
Probabilistic Models of Nonprojective Dependency Trees

David A. Smith
Department of Computer Science

Center for Language and Speech Processing
Johns Hopkins University

Baltimore, MD 21218 USA
dasmith@cs.jhu.edu

Noah A. Smith
Language Technologies Institute

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213 USA
nasmith@cs.cmu.edu

Abstract

A notable gap in research on statistical de-
pendency parsing is a proper conditional
probability distribution over nonprojective
dependency trees for a given sentence. We
exploit the Matrix Tree Theorem (Tutte,
1984) to derive an algorithm that efficiently
sums the scores of all nonprojective trees
in a sentence, permitting the definition of
a conditional log-linear model over trees.
While discriminative methods, such as those
presented in McDonald et al. (2005b), ob-
tain very high accuracy on standard de-
pendency parsing tasks and can be trained
and applied without marginalization, “sum-
ming trees” permits some alternative tech-
niques of interest. Using the summing al-
gorithm, we present competitive experimen-
tal results on four nonprojective languages,
for maximum conditional likelihood estima-
tion, minimum Bayes-risk parsing, and hid-
den variable training.

1 Introduction

Recently dependency parsing has received renewed
interest, both in the parsing literature (Buchholz
and Marsi, 2006) and in applications like translation
(Quirk et al., 2005) and information extraction (Cu-
lotta and Sorensen, 2004). Dependency parsing can
be used to provide a “bare bones” syntactic struc-
ture that approximates semantics, and it has the addi-
tional advantage of admitting fast parsing algorithms
(Eisner, 1996; McDonald et al., 2005b) with a neg-
ligible grammar constant in many cases.

The latest state-of-the-art statistical dependency
parsers are discriminative, meaning that they are
based on classifiers trained to score trees, given a
sentence, either via factored whole-structure scores
(McDonald et al., 2005a) or local parsing decision
scores (Hall et al., 2006). In the works cited, these
scores are not intended to be interpreted as proba-
bilistic quantities.

Here we consider weighted dependency parsing
models that can be used to define well-formed con-
ditional distributions p(y | x), for dependency
trees y and a sentence x. Conditional distribu-
tions over outputs (here, trees) given inputs (here,
sentences) have certain advantages. They per-
mit marginalization over trees to compute poste-
riors of interesting sub-events (e.g., the probabil-
ity that two noun tokens bear a relation, regard-
less of which tree is correct). A probability model
permits alternative decoding procedures (Goodman,
1996). Well-motivated hidden variable training
procedures (such as EM and conditional EM) are
also readily available for probabilistic models. Fi-
nally, probability models can be chained together (as
in a noisy channel model), mixed, or combined in a
product-of-experts.

Sequence models, context-free models, and de-
pendency models have appeared in several guises;
a cross-model comparison clarifies the contribution
of this paper. First, there were generative, stochas-
tic models like HMMs, PCFGs, and Eisner’s (1996)
models. Local discriminative classifiers were pro-
posed by McCallum et al. (2000) for sequence mod-
eling, by Ratnaparkhi et al. (1994) for constituent
parsing, and by Hall et al. (2006) (among others) for



dependencies. Large-margin whole-structure mod-
els were proposed for sequence labeling by Al-
tun et al. (2003), for constituents by Taskar et al.
(2004), and for dependency trees by McDonald et
al. (2005a). In this paper, we propose a model
most similar to the conditional random fields—
interpretable as log-linear models—of Lafferty et al.
(2001), which are now widely used for sequence la-
beling. Log-linear models have been used in pars-
ing by Riezler et al. (2000) (for constraint-based
grammars) and Johnson (2001) and Miyao and Tsu-
jii (2002) (for CFGs). Like McDonald et al., we use
an edge-factored model that permits nonprojective
trees; like Lafferty et al., we argue for an alternative
interpretation as a log-linear model over structures,
conditioned on the observed sentence.

In Section 2 we point out what would be required,
computationally, for conditional training of nonpro-
jective dependency models. The solution to the con-
ditionalization problem is given in Section 3, using a
widely-known but newly-applied Matrix Tree Theo-
rem due to Tutte (1984), and experimental results are
presented with a comparison to the MIRA learning
algorithm used by McDonald et al. (2005a). We go
on to describe and experiment with two useful appli-
cations of conditional modeling: minimum Bayes-
risk decoding (Section 4) and hidden-variable train-
ing by conditional maximum likelihood estimation
(Section 5). Discussion in Section 6 considers the
implications of our experimental results.

Two indepedent papers, published concurrently
with this one, report closely related results to ours.
Koo et al. (2007) and McDonald and Satta (2007)
both describe how the Matrix Tree Theorem can be
applied to computing the sum of scores of edge-
factored dependency trees and the edge marginals.
Koo et al. compare conditional likelihood training
(as here) to the averaged perceptron and a max-
imum margin model trained using exponentiated-
gradient (Bartlett et al., 2004); the latter requires
the same marginalization calculations as conditional
log-linear estimation. McDonald and Satta discuss a
variety of applications (including minimum Bayes-
risk decoding) and give complexity results for non-
edge-factored models. Interested readers are re-
ferred to those papers for further discussion.

2 Conditional Training for Nonprojective
Dependency Models

Let x = 〈x1, ..., xn〉 be a sequence of words (possi-
bly with POS tags, lemmas, and morphological in-
formation) that are the input to a parser. y will refer
to a directed, unlabeled dependency tree, which is a
map y : {1, ..., n} → {0, ..., n} from child indices
to parent indices; x0 is the invisible “wall” symbol.
Let Yx be the set of valid dependency trees for x. In
this paper, Yx is equivalent to the set of all directed
spanning trees over x.1

A conditional model defines a family of probabil-
ity distributions p(y | x), for all x and y ∈ Yx. We
propose that this model take a log-linear form:

p~θ
(y | x) =

e
~θ·~f(x,y)∑

y′∈Yx

e
~θ·~f(x,y′)

=
e
~θ·~f(x,y)

Z~θ
(x)

(1)

where ~f is a feature vector function on parsed sen-
tences and ~θ ∈ Rm parameterizes the model. Fol-
lowing McDonald et al. (2005a), we assume that the
features are edge-factored:

~f(x,y) =
n∑

i=1

~f(x, xi, xy(i)) (2)

In other words, the dependencies between words in
the tree are all conditionally independent of each
other, given the sequence x and the fact that the
parse is a spanning tree. Despite the constraints they
impose on features, edge-factored models have the
advantage of tractable O(n3) inference algorithms
or, with some trickery, O(n2) maximum a posteriori
(“best parse tree”) inference algorithms in the non-
projective case. Exact nonprojective inference and
estimation become intractable if we break edge fac-
toring (McDonald and Pereira, 2006).

We wish to estimate the parameters ~θ by maxi-
mizing the conditional likelihood (like a CRF) rather

1To be precise, every word has in-degree 1, with the sole
edge pointing from the word’s parent, xy(i) → xi. x0 has in-
degree 0. By definition, trees are acyclic. The edges need not
be planar and may “cross” in the plane, since we do not have a
projectivity constraint. In some formulations, exactly one node
in x can attach to x0; here we allow multiple nodes to attach
to x0, since this occurs with some frequency in many existing
datasets. Summation over trees where x0 has exactly one child
is addressed directly by Koo et al. (2007).



than the margin (McDonald et al., 2005a). For an
empirical distribution p̃ given by a set of training ex-
amples, this means:

max
~θ

∑
x,y

p̃(x,y)
(
~θ · ~f(x,y)

)
−

∑
x

p̃(x) log Z~θ
(x)

(3)
This optimization problem is typically solved us-

ing a quasi-Newton numerical optimization method
such as L-BFGS (Liu and Nocedal, 1989). Such a
method requires the gradient of the objective func-
tion, which for θk is given by the following differ-
ence in expectations of the value of feature fk:

∂

∂θk
= (4)

Ep̃(X,Y) [fk(X,Y)]−Ep̃(X)p~θ
(Y|X) [fk(X,Y)]

The computation of Z~θ
(x) and the sufficient

statistics (second expectation in Equation 4) are typ-
ically the difficult parts. They require summing the
scores of all the spanning trees for a given sentence.
Note that, in large-margin training, and in standard
maximum a posteriori decoding, only a maximum
over spanning trees is called for—it is conditional
training that requires Z~θ

(x). In Section 3, we will
show how this can be done exactly in O(n3) time.

3 Exploiting the Matrix Tree Theorem for
Z~θ(x)

We wish to apply conditional training to estimate
conditional models of nonprojective trees. This re-
quires computing Z~θ

(x) for each training example
(as an inner loop to training). In this section we show
how the summation can be computed and how con-
ditional training performs.

3.1 Kirchoff Matrix

Recall that we defined the unnormalized probability
(henceforth, score) of a dependency tree as a combi-
nation of edge-factored scores for the edges present
in the tree (Eq. 2):

exp ~θ·~f(x,y) =
n∏

i=1

e
~θ·~f(x,xi,xy(i)) =

n∏
i=1

s
x,~θ

(i,y(i))

(5)
where y(i) denotes the parent of xi in y. s

x,~θ
(i, j),

then, denotes the (multiplicative) contribution of the

edge from child i to parent j to the total score of
the tree, if the edge is present. Define the Kirchoff
matrix K

x,~θ
∈ Rn×n by[

K
x,~θ

]
mom,kid

= (6)
−s

x,~θ
(kid ,mom) if mom 6= kid∑

j∈{0,...n}:j 6=mom

s
x,~θ

(kid , j) if mom = kid .

where mom indexes a parent node and kid a child
node.

K
x ~θ

can be regarded as a special weighted adja-
cency matrix in which the ith diagonal entry is the
sum of edge-scores directed into vertex i (i.e., xi is
the child)—note that the sum includes the score of
attaching xi to the wall x0.

In our notation and in one specific form, the Ma-
trix Tree Theorem (Tutte, 1984) states:2

Theorem 1 The determinant of the Kirchoff matrix
K

x,~θ
is equal to the sum of scores of all directed

spanning trees in Yx rooted at x0. Formally:∣∣∣Kx,~θ

∣∣∣ = Z~θ
(x).

A proof is omitted; see Tutte (1984).
To compute Z~θ

(x), we need only take the deter-
minant of K

x,~θ
, which can be done in O(n3) time

using the standard LU factorization to compute the
matrix inverse. Since all of the edge weights used
to construct the Kirchoff matrix are positive, it is di-
agonally dominant and therefore non-singular (i.e.,
invertible).

3.2 Gradient

The gradient of Z~θ
(x) (required for numerical opti-

mization; see Eqs. 3–4) can be efficiently computed
from the same matrix inverse. While ∇ log Z~θ

(x)
equates to a vector of feature expectations (Eq. 4),
we exploit instead some facts from linear algebra

2There are proven generalizations of this theorem (Chen,
1965; Chaiken, 1982; Minoux, 1999); we give the most specific
form that applies to our case, originally proved by Tutte in 1948.
Strictly speaking, our Kx,~θ is not the Kirchoff matrix, but rather
a submatrix of the Kirchoff matrix with a leftmost column of
zeroes and a topmost row [0,−sx,~θ(1, 0), ...,−sx,~θ(n, 0)] re-
moved. Farther afield, Jaakkola et al. (1999) used an undirected
matrix tree theorem for learning tree structures for graphical
models.



K
x,~θ

=



∑
j∈{0,...,n}:j 6=1

s
x,~θ

(1, j) −s
x,~θ

(2, 1) · · · −s
x,~θ

(n, 1)

−s
x,~θ

(1, 2)
∑

j∈{0,...,n}:j 6=2

s
x,~θ

(2, j) · · · −s
x,~θ

(n, 2)

...
...

. . .
...

−s
x,~θ

(1, n) −s
x,~θ

(2, n) · · ·
∑

j∈{0,...,n}:j 6=n

s
x,~θ

(n, j)



and the chain rule. First, note that, for any weight
θk,

∂ log Z~θ
(x)

∂θk

=
∂ log |K

x,~θ
|

∂θk

=
1

|K
x,~θ
|
∂|K

x,~θ
|

∂θk

=
1

|K
x,~θ
|

n∑
i=1

n∑
j=0

∂|K
x,~θ
|

∂s
x,~θ

(i, j)

∂s
x,~θ

(i, j)

∂θk

=
1

|K
x,~θ
|

n∑
i=1

n∑
j=0

s
x,~θ

(i, j)fk(x, xi, xj)

×
∂|K

x,~θ
|

∂s
x,~θ

(i, j)
(7)

(We assume s
x,~θ

(i, i) = 0, for simplicity of nota-
tion.) The last line follows from the definition of
s
x,~θ

(i, j) as exp ~θ· ~f(x, xi, xj). Now, since s
x,~θ

(i, j)
affects the Kirchoff matrix in at most two cells—
(i, i) and (j, i), the latter only when j > 0—we
know that

∂|K
x,~θ
|

∂s
x,~θ

(i, j)
=

∂|K
x,~θ
|

∂[K
x,~θ

]i,i

∂[K
x,~θ

]i,i
∂s

x,~θ
(i, i)

−
∂|K

x,~θ
|

∂[K
x,~θ

]j,i

∂[K
x,~θ

]j,i
∂s

x,~θ
(i, j)

=
∂|K

x,~θ
|

∂[K
x,~θ

]i,i
−

∂|K
x,~θ
|

∂[K
x,~θ

]j,i
(8)

We have now reduced the problem of the gradient
to a linear function of ∇|K

x,~θ
| with respect to the

cells of the matrix itself. At this point, we simplify
notation and consider an arbitrary matrix A.

The minor mj,i of a matrix A is the determi-
nant of the submatrix obtained by striking out row
j and column i of A; the cofactor cj,i of A is then
(−1)i+jmj,i. Laplace’s formula defines the deter-
minant as a linear combination of matrix cofactors
of an arbitrary row j:

|A| =
n∑

i=1

[A]j,icj,i (9)

It should be clear that any cj,k is constant with re-
spect to the cell [A]j,i (since it is formed by remov-
ing row j of A) and that other entries of A are con-
stant with respect to the cell [A]j,i. Therefore:

∂|A|
∂[A]j,i

= cj,i (10)

The inverse matrix A−1 can also be defined in terms
of cofactors:

[A−1]i,j =
cj,i

|A|
(11)

Combining Eqs. 10 and 11, we have:

∂|A|
∂[A]j,i

= |A|[A−1]i,j (12)

Plugging back in through Eq. 8 to Eq. 7, we have:

∂ log Z~θ
(x)

∂θk
=

n∑
i=1

n∑
j=0

s
x,~θ

(i, j)fk(x, xi, xj)

×
([

K−1

x,~θ

]
i,i
−

[
K−1

x,~θ

]
i,j

)
(13)

where [K−1]i,0 is taken to be 0. Note that the cofac-
tors do not need to be computed directly. We pro-
posed in Section 3.1 to get Z~θ

(x) by computing the
inverse of the Kirchoff matrix (which is known to
exist). Under that procedure, the marginalization is
a by-product of the gradient.



decode train Arabic Czech Danish Dutch
map MIRA 79.9 81.4 86.6 90.0

CE 80.4 80.2 87.5 90.0 (Section 3)

mBr MIRA 79.4 80.3 85.0 87.2 (Section 4)

CE 80.5 80.4 87.5 90.0 (Sections 3 & 4)

Table 1: Unlabeled dependency parsing accuracy (on test data) for two training methods (MIRA, as in
McDonald et al. (2005b), and conditional estimation) and with maximum a posteriori (map) and minimum
Bayes-risk (mBr) decoding. Boldface scores are best in their column on a permutation test at the .05 level.

3.3 Experiment

We compare conditional training of a nonprojective
edge-factored parsing model to the online MIRA
training used by McDonald et al. (2005b). Four lan-
guages with relatively common nonprojective phe-
nomena were tested: Arabic (Hajič et al., 2004),
Czech (Böhmová et al., 2003), Danish (Kromann,
2003), and Dutch (van der Beek et al., 2002). The
Danish and Dutch datasets were prepared for the
CoNLL 2006 shared task (Buchholz and Marsi,
2006); Arabic and Czech are from the 2007 shared
task. We used the same features, extracted by Mc-
Donald’s code, in both MIRA and conditional train-
ing. In this paper, we consider only unlabeled de-
pendency parsing.

Our conditional training used an online gradient-
based method known as stochastic gradient descent
(see, e.g., Bottou, 2003). Training with MIRA and
conditional estimation take about the same amount
of time: approximately 50 sentences per second.
Training proceeded as long as an improvement on
held-out data was evident. The accuracy of the hy-
pothesized parses for the two models, on each lan-
guage, are shown in the top two rows of Tab. 1 (la-
beled “map” for maximum a posteriori, meaning
that the highest-weighted tree is hypothesized).

The two methods are, not surprisingly, close in
performance; conditional likelihood outperformed
MIRA on Arabic and Danish, underperformed
MIRA on Czech, and the two tied on Dutch. Results
are significant at the .05 level on a permutation test.
Conditional estimation is in practice more prone to
over-fitting than maximum margin methods, though
we did not see any improvement using zero-mean
Gaussian priors (variance 1 or 10).

These experiments serve to validate conditional
estimation as a competitive learning algorithm for

parsing models, and the key contribution of the sum-
ming algorithm that permits conditional estimation.

4 Minimum Bayes-Risk Decoding

A second application of probability distributions
over trees is the alternative decoding algorithm
known as minimum Bayes-risk (mBr) decoding.
The more commonly used maximum a posteriori
decoding (also known as “Viterbi” decoding) that
we applied in Section 3.3 sought to minimize the ex-
pected whole-tree loss:

ŷ = argmax
y

p~θ
(y | x) = argmin

y
Ep~θ

(Y|x) [−δ(y,Y)]

(14)
Minimum Bayes-risk decoding generalizes this idea
to an arbitrary loss function ` on the proposed tree:

ŷ = argmin
y

Ep~θ
(Y|x) [`(y,Y)] (15)

This technique was originally applied in speech
recognition (Goel and Byrne, 2000) and translation
(Kumar and Byrne, 2004); Goodman (1996) pro-
posed a similar idea in probabilistic context-free
parsing, seeking to maximize expected recall. For
more applications in parsing, see Petrov and Klein
(2007).

The most common loss function used to evaluate
dependency parsers is the number of attachment er-
rors, so we seek to decode using:

ŷ = argmin
y

Ep~θ
(Y|x)

[
n∑

i=1

−δ(y(i),Y(i))

]

= argmax
y

n∑
i=1

p~θ
(Y(i) = y(i) | x) (16)

To apply this decoding method, we make use of
Eq. 13, which gives us the posterior probabilities



of edges under the model, and the same Chiu-
Liu-Edmonds maximum directed spanning tree al-
gorithm used for maximum a posteriori decoding.
Note that this decoding method can be applied re-
gardless of how the model is trained. It merely re-
quires assuming that the tree scores under the trained
model (probabilistic or not) can be treated as unnor-
malized log-probabilities over trees given the sen-
tence x.

We applied minimum Bayes-risk decoding to the
models trained using MIRA and using conditional
estimation (see Section 3.3). Table 1 shows that,
across languages, minimum Bayes-risk decoding
hurts slightly the performance of a MIRA-trained
model, but helps slightly or does not affect the per-
formance of a conditionally-trained model. Since
MIRA does not attempt to model the distribution
over trees, this result is not surprising; interpreting
weights as defining a conditional log-linear distribu-
tion is questionable under MIRA’s training criterion.

One option, which we do not test here, is to
use minimum Bayes-risk decoding inside of MIRA
training, to propose a hypothesis tree (or k-best
trees) at each training step. Doing this would more
closely match the training conditions with the test-
ing conditions; however, it is unclear whether there
is a formal interpretation of such a combination, for
example its relationship to McDonald et al.’s “fac-
tored MIRA.”

Minimum Bayes-risk decoding, we believe, will
become important in nonprojective parsing with
non-edge-factored models. Note that minimium
Bayes-risk decoding reduces any parsing problem to
the maximum directed spanning tree problem, even
if the original model is not edge-factored. All that
is required are the marginals p~θ

(Y(i) = y(i) | x),
which may be intractable to compute exactly, though
it may be possible to develop efficient approxima-
tions.

5 Hidden Variables

A third application of probability distributions over
trees is hidden-variable learning. The Expectation-
Maximization (EM) algorithm (Baum and Petrie,
1966; Dempster et al., 1977; Baker, 1979), for
example, is a way to maximum the likelihood of
training data, marginalizing out hidden variables.

This has been applied widely in unsupervised pars-
ing (Carroll and Charniak, 1992; Klein and Man-
ning, 2002). More recently, EM has been used to
learn hidden variables in parse trees; these can be
head-child annotations (Chiang and Bikel, 2002), la-
tent head features (Matsuzaki et al., 2005; Prescher,
2005; Dreyer and Eisner, 2006), or hierarchically-
split nonterminal states (Petrov et al., 2006).

To date, we know of no attempts to apply hid-
den variables to supervised dependency tree mod-
els. If the trees are constrained to be projective, EM
is easily applied using the inside-outside variant of
the parsing algorithm described by Eisner (1996) to
compute the marginal probability. Moving to the
nonprojective case, there are two difficulties: (a) we
must marginalize over nonprojective trees and (b)
we must define a generative model over (X,Y).

We have already shown in Section 3 how to solve
(a); here we avoid (b) by maximizing conditional
likelihood, marginalizing out the hidden variable,
denoted z:

max
~θ

∑
x,y

p̃(x,y) log
∑
z

p~θ
(y, z | x) (17)

This sort of conditional training with hidden vari-
ables was carried out by Koo and Collins (2005),
for example, in reranking; it is related to the infor-
mation bottleneck method (Tishby et al., 1999) and
contrastive estimation (Smith and Eisner, 2005).

5.1 Latent Dependency Labels
Noting that our model is edge-factored (Eq. 2), we
define our hidden variables to be edge-factored as
well. We can think of the hidden variables as clusters
on dependency tokens, and redefine the score of an
edge to be:

s
x,~θ

(i, j) =
∑
z∈Z

e
~θ·~f(x,xi,xj ,z) (18)

where Z is a set of dependency clusters.
Note that keeping the model edge-factored means

that the cluster of each dependency in a tree is con-
ditionally independent of all the others, given the
words. This is computationally advantageous (we
can factor out the marginalization of the hidden vari-
able by edge), and it permits the use of any cluster-
ing method at all. For example, if an auxiliary clus-
tering model q(z | x,y)—perhaps one that did not



make such independence assumptions—were used,
the posterior probability q(Zi = z | x,y) could
be a feature in the proposed model. On the other
hand, we must consider carefully the role of the
dependency clusters in the model; if clusters are
learned extrinsic to estimation of the parsing model,
we should not expect them to be directly advanta-
geous to parsing accuracy.

5.2 Experiments
We tried two sets of experiments with clustering. In
one case, we simply augmented all of McDonald
et al.’s edge features with a cluster label in hopes
of improved accuracy. Models were initialized near
zero, with Gaussian noise added to break symmetry
among clusters.

Under these conditions, performance stayed the
same or changed slightly (see Table 2); none of the
improvements are significant. Note that three de-
coders were applied: maximum a posteriori (map)
and minimum Bayes-risk (mBr) as described in Sec-
tion 4, and “max-z,” in which each possible edge
was labeled and weighted only with its most likely
cluster (rather than the sum over all clusters), before
finding the most probable tree.3 For each of the three
languages tested, some number of clusters and some
decoding method gave small improvements over the
baseline.

More ambitiously, we hypothesized that many
lexicalized features on edges could be “squeezed”
through clusters to reduce the size of the feature set.
We thus removed all word-word and lemma-lemma
features and all tag fourgrams. Although this re-
duced our feature set by a factor of 60 or more (prior
to taking a cross-product with the clusters), the dam-
age of breaking the features was tremendous, and
performance even with a thousand clusters barely
broke 25% accuracy.

6 Discussion

Noting that adding latent features to nonterminals
in unlexicalized context-free parsing has been very
successful (Chiang and Bikel, 2002; Matsuzaki et
al., 2005; Prescher, 2005; Dreyer and Eisner, 2006;
Petrov et al., 2006), we were surprised not to see a

3Czech experiments were not done, since the number of fea-
tures (more than 14 million) was too high to multiply out by
clusters.

# cl. decoding Arabic Danish Dutch
none map=max-z 80.4 87.5 90.0

mBr 80.5 87.5 90.0
2 map 80.4 87.5 89.5

mBr 80.6 87.3 89.7
max-z 80.4 86.3 89.4

16 map 80.4 87.6 90.1
mBr 80.4 87.6 90.1
max-z 80.4 87.6 90.2

32 map 80.0 87.6 –
mBr 80.4 87.5 –
max-z 80.0 87.5 –

Table 2: Augmenting edge features with clusters re-
sults in similar performance to conditional training
with no clusters (top two lines). Scores are unla-
beled dependency accuracy on test data.

more substantial performance improvement through
latent features. We propose several interpretations.
First, it may simply be that many more clusters may
be required. Note that the label-set sizes for the la-
beled versions of these datasets are larger than 32
(e.g., 50 for Danish). This has the unfortunate effect
of blowing up the feature space beyond the mem-
ory capacity of our machines (hence our attempts
at squeezing high-dimensional features through the
clusters).

Of course, improved clustering methods may
also improve performance. In particular, a cluster-
learning algorithm that permits clusters to split
and/or merge, as in Petrov et al. (2006) or in Pereira
et al. (1993), may be appropriate.

Given the relative simplicity of clustering meth-
ods for context-free parsing to date (gains were
found just by using Expectation-Maximization), we
believe the fundamental reason clustering was not
particularly helpful here is a structural one. In
context-free parsing, the latent features are (in pub-
lished work to date) on nonterminal states, which are
the stuctural “bridge” between context-free rules.
Adding features to those states is a way of pushing
information—encoded indirectly, perhaps—farther
around the tree, and therefore circumventing the
strict independence assumptions of probabilistic
CFGs.

In an edge-factored dependency model, on the



other hand, latent features on the edges seem to have
little effect. Given that they are locally “summed
out” when we compute the scores of possible at-
tachments, it should be clear that the edge clusters
do not circumvent any independence assumptions.
Three options appear to present themselves. First,
we might attempt to learn clusters in tandem with
estimating a richer, non-edge-factored model which
would require approximations to Z~θ

(x), if condi-
tional training were to be used. Note that the approx-
imations to maximizing over spanning trees with
second-order features, proposed by McDonald and
Pereira (2006), do not permit estimating the clusters
as part of the same process as weight estimation (at
least not without modification). In the conditional
estimation case, a variational approach might be ap-
propriate. The second option is to learn clusters of-
fline, before estimating the parser. (We suggested
how to incorporate soft clusters into our model in
Section 5.1.) This option is computationally ad-
vantageous but loses sight of the aim of learning
the clusters specifically to improve parsing accuracy.
Third, noting that the structural “bridge” between
two coincident edges is the shared vertex (word), we
might consider word token clustering.

We also believe this structural locality issue helps
explain the modesty of the gains using minimum
Bayes-risk decoding with conditional training (Sec-
tion 4). In other dependency parsing scenarios, min-
imum Bayes-risk decoding has been found to offer
significant advantages—why not here? Minimum
Bayes-risk makes use of global statistical dependen-
cies in the posterior when making local decisions.
But in an edge-factored model, the edges are all con-
ditionally independent, given that y is a spanning
tree.

As a post hoc experiment, we compared
purely greedy attachment (attach each word to its
maximum-weighted parent, without any tree con-
straints). Edge scores as defined in the model were
compared to minimum Bayes-risk posterior scores,
and the latter were consistently better (though this
always under-performed optimal spanning-tree de-
coding, unsurprisingly). This comparison serves
only to confirm that minimum Bayes-risk decoding
is a way to circumvent independence assumptions
(here made by a decoder), but only when the trained
model does not make those particular assumptions.

7 Conclusion

We have shown how to carry out exact marginaliza-
tion under an edge-factored, conditional log-linear
model over nonprojective dependency trees. The
method has cubic runtime in the length of the se-
quence, but is very fast in practice. It can be used
in conditional training of such a model, in minimum
Bayes-risk decoding (regardless of how the model is
trained), and in training with hidden variables. We
demonstrated how each of these techniques gives re-
sults competitive with state-of-the-art existing de-
pendency parsers.
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