may
be several considerations in determining the cost, which depends



on the cost of sensing, processing, or obtaining human input. If the
resulting costs are non-uniform in nature, we refer the readers to an
algorithm as described in [10].

Algorithm 1 Compute Optimal Set
Input: Budget k; query set Q; set Ot from DBN;
utility function F ; previous observed set E

t�1

and corresponding set of
classifier outputs v; Cost function C.
Output: Set of observations E ✓ Ot

Let E = �

for i = 1 to k do
o

⇤
= arg max

o2Ot\E

F(Q, E [ {o}, E
t�1

, v)

E = E [ {o⇤}
end for
return E

How to handle delay requirements of queries?
In CQue, we unroll the DBN such that it can accommodate a se-
ries of observations of length W . At each time-step, we slide the
DBN window over observations such that the oldest observations
are dropped and the latest observations are added to the DBN. As
a result of this sliding window, any context observation resides
in DBN for exactly W time-steps. Hence, we can compute the
probability for queried contexts W times, corresponding to having
0, 1, 2, ..., W � 1 observations from the future. This allows our
framework to answer a query with a delay upto W � 1 time-steps.
Our framework can use this delay period in three cases: i) if the
sequence of historical observations have low confidence resulting
in low confidence for the latest observation, ii) if the sequence of
historical observations have fluctuating values for the contexts indi-
cating low confidence in the output of context inference algorithms,
and iii) if the latest observation is different from the historical ob-
servations. In the first two cases, we wait for the future observations
and hope that these observations are consistent and have high con-
fidence. If this happens, we boost the probability of queried context
in hindsight. In the third case where the latest observation is differ-
ent from the historical observations, it can happen either because of
intermittent misclassification by the classifier or because the con-
text value has actually changed. Any future observation can help in
distinguishing these cases and improve the certainty in the context.

How to execute privacy queries?
Unlike queries that request current state of an individual, privacy
queries look for aggregate information regarding the mutual infor-
mation shared between a context and sensor data or other contexts
available in CQue. In our framework, we provide two types of pri-
vacy queries: i) user specifies a query context, Q and wants to know
information revealed about the queried context from a specified list
of sensors (S) and contexts (C); and ii) user specifies a query con-
text Q and wants to know ranked list of contexts along with a pri-
vacy score that indicates how much information is revealed by a
ranked context about the queried context. Thus, these queries help
user understand how much information can be revealed about cer-
tain context from other contexts. Together, these two query types
enable users to make a decision regarding their own privacy.

For the first query type, given a user specified sensor list S we
identify context classifiers CS that can execute given sensors S. In
addition to S, user can provide a set of contexts C. Now, we want
to have an uncertainty measure in queried context Q if contexts in
C0

= C [ CS are observed. We use a normalized variant of mu-
tual information based on information theory that gives a distance

metric between Q and C0 and is given as follows :

D(Q|C0
) = 1� H(Q)�H(Q|C0

)

H(Q)

This metric takes value 1 if Q is independent of C0 and takes value
0 if Q is fully determined by C0. We use this measure as a privacy
score where a higher score indicates less information leakage.

For the second query type, a user is interested in identifying or-
dered list of contexts that reveal most information about queried
context Q. For each context c supported in CQue, we use privacy
score D(Q|c) as described above to measure information leaked
about queried context Q. We rank contexts based on this metric.

How to enforce privacy policies?
As described in §2, one of the benefits of CQue is that the DBN
provides in-depth and real-time information about correlations be-
tween different context outputs in contrast with HMMs and other
techniques that have been leveraged in prior work. Our focus is not
on identifying the best privacy exposure policy or proving its pri-
vacy properties; rather it is to demonstrate that CQue can be used
to develop such methods.

To demonstrate these benefits, CQue supports a privacy policy
that can suppress context values that leads to change in confidence
or the probabilistic belief about a private context greater than thresh-
old �. Such a policy can provide greater privacy control than a sim-
pler policy that just blocks a specific private context from being
revealed. In CQue, a user can define these policies specific to a po-
tential adversarial entity where this entity can be an application or
a group of applications or all the applications on the user’s phone.
A policy for a group of applications can be useful to protect against
information collusion among these applications in a group.

In CQue, we assume a strong adversary having access to the
user’s DBN. Now, we enforce user policy by using the DBN to
calculate the confidence or the posterior probability for the private
context using the output for the set of contexts, requested by the
adversarial entity, as observations in DBN. Also, we compute prior
probability for the private context without using any observations
in the DBN. If the difference between posterior probability and the
prior probability is greater than �, then we suppress the value of
the context that causes the maximum change in probabilities. If the
change in probabilities is still high with the remaining context out-
puts, we repeat the process of removing context value that causes
maximum change until we reach the threshold limit �. We release
the remaining contexts to the adversarial entity.

4.3 Learning the Graphical Model
Now, we describe the challenges involved in learning the DBN

model for the phone user. There are two challenges in learning the
DBN: a) how to learn structure without executing all sensors and
context inference algorithms continuously on the phone since this
consumes significant energy, and b) how to minimize interruptions
of the phone user to obtain ground truth labels for learning.
Context relationship hints: The learning process can degrade
user experience due to the energy cost of running several context
inference algorithms concurrently on the phone. While it is pos-
sible to randomly sample a few contexts at a time, this can slow
down the learning process as the random approach may not always
sample related contexts together. To perform efficient sampling and
facilitate faster learning of personalized relationships, we maintain,
for each context, a list of contexts to be sampled together that may
possibly have soft relationships. The soft relationships may or may
not hold for individual users and it does not necessarily result in
edges in DBN connecting softly-related contexts. As it may not be



possible to envision all the soft relationships, we still perform ran-
dom sampling and bias the sampling for contexts that seem to be
related.

While the use of soft relationships can address the efficient sam-
pling problem, we can speed up the learning process and parameter
estimation in DBN by the use of hints that can be provided by the
context-inference algorithm developers. A context developer can
include hints for each context that identify positive causes and neg-
ative causes for it. As an example, driving is a direct positive cause
for user’s location being on street whereas user’s location being at
home is a negative cause for on street. These hints can be directly
utilized in setting the parameters for relationships that are true for
a majority of users.
Minimizing human-provided labels: One of the challenges in
learning the dynamic bayesian network is that we do not have ac-
cess to ground truth for contexts. While ground truth can be ob-
tained by having the user provide ground truth for an initial training
period, we wish to minimize interruptions and hence use this option
sparingly. Instead, we can sample the contexts inferred by the algo-
rithms along with the confidence value associated with the output.
The inferred context values provide us with the partial observations
of the underlying Markovian process. We use the Structural EM al-
gorithm described in [7] to learn the structure of the DBN from the
partial observations. In this algorithm, the structure of the DBN is
improved iteratively until the MDL score of the structure B given
a training data set D converges. Let us suppose a structure B con-
sisting of n random variables X

1

, ..., X
n
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i
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i
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need to take expected counts as we have access to only partial ob-
servations. We simplify the learning process by first learning the
static network of the DBN followed by learning the transition edges
of the network. This process is suboptimal in nature but it has been
shown in practice to yield parameters estimates close to optimal.

While learning the DBN without any human input is ideal, this
can lead to errors particularly if the training and test context distri-
butions are very different. Thus, there is a need for at least some
corrective human input. We randomly sample human input for a
small fraction of contexts in-order to correct DBN parameters, and
assign these human-provided contexts higher weight over the in-
stances obtained using context-inference algorithms.

4.4 Classifier Personalization
So far, our discussion has assumed that the underlying context

classifiers are black-boxes i.e. they do not expose their internal be-
havior or allow changes. Thus, the DBN is limited to the context
output and uncertainty provided by the classifiers. A natural ques-
tion is whether we can do better if we were able provide feedback
from the DBN to the classifier in-order to improve its performance
further.

In CQue, any human input provided to the DBN can not only
be used to correct DBN parameters, but also be used to personal-
ize the classifiers. A classifier personalized for an individual user

is beneficial as it provides higher classification accuracy and bet-
ter uncertainty estimates. The use of personalized classifiers also
benefits the DBN — with personalized classifiers, the correct DBN
parameters can be learnt using fewer future human input resulting
in shorter training period. CQue provides an API to the developers
of context classifiers to receive human-provided labels that can be
leveraged for personalization.

5. IMPLEMENTATION
We now describe the implementation of CQue on Android smart-

phones running Android OS version 2.2 or higher.
Inference Engine: The CQue inference engine is designed to
run in real-time on a mobile phone to avoid any delays incurred
in accessing the cloud. The query processor maintains a model
of a DBN that is personalized to the phone user. This model is
stored as a file in an XMLBIF format which is an interchange for-
mat that is recognized by most bayesian inference softwares. In our
implementation, we use the well known variable-elimination algo-
rithm’s implementation for probabilistic inference provided by the
Java Bayes package [1]. One downside is that accurate inference
using variable-elimination can take exponential time in the number
of variables in the bayesian network. While this was not an issue
for the number of contexts in our current implementation, this may
be a bottleneck as the number of contexts increase. Future imple-
mentations of CQue will use fast approximate inference algorithms
such as importance sampling and MCMC simulation to optimize
inference performance on the phone [21].
Query Plan: As discussed in §4.2, CQue uses a dynamic query
plan where the decision regarding what contexts to execute given a
certain energy budget is periodically re-visited to capture dynamics
in the incoming context stream. Such dynamic adaptation can be
expensive to perform on the phone since it depends on the number
of contexts in the DBN. So, for infrequent plan evaluation or if
the size of the DBN is small, our implementation performs such
planning on the phone, but otherwise offloads the computation to
the cloud.
DBN Learning: While the execution engine can execute on a
mobile phone, learning the DBN is more computationally inten-
sive and requires cloud support. We implemented the DBN learn-
ing algorithm using partial observations by modifying the WEKA
package [9]. CQue offloads the process of learning the DBN to the
cloud by sending the appropriate context instances to the server at
the end of each day. The DBN is learnt at the end of every day in
the cloud and is sent back to the CQue framework in XMLBIF for-
mat. Over time, the frequency of updating the DBN reduces as its
structure and parameters stabilize. Also, to facilitate faster learning
of DBN parameters, we maintain a configuration file that provides
initial parameter estimates for the DBN, based on average numbers
from a general population. The configuration file has entries for
each context containing a list of positive and negative causes for
it along with the conditional probability. For example, the nega-
tive cause list for the context at office looks like: at home,0.99; at
store,0.85; at restaurant,0.93; driving,1.0.
Query Processor: We implemented the context engine as a back-
ground service running on android phones. This service is respon-
sible for activating context-inference algorithms and appropriate
sensors, and providing the context values generated by the algo-
rithms to the query processor. Communication between the query
processor and the context engine uses Android IPC. Our implemen-
tation currently supports semantic location contexts, social contexts
and activity contexts: a) Activity contexts: walking, driving and
stationary, b) Social contexts: with friends, with colleagues and



alone, and c) Location contexts: at restaurant, at home, at office,
at store and on street.

Our implementation uses decision-tree classifiers for activity recog-
nition. We used well-known set of features extracted from the 3-
axis accelerometer and gyroscope readings. The following features
were computed for accelerometer readings along each of the three
axis: mean, standard deviation, mean-crossing rate, energy given
as normalized sum of squared discrete FFT component, peak fre-
quency in FFT and peak energy. In addition, we computed cor-
relation between each pair of axes. The gyroscope readings were
used to compute mean and standard deviation of angular velocity
around each of the three axis. For classifying social and location
contexts, we used a user-provided mapping from bluetooth devices
to the social context and a mapping from WiFi access points to
the corresponding semantic location (either user provided or using
publicly available databases). Unlike activity contexts, the classi-
fied social and location contexts have higher confidence associated
with them. While we restricted ourselves to the above contexts due
to the nature of our datasets, our architecture is general is designed
to accommodate other context-engines that may be added by prac-
titioners.

User Interface: The CQue framework provides an interface to
the user to specify an energy budget and preferences for interrup-
tion (during training) and privacy. The energy budget can be speci-
fied as a fraction of a full battery that may be used for running CQue
and a battery threshold below which CQue should be stopped. For
interruption preferences, a user can specify the total interrupts per-
mitted per day while training the DBN. For privacy preferences, a
user can select private contexts, select a level of protection against
adversary from low, medium and high where these values map to
values for threshold for change in adversarial confidence � = 0.4,
� = 0.25 and � = 0.05 respectively. Additionally, user can select
the applications for which these preferences apply.

6. EXPERIMENTAL RESULTS
In this section, we describe the set of experiments performed to

evaluate our framework. We first describe the data sets and the
evaluation metrics used for the experimental evaluation. Next, we
present our analysis of privacy for various contexts.We then look at
the energy-accuracy tradeoffs and demonstrate the benefits of using
DBN over context-classifiers using a set of experiments, and con-
clude with an evaluation of how various parameters such as delay,
and interruption budget impact results.

6.1 Data Sets and Evaluation Metrics

Datasets.
In order to conduct our experiments, we used following two datasets:

Reality Mining Dataset: This data set contains data collected
continuously for 100 students and staff at MIT over academic year
2004-2005. This data provides various contexts like user’s loca-
tion (work, home, other) based on cell-tower observations, social
contexts based on proximity of bluetooth devices and physical ac-
tivities like stationary, walking and driving based on self-reports.
The duration of user traces varied from 30 days to 269 days. In
our evaluation, we used data from 37 users who had data for at
least 10 weeks. The traces for each of these users contains 3 loca-
tion contexts and 3 activity contexts. In addition, we derive social
contexts using clustering of bluetooth devices that appear closer in
time, thus the number of social contexts varied from user to user
and there were at least 2 such contexts.

Activity Dataset: While the reality mining dataset has rich multi-
sensor data, it relies on self-reports for activity classification, hence
it does not allow us to understand how accuracy of activity classi-
fiers can be improved through the use of CQue. To address this, we
collected a trace of user contexts for two weeks from seven users.
Each of the seven users provided about 50 context labels per day.
Since there could be labeling error, we corrected activity context in-
formation using GPS information and manual correction at the end
of each day. All users providing data were graduate students. We
used data from four users to train the activity classifiers. For test-
ing, we used these classifiers to classify activities for the remaining
three users. For each user in the test set, we divided their data into
two weeks — in the first week, a personalized user-specific DBN
is trained using the outputs of the classifier algorithms, and a few
human labels obtained from the ground-truth set (depending on the
interruption limits, and label selection scheme), and the data in the
second week is used to evaluate CQue.

Set of Contexts.
In both the datasets, we have a set of contexts that includes lo-

cation contexts like at home, at office, on street and three activ-
ity contexts, namely, walking, driving and stationary. For social
contexts, we use the groups of bluetooth devices in the close prox-
imity of a user as the social context. In Activity dataset, we have
these groups explicitly labeled as friends, colleagues, roommates,
spouse whereas in Reality mining dataset, we do not have explicit
labels but we identify these groups as group-1, group-2 and so on.
For each context, the corresponding classifier outputs true or false
value along with the confidence value associated with the classifi-
cation output. We use these values as input in DBN.

Evaluation metrics.
We use three performance metrics in our evaluation: 1) Accu-
racy, which is computed as the fraction of these contexts that are
correctly classified, 2) Confidence, or the probability of the most
likely value for the context provided by the DBN, and 3) F-Measure
which gives the harmonic mean of recall and precision (higher
score is better)

6.2 Cost-Accuracy Tradeoffs using DBN
One of the benefits of a DBN is that it allows a tradeoff cost for

accuracy — by understanding the relations across different con-
texts, an inference algorithm can be turned off to reduce overhead.
While the “cost" can be different depending on the sensing and
communication needs of the inference algorithm, or the burden of
user input, we use a simplistic model where we assume that all
classifiers have equal cost. This model provides an intuitive under-
standing of the cost-accuracy tradeoffs.

Classifiers < Queries. We first look at the case where the sys-
tem runs fewer classifiers than the number of queries and exploits
the context-relationships to answer context queries for which there
are no observations coming from the classifier. This case demon-
strates that the DBN can be used to answer the context queries in
expectation which is not possible otherwise using classifiers alone.
We evaluate this model using the Reality Mining dataset.

In this experiment, we consider all the contexts that we support
to be in the query set. We then vary the budget such that it can
execute between 1 to 5 classifiers. Based on the budget, the set of
classifiers are chosen that can provide maximum information gain
as described in §4.2.

Figure 4 shows the accuracy and F-measure averaged over 37
users as the number of classifiers increases. We see that both these
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Figure 4: Effect of varying number of executing context classifiers
when number of queries (� 6) is higher than the number of executing
contexts. The figure shows aggregate accuracy and F-measure over 37
users for static and dynamic plan execution.

metrics improve as we increase the number of classifiers, and even
with two classifiers executing, we get fairly good accuracy and F-
measure. Thus, significant benefits can be obtained with only a
small number of classifiers by leveraging a DBN model of the rela-
tions across contexts.

It might seem surprising that very high accuracy can be achieved
even with a single classifier. In fact, this is because most contexts
have biased distribution (e.g. the stationary state is true (> 90%)

of the time), hence high accuracy can be achieved by just using the
model in expectation with no classifiers executing! But this gives
poor recall, precision and consequently the F-measure is low, and
more context input is required to improve these metrics. Figure 4
shows that DBN achieves 75% F-measure and 94% accuracy using
only 4 classifiers resulting in at least 33% cost reduction.

Figure 4 also compares the use of a dynamic plan where the
query plan is re-evaluated every 20 minutes vs a static plan where
the query plan is evaluated once. The dynamic plan provides better
accuracy and F-measure than static plan across the board. This is
because the dynamic plan selects appropriate set of classifiers using
value of information provided by the observed classifier outputs in
real-time whereas static plan selects the set of classifiers without
considering the real-time classifier outputs.

Classifiers > Queries. We now look at the benefits of using a
DBN when the number of classifers that execute are greater than the
number of queries. We use the Activity dataset in this study, since
we have raw data for activity inferences, which are typically the
contexts with highest inaccuracy. We look at the performance for
the three activity contexts (walking, driving and stationary), which
have highest uncertainty. We compare two mechanisms: a) using
just the activity recognition classifiers, and b) using all the context
classifiers with DBN. We show results for three representative users
in the dataset.

Figure 5(a) shows that accuracy is worst when we use only clas-
sifiers alone, and the use of DBN improves improve accuracy sig-
nificantly. The improvement in accuracy by using DBN for users
U1 and U2 is above 24% for both stationary and driving contexts.
Improvements are small for walking activity (2%) since DBN nei-
ther observed any context strongly related with walking nor the
temporal consistency. This was because walking was a rare con-
text and rarely lasted for longer than a few minutes.

Figure 5 (b) shows F-measure for various classes. We see that
this metric generally improves since the main role of the DBN is to
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Figure 5: Accuracy and F-Measure for various activity classes
for Classifier only and gain provided by Classifier+DBN mech-
anism on data from 3 users. Results show that using the DBN is
beneficial in most cases, except in the case of rarely occurring
contexts.

correct the outputs provided by the classifiers and hence, improve
recall and precision. Since the DBN performs corrections using
the temporal consistency, the recall value for a certain context may
drop if the context is rarely seen and lasts for a very short duration.
In our traces, we observed that the walking activity was infrequent.
In such a case, if the classifier does not generate output with high
confidence the DBN can smooth out the walking context resulting
in reduced recall but higher precision. As a result, F-measure does
not see significant gain. In contrast, the driving context though
rarely seen as compared to stationary lasts longer and hence, sees
improvement in recall and hence, improves F-measure.

6.3 Evaluating Privacy
In this section, we evaluate two aspects of how CQue can be

useful in dealing with privacy breaches due to correlations across
contexts.
Location-Social Relations: In our first experiment, we look at a
two sensor scenario and understand the correlations between these
contexts across different datasets. Recall that location is obtained
through GPS and social interactions through bluetooth. We use
CQue to understand how a privacy breach can occur for a privacy-
sensitive context through indirect observations. Here, we assume
a strong adversary that has access to the personalized DBN for a
user. Potentially, this is possible if various apps on a phone that
observe different contexts decide to collude and combine their data
to generate a complete DBN.
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Figure 6: Cumulative distribution of privacy scores for cross-
context pairs in i)Reality Mining dataset (RM), and ii)Activity
dataset(AD). From the distribution of privacy scores, we can
conclude that there is significant cross-context privacy leakage
in Activity dataset whereas no such leakage is observed in Re-
ality Mining dataset. This emphasizes the importance of per-
sonalized DBN to evaluate privacy for a user.

Given such an adversary, a privacy-sensitive context can be in-
ferred by observing one or more other contexts. Using our privacy
score, we can rank contexts in the decreasing order of its capabil-
ity to infer privacy-sensitive context. In this experiment, we look
two scenarios: a) all cases where we use one location context as a
private context (p) and a social context o as observation, and b) the
reverse scenario where a social context are private and location is
observed. We evaluate privacy score D(p|o) for each pair hp, oi
of contexts. Figure 6 gives distribution of privacy scores for these
scenarios for the Reality Mining and Activity Datasets.

The results are interesting — we see that there is considerably
higher correlation across location and social context in the case of
the activity dataset than in the reality mining data. This is also
reflected in Table 1, which shows the accuracy of inferring loca-
tion/social only based on the prior distribution of these contexts
v.s. observing the other context. The results show that there is only
a small change in the case of the RM dataset, but the accuracy in-
creases by more than 25% in the case of the AD dataset. In other
words, an adversary would be able to infer an individual’s location
with substantial accuracy if they only had access to the bluetooth
information on the AD dataset. Our explanation for these results
is that bluetooth usage is far more prevalent in recent times, there-
fore the correlations have increased. Overall, our results show that
CQue can be used to provide intuition about the correlations across
contexts, thereby enabling more informed decision about what to
expose.

Suppression Policy for Privacy: In our second experiment, we
look at how CQue can be used to implement a real-time suppression
policy for protecting privacy. Our policy is intended to be repre-
sentative and illustrate how the DBN may be used, and we make no
formal claims regarding its privacy properties. In our experiment,
the user can define a policy that permits releasing a maximal set of
context observations such that the change in adversarial confidence
for private context upon observing this set is less than threshold �.
As a result, some of the non-private contexts can be suppressed in
real-time to control the change in adversarial confidence. Thus, it
results in lower utility for the applications seeking contexts. Figure
7 gives an example showing the fraction of context data that can be

(a) Privacy leakage in All Location Contexts

Metric
Observation

None All social
contexts

Accuracy (RM) 73.9±3.0 74.81±2.73
Accuracy (AD) 61.11±5.55 88.9±6.26

(b) Privacy leakage in All Social Contexts

Metric
Observation

None All location
contexts

Accuracy (RM) 73.86±2.9 74.18±2.82
Accuracy (AD) 64.01±15.29 87.3±5.94

Table 1: Cross-context privacy leakage in location and so-
cial contexts for i)Reality Mining dataset(RM), and ii)Activity
dataset(AD). For activity dataset, we see significant increase in
accuracy for all the location contexts when all the social con-
texts are observed and vice versa. For reality mining dataset,
accuracies do not change with cross-context observations.
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Figure 7: Fraction of data that can be released to prevent
change in adversarial confidence greater than � for a private
context at home.

released as a result of this suppression for various values of � where
we chose at home as the private context and rest of the contexts as
queries. A smaller value of � results in much tighter privacy control
but releases too few contexts.

Table 2 shows the fraction of data suppressed in context of each
category: social, location, and activity for value of threshold � 2
{0.1, 0.4}. In this case, we choose at friend’s place as a private
context available in Activity dataset. We can see that CQue sup-
presses in an intelligent manner where it suppresses highly cor-
related social context more frequently than the less correlated lo-
cation or activity contexts. If we were to use a mechanism like
MaskIT [8], it would suppress every context at the same level.
Since CQue releases more contexts, it results in higher utility for
the applications and the users who use these applications.

In conjunction, these experiments demonstrate the potential use
of CQue both for understanding privacy implications of releasing
a context, as well as to implement privacy policies that leverage
relations across contexts.

6.4 DBN with Personalized Classifiers
While all our previous results have assumed classifiers to be

black-box code that cannot be modified, we now look at the case
where we can personalize the classifiers using the human input ob-
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Figure 8: ROC curve for each activity class for i) non-personalized classifier, ii) personalized classifier, and iii) DBN using personal-
ized classifier.

Threshold Social Location Activity
� Context Context Context

0.4 27.67% 13.99% 17.52%
0.1 26.81% 16.01% 17.35%

Table 2: Table showing fraction of data suppressed in contexts
of each category to prevent change in adversarial confidence
greater than � for a private context at friend’s place.

tained by the DBN during its learning phase. This feature leverages
the fact that contexts like user activity can see significant benefit
with personalization as there are differences across individuals.

In our experiment, we personalize the classifiers for activity con-
texts in AD dataset by training it with additional user-specific la-
bels obtained from the user’s data for training DBN i.e. the first
week of user’s trace. Figure 8 gives ROC curves for each activity
class for both personalized and non-personalized classifiers. The
ROC curve shows the performance of the classification mechanism
when the discrimination threshold is varied. A classification mech-
anism with a larger area under the ROC curve indicates that it is
a better mechanism. In figure 8, it can be seen that the personal-
ized classifier tends to have larger area under the ROC curve com-
pared to the non-personalized classifiers. Moreover, the area under
ROC curve for DBN is always larger than the area for either of
the classifier-based schemes. Except for walking which has a small
operating region where the classifier performs better than DBN, the
DBN clearly dominates the classifiers over all operating regions in
the ROC. This shows that classifier personalization together with a
DBN can provide the best method to improve accuracy.

6.5 Impact of Delay
The delay tolerance period provided by queries provides a tun-

ing knob that can influence results provided by the query engine.
In this experimental setup, we study the impact of increasing value
of this parameter on activity contexts in AD dataset. In general,
whenever the DBN observes a change in context value output by
the classifiers, the confidence of the DBN may drop. This con-
fidence improves with more observations obtained in the future.
Thus, the main role of using a delay-tolerance period is to improve
confidence in the DBN output. Figure 9 shows the distribution of
confidence when delay-tolerance is increased. Apart from boost-
ing confidence, the use of a delay-tolerance window reduces the
intermittent misclassifications by the classifiers.

6.6 Implementation Benchmarks
We benchmark our implementation on Samsung Galaxy Nexus

phone running Android OS version 4.1.2. This device has 700MB
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Figure 9: Effect of delay on confidence distribution, as we in-
crease delay-tolerance for queries from zero to three minutes.
We consider all the query results that had conf< 0.98 when
DBN was used with 0 delay in response (35% of the results),
and show how summary statistics for this group improves as
we increase the delay-tolerance for the queries from 0 to 3.

RAM and 1.2 GHz dual-core processor. In this evaluation, we look
at the following two metrics: i) inference time i.e. the time required
to make a probabilistic inference about a context given a set of
evidences from the classifiers, and ii) plan evaluation time i.e. the
time required to generate a dynamic plan for a given set of queries.
All experiments are done using the Reality Mining dataset.

Inference Time: Since the computational complexity of an accu-
rate inference algorithm to infer a context is exponential in number
of parent nodes for the context in DBN, the actual required time
for probabilistic inference varies from context to context and from
user to user due to variations in the personalized DBN model struc-
ture. Thus, we measure inference time using traces from multiple
users with varying size of the DBN model. In this experiment, we
select one context as a query and use rest of the contexts as ob-
servations. We repeat this experiment for all the available contexts
for each user. The user traces consisted of 5-11 contexts. Upon
evaluation on Galaxy Nexus phone, we observed an average infer-
ence time across all the contexts and the users to be 9.31±0.71ms.
Also, the fastest context had an average inference time of 2.13ms
for a user trace consisting of 7 contexts whereas the slowest context
had an average inference time of 21ms for a user with DBN model
consisting of 11 contexts.
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Figure 10: Time to generate a dynamic plan selecting best k
classifiers where k varies from 1 to 4 and the query set consists
of all the contexts available in a DBN. The figure shows the vari-
ation in time as the number of contexts in a DBN, N is varied
from 5 to10. The plan evaluation time increases linearly in k
and exponentially in N .

Plan Evaluation time: We evaluate plan evaluation time on
Galaxy Nexus phone for multiple user traces consisting of 5-11
contexts. In this evaluation, we set all the contexts as queries and
measure time to generate dynamic plan selecting best k classifiers
where k = 1, 2, 3, 4. We note that the time complexity of gener-
ating dynamic plan with best k classifiers is linear in k and expo-
nential in N where N is the number of contexts in the DBN. We
show the results in Figure 10. From the figure, we can see that the
plan evaluation time increases quickly with the number of contexts
in DBN and requires more than a minute to evaluate best 4 classi-
fiers for a DBN consisting 10 contexts. This might still be practical
if we generate a plan only when the set of queries change, which
might be infrequent. However, if the plan is re-evaluated every few
minutes, this approach quickly becomes infeasible. This problem
can be addressed in two ways: i) using an approximate inference
algorithm with better time complexity, which is part of our ongo-
ing work, or ii) evaluating the plan in the cloud when its complexity
exceeds a certain threshold. Of course, dynamic plan evaluation on
the cloud has the overhead of data transfer of the current classifier
outputs with the appropriate confidence values. However, the DBN
model itself is not required to be sent to the cloud as it is already
trained on the cloud.

7. DISCUSSION
In our results, we have demonstrated the utility of CQue frame-

work for energy-efficient and accurate continuous sensing of user
context while understanding the privacy implications. In this sec-
tion, we discuss potential opportunities for improvement and var-
ious interesting questions posed by our framework for further ex-
ploration.
Feature-level DBN structure: Our current implementation of
the DBN supports fusion of high-level categorical contexts that are
the outputs of classifiers. While this is beneficial in that we can take
advantage of extensive work on the design of individual activity
or behavior classifiers, the downside is that if a classifier outputs
inaccurate uncertainty estimates, we may have incorrect inferences
that can impact the accuracy of all the related contexts. One way
to address this issue may be to use both categorical contexts from
classifiers as well as low-level signal features extracted from the

sensor data (e.g. spectral features, mean, variance, etc), and to use
combination of these different inputs towards information fusion
for context inference.

Privacy leakage: We have touched upon the issue of privacy
leakage by leveraging correlations across contexts, but CQue does
not capture all possible attacks that can use multi-sensor inference
techniques. The privacy leak detection in CQue for a sensitive con-
text is based on a model of adversary who is aware of the context
relationships in DBN, but it is possible to have an undetected pri-
vacy leak if there are relationships that cannot be modeled by the
DBN. For example, the DBN can model and evaluate privacy leak-
age over a short window of W adjacent time steps but it cannot
detect privacy leaks before W time steps. A powerful adversary
with alternative long-term models may still be able to execute pri-
vacy attacks. Thus, much work remains before we fully understand
how to effectively understand the extent of privacy leakage that is
possible using sophisticated multi-sensor inference techniques.

Duty-cycling classifiers: One question that we have not fully
explored is the interaction between duty-cycled classifiers and the
DBN. Several techniques have been proposed to leverage temporal
consistency in classifiers for duty-cycling i.e. if the context value is
not expected to change for some time period, then reduce the sam-
pling rate of the sensor. CQue does not currently take advantage
of such approaches to duty-cycle classifiers. One method to incor-
porate such approaches is to use the last observed classifier output
as evidence in DBN for next few time-steps while the classifier is
inactive. Another interesting question is whether the DBN can be
used to learn the duty-cycle for each classifier. Intuitively, if the
current state of DBN indicates that some context, say c, is unlikely
to change soon then we can have a lower duty-cycle for context c
where its classifier will remain inactive for a long time.

DBN learning time: How much training data is needed to fully
learn an accurate DBN structure? Although one week of trace
proved to be sufficient to learn good structures in our experiments,
it might not be the case in general since there may be some longer-
range patterns that cannot be captured, and the patterns may change
over time. To answer this question, we need larger-scale datasets
across more individuals that can help us understand how to learn
the DBN effectively across a population while limiting burden to
provide labels, as well as the learning period.

8. CONCLUSIONS
Context awareness distinguishes smartphones from traditional

computing platforms and can play a key role in creating smart mo-
bile applications. We argue that user contexts across several di-
mensions are correlated, and if we can learn these correlations in a
personalized manner, we can leverage it to improve performance as
well as understand the privacy implications of revealing seemingly
unrelated contexts. In this paper, we described our context querying
framework, CQue, that exploits probabilistic relationships across
contexts for each individual user to improve energy-efficiency, ac-
curacy and reliability of context sensing, as well as the ability to
understand privacy implications.

The ability to understand relations across contexts can have far-
reaching consequences. A growing area of healthcare is person-
alized behavioral monitoring using smartphones and on-body sen-
sors, where behavioral scientists seek to understand relations be-
tween addictive or unhealthy behavior, and the individual’s state in
the real world (activities, social interactions, location, etc) . Our
work can enable such understanding, and is a step towards a “big
data inference toolkit” for mobile sensing.



9. ACKNOWLEDGEMENTS
We thank our shepherd, Nicholas Lane, and the anonymous re-

viewers for their comments. This research was supported by UMass
S&T award and NSF grants CNS-0910900 and CNS-0855128.

10. REFERENCES
[1] Java bayes. http://www.cs.cmu.edu/ javabayes/.
[2] L. Bao and S. S. Intille. Activity Recognition from

User-Annotated Acceleration Data. Pervasive Computing,
pages 1–17, 2004.

[3] D. Chu, A. Deshpande, J. M. Hellerstein, and W. Hong.
Approximate Data Collection in Sensor Networks using
Probabilistic Models. In ICDE, page 48, 2006.

[4] D. Chu, N. Lane, T. Lai, C. Pang, F. Li, X. Meng, Q. Guo,
and F. Zhao. Balancing energy, latency and accuracy for
mobile sensor data classification. In SenSys, pages 54–67,
2011.

[5] A. Deshpande, C. Guestrin, W. Hong, and S. Madden.
Exploiting correlated attributes in acquisitional query
processing. In ICDE, pages 143–154, 2005.

[6] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and
W. Hong. Model-driven data acquisition in sensor networks.
In VLDB, pages 588–599, 2004.

[7] N. Friedman, K. Murphy, and S. Russell. Learning the
Structure of Dynamic Probabilistic Networks. In UAI, pages
139–147, 1999.

[8] M. Götz, S. Nath, and J. Gehrke. Maskit: privately releasing
user context streams for personalized mobile applications. In
SIGMOD, pages 289–300, 2012. ACM.

[9] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,
and I. H. Witten. The weka data mining software: An update.
In SIGKDD Explorations, pages 10–18, 2009.

[10] A. Krause and C. Guestrin. Near-optimal Nonmyopic Value
of Information in Graphical Models. In UAI, pages 324–331,
2005.

[11] J. Lester, T. Choudhury, N. Kern, G. Borriello, and
B. Hannaford. A hybrid discriminative/generative approach
for modeling human activities. In IJCAI, pages 766–772,
2005.

[12] M. Li, D. Ganesan, and P. Shenoy. Presto: feedback-driven
data management in sensor networks. In NSDI, page 23,
2006.

[13] H. Lu, J. Yang, Z. Liu, N. D. Lane, T. Choudhury, and
A. Campbell. The jigsaw continuous sensing engine for
mobile phone applications. In SenSys, pages 71–84, 2010.

[14] A. Meliou, C. Guestrin, and J. M. Hellerstein.
Approximating sensor network queries using in-network
summaries. In IPSN, pages 229–240. IEEE, 2009.

[15] S. Nath. Ace: exploiting correlation for energy-efficient and
continuous context sensing. In Proceedings of the 10th
international conference on Mobile systems, applications,
and services, MobiSys ’12, pages 29–42, New York, NY,
USA, 2012. ACM.

[16] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An
analysis of approximations for maximizing submodular set
functions-I. Mathematical Programming, 14(1):265–294,
Dec. 1978.

[17] A. Parate and G. Miklau. A framework for safely publishing
communication traces. In Proceedings of the 18th ACM
conference on Information and knowledge management,
CIKM ’09, pages 1469–1472, New York, NY, USA, 2009.
ACM.

[18] J. Pearl. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kaufmann, San
Francisco, USA, 1988.

[19] R. A. Popa, H. Balakrishnan, and A. J. Blumberg. Vpriv:
protecting privacy in location-based vehicular services. In
Proceedings of the 18th conference on USENIX security
symposium, SSYM’09, pages 335–350, Berkeley, CA, USA,
2009. USENIX Association.

[20] N. Ravi, N. Dandekar, P. Mysore, and M. L. Littman.
Activity recognition from accelerometer data. In IAAI, pages
1541–1546, 2005.

[21] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern
Approach. Prentice Hall, second edition, 2002.


