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ABSTRACT
Today, software systems that rely on data are ubiquitous, and en-
suring the data’s quality is an increasingly important challenge as
data errors result in annual multi-billion dollar losses. While soft-
ware debugging and testing have received heavy research attention,
less effort has been devoted to data debugging: identifying system
errors caused by well-formed but incorrect data. We present con-
tinuous data testing (CDT), a low-overhead, delay-free technique
that quickly identifies likely data errors. CDT continuously executes
domain-specific test queries; when a test fails, CDT unobtrusively
warns the user or administrator. We implement CDT in the CON-
TEST prototype for the PostgreSQL database management system.
A feasibility user study with 96 humans shows that CONTEST was
extremely effective in a setting with a data entry application at guard-
ing against data errors: With CONTEST, users corrected 98.4% of
their errors, as opposed to 40.2% without, even when we injected
40% false positives into CONTEST’s output. Further, when using
CONTEST, users corrected data entry errors 3.2 times faster than
when using state-of-the-art methods.
Categories and Subject Descriptors:
D.2.5 [Testing and Debugging]: Testing tools
H.2.0 [General]: Security, integrity, and protection
General Terms: Design, Reliability
Keywords: data debugging, data testing, continuous testing

1. INTRODUCTION
Data, and data quality, are critical to many of today’s software

systems. Data errors can be incredibly costly. Errors in spreadsheet
data have led to million dollar losses [75, 76]. Database errors have
caused insurance companies to wrongly deny claims and fail to no-
tify customers of policy changes [86], agencies to miscalculate their
budgets [31], medical professionals to deliver incorrect medications
to patients, resulting in at least 24 deaths in the US in 2003 [71], and
NASA to mistakenly ignore, via erroneous data cleaning, from 1973
until 1985, the Earth’s largest ozone hole over Antarctica [40]. Poor
data quality is estimated to cost the US economy more than $600
billion per year [21] and erroneous price data in retail databases
alone cost US consumers $2.5 billion per year [23].
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Data errors can arise in a variety of ways, including during data
entry (e.g., typographical errors and transcription errors from il-
legible text), measurement (e.g., the data source may be faulty or
corrupted), and data integration [33]. Data entry errors have been
found hard to detect and to significantly alter conclusions drawn on
that data [3]. The ubiquity of data errors [21, 33, 75, 76] has resulted
in significant research on data cleaning [13, 20, 38, 67, 69, 77] and
data debugging [4, 37]. Such work, focusing on identifying likely
data errors, inconsistencies, and statistical outliers can help improve
the quality of a noisy or faulty data set. However, with few notable
exceptions [15, 47], research has not focused on the problem of
preventing the introduction of well-formed but incorrect data into
a dataset that is in a sound state. The two approaches that have
addressed guarding against unintentional errors caused by erroneous
changes — using integrity constraints [82] to correct input errors
probabilistically [47] and guarding against errors with automatically-
generated certificates [15] — exhibit several shortcomings that we
aim to overcome. For example, integrity constraints are difficult to
use when valid data ranges span multiple orders of magnitude, can
become outdated, and are hard to evolve. Our own evaluation shows
that using integrity constraints significantly increases the time it
takes users to correct errors. Meanwhile certificates require the user
to manually verify each update, which is both tedious and delays
the update from taking effect.

To address the challenge of reducing data errors caused by erro-
neous updates, we propose continuous data testing (CDT). CDT’s
goals are to precisely and quickly warn data-dependent application
users or administrators (henceforth simply users) when changes
to data likely introduce errors, without unnecessarily interfering
with the users’ workflow and without delaying the changes’ effects.
CDT’s warnings are precise and timely, increasing the likelihood
that the users associate the warning with the responsible data change
and correct not only the data error but also the underling root cause
(as opposed to some manifesting side effect) of the error.

In software development, testing is incomplete and requires sig-
nificant manual effort, and yet it plays an instrumental role in im-
proving software quality. The state-of-the-art of software system
data error correction is analogous to formal verification and manual
examination. While these mechanisms are also powerful in prevent-
ing software bugs, in practice, testing is indispensable. CDT brings
the advantages of testing to the domain of software data errors while
solving four significant research challenges: (1) To identify the intri-
cate kinds of data errors that often slip by data type and range checks
and cause the biggest software failures, CDT must encode and test
data semantics. (2) CDT relies on test queries, and while some
data-dependent software users may be able to write high-quality
test queries, many may not. CDT can automatically generate test
queries by observing the system’s use of the data and generalizing
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observed queries and results. (3) Delays between erroneous data
changes and detection of test failures make it more difficult for users
to associate the responsible change with the error, so CDT must
be timely and precise. (4) Unlike software developers, users of
data-dependent software may not know when to run tests and how to
interpret test results, and CDT must run without disrupting normal
system operation and present test failures in both unobtrusive and
explanatory manner.

The key idea behind CDT, outlined in our recent vision paper [63],
is to continuously run domain-specific test queries on the database
in use by the software application. When the application updates
the data, the test queries verify the semantic validity of that data.
Critical to our approach is the existence of these tests. Previous
research has tackled the problem of test data query generation [14,
46,49,64,65,68], and we do not focus specifically on test generation
here. Tests can be mined from the history of queries the data-
dependent application executes and from that application’s source
code, as we demonstrate in our empirical evaluation in Section 4.
Further, the tangible benefits of CDT we demonstrate in this paper
greatly outweigh the effort of writing test queries manually; such
practice is common, and is in fact the norm in industrial software
engineering, where writing tests manually makes up a major part of
the development process [1].

This paper’s main contributions are:

1. CDT, a technique that addresses the problem of discovering
data bugs in software applications.

2. A CDT architecture and six design-level execution strategies
that make CDT practical given the challenges inherent to data
testing.

3. CONTEST, an open-source CDT prototype built on top of
the PostgreSQL database management system, available at
https://bitbucket.org/ameli/contest/.

4. An evaluation of CDT effectiveness, via a feasibility user
study with 96 humans engaging in data entry tasks. Without
CONTEST, users corrected 40.2% of their errors. With CON-
TEST, the users corrected 100% of the errors, twice as fast.
When we injected false positives into CONTEST’s warnings
(making 40% of the warnings false), the users still corrected
98.4% of the errors, still nearly twice as fast. We then signifi-
cantly extended a state-of-the-art technique to handle much
more semantically complex constraints than today’s database
systems implement, and users were able to correct 100% of
the errors, but more than three times slower than with CON-
TEST.

5. An evaluation of CDT efficiency, using the TPC-H bench-
mark [81], showing that unoptimized CDT incurs less than
17% overhead on a typical database workload and that our
optimized execution strategies reduce this overhead to as low
as 1%.

Scope. The main goal of this paper is to demonstrate the feasibility
of the CDT approach for detecting and preventing data errors in
data-reliant systems. CDT applies to a broad range of data-reliant
systems. Applying CDT to a particular system requires system-
specific test queries to either be written manually or mined automat-
ically, and a user interface for displaying potential errors and for
correcting errors. While this paper discusses several approaches for
automatically mining tests from system source code or execution
logs, and guidelines for interface design, it is out of scope of this
paper to evaluate the application of these methods to a broad range
of software systems. The paper does demonstrate the effectiveness
of both automatic query mining and an interface on a single system
as a proof of concept.

carID make model year inventory cost price

121 Nissan Versa 2014 23 $10,990 $13,199
96 Smart fortwo Pure 2014 21 $12,490 $14,999

227 Ford Fiesta 2014 9 $13,200 $15,799
160 Suzuki SX4 2014 27 $13,699 $16,499
82 Chevrolet Sonic 2014 15 $13,735 $16,499

311 KIA Soul 2013 3 $13,300 $14,699
319 KIA Soul 2014 22 $13,900 $16,999
286 Toyota Yaris 2013 1 $13,980 $15,199
295 Toyota Yaris 2014 11 $14,115 $16,999
511 Mercedes C-Class 2014 21 $35,800 $45,999
513 Mercedes R-Class 2014 7 $52,690 $62,899
799 Maserati Quattroporte 2014 8 $102,500 $122,999
808 Maserati GranTurismo 2014 12 $126,500 $149,999

Figure 1: A view of the internal database used by a car dealership’s
inventory software application.

The rest of this paper is organized as follows. Section 2 de-
scribes CDT on a simple example. Section 3 details the CDT design.
Sections 4 and 5 evaluate CDT’s effectiveness and efficiency, re-
spectively. Section 6 discusses threats to our evaluation’s validity.
Section 7 places our work in the context of related research, and
Section 8 summarizes our contributions and future work.

2. CDT INTUITION
This paper addresses a particular kind of data errors that are

introduced with erroneous updates into an otherwise sound database
used by a software system. (Our approach works even if the existing
database contains errors. However, our goal is not to identify these,
but rather to detect new errors that may be introduced.)

Consider the following motivating scenario: A car dealership
owner decides to put the stock of cheaper cars on sale to encourage
new customers to visit the showroom. The owner is confident that
even if people come in for the discounted cars, many of them will
buy the more expensive ones. The dealership maintains a comput-
erized pricing system: The car data, including inventory, dealer
costs, and prices are kept in a database, and each car bay in the
showroom has a digital price display that loads directly from the
database. The system also handles billing, monthly profit reporting,
and other services. The owner, billing department, and sales per-
sonnel have a simple front-end application for interfacing with the
database. Figure 1 shows a sample view of this database.

The dealership owner wishes to reduce by 30% the prices of
all cars currently priced between $10K and $15K, but makes a
typographical mistake and enters a wrong number into his front-end
application, which, in turn, executes the SQL query:

UPDATE cars SET price=0.7*price
WHERE price BETWEEN 10000 AND 150000

(Note the accidental order of magnitude mistake of 150000 instead
of 15000.) This incorrectly reduces by 30% the price of all the cars.
Unfortunately, the owner does not yet realize his mistake.

Customers immediately start seeing the sale prices and coming
in for a closer look. The salesmen are ecstatic as they are making
more sales than ever, bringing in high commissions. The owner is
happy too, seeing the flurry of activity and sales, noticing that his
prediction that lowering the prices of cheap cars will lead to more
sales of expensive cars is working. It’s not until the end of the day,
and after many sales, that the owner realizes his mistake, and the
mistake’s cost to his business.
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Could existing technology prevent this problem? Current tech-
nology would have had a hard time catching and preventing this
error. Integrity constraints [82] can guard against improper updates,
but are rigid, and while they can, for example, identify errors that
move the data outside of predefined ranges, they cannot detect the
kind of errors the dealership owner made. Data clone detection can
identify copy-and-paste data errors, which are both prevalent and
important [37], but do not identify errors in databases without clear
redundancy, such as the car dealership example. Outlier impact de-
tection tools [4] also cannot detect such errors because such changes
do not drastically alter the data distribution. While assertions allow
for finer-grained detection, most modern database systems, includ-
ing mySQL, PostgreSQL, Oracle, and Microsoft SQL server, do not
implement assertions because of their unacceptable performance
overhead. Finally, the dealership application could have employed
certificate-based verification [15], which automatically generates
challenge questions and requires the user to verify data changes.
For example, when the owner attempted to reduce the price, the
application could have halted the update and asked the owner to
verify the expected outcome of the query:

SELECT price
FROM cars
WHERE make=‘Maserati’ AND model=‘Quattroporte’

If the owner entered $102,500, the application would observe that
this expected value disagrees with the data after the price reduction.
Unfortunately, such verification is highly manual, interferes with the
owner’s workflow, and delays the update execution, which causes a
hardship in many real-time applications. Certificate-based verifica-
tion delays not only faulty queries, but also all the proper queries,
significantly affecting the application’s responsiveness.
How does CDT solve the problem? We propose CDT, a testing-
based approach to catching and preventing such errors. CDT uses
the history of the application’s execution to log queries executed on
the internal database, (e.g., by the billing department or in generating
monthly profit reports) to generate test queries. (Test queries can
alternatively be written manually, as they typically are in software
development.) In the dealership example, CDT extracts a test query
from monthly reports that computes the hypothetical profit of selling
the entire inventory. In the history of the application’s execution,
this profit has been between 15% and 25% of the cost of all the cars.
So CDT creates the following test query, among others:

SELECT ‘true’
FROM (SELECT sum(inventory*(price-cost))

AS profit FROM cars) P,
(SELECT sum(inventory*cost)
AS totalCost FROM cars) C

WHERE P.profit BETWEEN 0.15*C.totalCost
AND 0.25*C.totalCost

CDT executes test queries in the background continuously, warn-
ing the user whenever a data change makes a test fail. By employing
several optimizing execution strategies (Section 3), CDT can be
made highly efficient and responsive and quickly warns the user
when application operations unexpectedly affect the data. CDT does
not interfere with the update execution, but instead quickly warns the
user about potentially erroneous updates, allowing the user to correct
the errors. This allows proper updates to execute quickly and for
the database to remain responsive. Further, CDT does not interfere
with the user’s workflow, delivering unobtrusive warnings that the
user may, using domain knowledge, deem non-critical and ignore
temporarily or permanently. Finally, CDT’s support for complex,
domain-specific test queries allows for high-precision warnings and
accurate error detection.

Challenges CDT addresses: The car dealership scenario is similar
to real-world scenarios caused by data errors [31, 71, 86]. Humans
and applications modify data and often inadvertently introduce er-
rors. While integrity constraints guard against predictable erroneous
updates, many careless, unintentional errors still make it through
these barriers. Cleaning tools attempt to purge datasets of dis-
crepancies before the data can be used, but many errors still go
undetected and get propagated further through queries and other
transformations. The car dealership scenario illustrates four data-
error-detection challenges, which existing techniques cannot easily
address.

1. Data semantics: To detect subtle but common and impact-
ful data errors, techniques must be aware of the semantics of the
data, and how the data are used. Syntactic and range-based tech-
niques simply cannot work: If a change is intended to reduce a set
of attributes by 30% but reduces a different set by 30%, without
understanding the semantics, the data look valid. Further, if valid
data span multiple orders of magnitude, detecting errors caused by
a forgotten period during data entry (e.g., 1337 instead of 13.37)
is impossible automatically (since both entries satisfy the integrity
constraints) and too onerous manually. These errors neither create
outliers nor break ranges. Domain-specific semantics are necessary
to identify these errors.

2. Test queries: While CDT can be useful for software developers,
it also targets application users and administrators who may have no
experience writing tests. By analyzing the history of the queries the
application has issued and the ranges of results of those queries, CDT
automates test query generation. But as with software development,
manually written tests, perhaps written by the application developers
and shipped with the application, are highly beneficial and worth
the effort.

3. Timeliness: When errors go undetected for long periods of time,
they become obscure and may cause additional errors [6, 45, 73]. If
the error is a side-effect of a deeper faulty change, discovering the
error quickly after making the change helps identify the underlying
cause, as opposed to only the discovered side-effect. For example,
if the owner had noticed the price of a Toyota Yaris was too low
immediately after issuing the price-reducing query, he would likely
realize that other prices might be wrong as well. If, instead, he
discovered the price hours later on a busy day, he may fix that one
price and not realize what caused the error. Further, if errors are
not fixed quickly, they may affect later decisions and complicate
the fix. Finally, when other artifacts, such as poor documentation or
workflow, contribute to errors, discovering the error quickly is more
likely to lead to correcting those artifacts as well. CDT’s optimizing
execution strategies described in Section 3.3 ensure extremely fast
feedback.

4. Unobtrusive and precise interface: Users of data-dependent
software are less familiar with testing than software developers,
and may neither know when to run tests nor how to interpret the
results [48]. For example, the dealership owner is unlikely to think
to run tests after reducing prices; even if he did, seeing the complex
failed test query is unlikely to be useful. Research into interfaces
for end-users [48] is highly relevant to this challenge. CDT must
run the relevant tests automatically, and present the results unobtru-
sively, and in terms of the affected data and changes that may have
invalidated that data, not in terms of the test queries. CDT achieves
this by determining which tests can be affected by data changes, and
running only those tests and only when necessary. Further, CDT
highlights the changes that affected the tests, and which data are
relevant, both of which are more familiar to the user than the tests.
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Figure 2: CDT architecture. While a software application alters
data, CDT continuously runs test queries and unobtrusively warns
of potentially erroneous data changes. CDT tests can be written
manually, generated automatically, or mined from database use
history. CDT uses database triggers to execute the tests relevant
to each change and unobtrusively warns of likely erroneous data
changes either via the user’s application or in a separate view.

By precisely detecting semantic data errors and unobtrusively and
quickly informing users of potential errors, CDT effectively tackles
these four challenges.

3. CONTINUOUS DATA TESTING
CDT reduces data errors by observing executions of applications

that deal with data, continuously executing tests (black-box com-
putations over a database) in the background, and informing users
with fast, targeted feedback when changes to the data are likely erro-
neous. CDT’s goal is not to stop errors from being introduced, but
to shorten the time to detection as much as possible. Early detection
prevents errors from propagating and having practical impact, and
simplifies correction as the users can more easily associate feedback
with the root cause.

We developed CONTEST, a CDT prototype, based on the archi-
tecture presented in Figure 2. CDT communicates with the database
via triggers that fire on data change events. When tests fail, CDT
issues a warning to the application to either highlight the potential
data error within the application’s view or to generate a separate
view of the data. The user can interact with these views to send
feedback to CDT, for example indicating that a test failure is not
indicative of an error. CDT then uses this information to improve its
tests. When the user discovers an error, correcting the error resolves
the test and removes the warning.

Our CDT design addresses four challenges described next.

3.1 Challenge 1: Data Semantics
In some domains, an acceptable data range can span multiple or-

ders of magnitude, which thwarts general statistical outlier detection.
Simultaneously, the semantics of nearly identical data can differ
vastly: for example, American area codes 616 and 617 are nearly
1,000 miles apart, while 617 and 339 are geographically adjacent.
In such domains, small errors difficult to detect with statistics, can
significantly affect the application that uses that data.

Instead of relying on statistics, CDT uses data semantics to iden-
tify data errors by using domain-specific data tests. Each test con-

sists of a query and its expected result. Tests use the data the
same way applications designed for this data use it, leveraging the
domain-specific data semantics to identify errors that matter in the
application’s domain.

Section 3.2 will describe how tests can encode data semantics,
solving this challenge of identifying data errors. In particular, the
most direct way to construct data tests is by mining the history of
queries the application using the data in question has issued. These
test queries enable encoding the semantics of the particular data
and of the particular application, together with the acceptable data
sensitivity.

3.2 Challenge 2: Test Query Generation
Critical to the success of CDT is the generation of high quality

test queries. Test queries can be written manually, generated auto-
matically, or mined from the history of queries and results generated
by the application being tested.

Many fields and industrial practices support the manual writing
of tests as one of the best ways of preventing errors [1]. We believe
that the benefits of error detection that CDT offers, and the costs of
errors, well outweigh the manual effort needed to write test queries.
Test queries can be reused for the lifetime of the application, so the
effort can be amortized. Application developers may write and ship
tests with the application, but savvy users and administrators may
also add tests.

Recent database advances have enabled automatically generating
tests for applications that use databases [14,46,49,64,65]. CDT can
use any of these approaches to generate test queries, although this
paper does not evaluate these approaches’ effectiveness and relative
impact on CDT.

Finally, CDT can automatically mine tests from the history of
queries and results in past executions of the application (and even
from the source code of the application). The most commonly
run queries can be generalized into tests, while test queries whose
failure does not cause users to fix errors can be removed from the
test suite. Further, coverage metrics can ensure test diversity. Good
test candidates are commonly run queries whose aggregates, such
as MAX, SUM, AVG, do not change significantly over time. In the car
dealership example, reasonable tests include averaging all car prices,
summing the total number of cars, computing the expected profit on
the sales of each car, each car model, each car make, and all the cars
together, as well as many other queries. If the price of a particular
model remains constant for a long time, another relevant test can
verify this price exactly. If the user were to change the price and
receive a CDT warning, it is trivial for the user to acknowledge that,
although unusual, the price has changed, and CDT can remove or
update the test.

Manually written, automatically generated, and mined-from-history
tests all share a desirable property: They are all highly specific to
the application and the domain. Many of these tests would not be
meaningful for different applications, but respect the data semantics
of this particular application, making them ideal for identifying
data errors and for CDT. Conveniently, the desirability of this speci-
ficity eases the automatic mining of test queries, reducing the effort
needed to employ CDT.

3.3 Challenge 3: Timeliness
Learning about an error soon after making it increases the chances

that the error is fixed, and reduces the cost of the fix [6, 45, 73].
CDT identifies potentially erroneous data changes by executing test
queries, which can be computationally expensive and slow if the
number of tests or the dataset are large. This can delay notifying the
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user about a potential error. Further, executing tests may adversely
impact the application’s performance, inconveniencing the user.

To address the challenge of delivering timely feedback without
adversely affecting application performance, we identify six CDT
execution strategies that use both static and dynamic analysis. Sec-
tion 5 will empirically evaluate these strategies and show the CDT
overhead can be limited to as low as 1% in real-life workloads.
Here, we first describe a naïve strategy, and then improve on it
via optimizations. The optimizations do not sacrifice precision:
The more efficient ones use analysis to avoid running only those
tests that cannot fail, as is done by test prioritization and regres-
sion test minimization [87]. Our descriptions here are optimized
for exposition, and concrete implementations of these strategies
for the PostgreSQL database management system are available at
https://bitbucket.org/ameli/contest/.

NaïveCDT: Test continuously. The most straightforward CDT
implementation is to continuously run all the test queries throughout
application operation. This approach is oblivious to concurrent
application queries to the database, does not attempt to minimize
this notification delay, and has a larger-than-necessary impact on
the application performance.

SimpleCDT: Test only after changes. The first improvement is
to only execute tests when application data changes. When changes
are infrequent, SimpleCDT results in much lower overhead than
NaïveCDT.

SmartCDT: Execute only relevant tests after relevant changes.
Changes to data untouched by a test cannot change the outcome of
that test, so running only those tests potentially affected by a data
change can further improve performance. Using static analysis on
the test queries, SmartCDT identifies which data tables and attributes
the tests use, and then use database triggers to invoke the appropriate
tests when the data in those tables or attributes changes.

SmartCDTTC: Test compression. Test query suites are likely to
contain multiple similar tests, such as ones computing the minimum
and maximum, or the sum and average of a range of data. Running
such tests separately can be less efficient than a single compressed
test. For example, the two test queries:

SELECT SUM(inventory) and SELECT AVG(cost)
FROM cars FROM cars

can be combined into a single, more efficient query:

SELECT SUM(inventory), AVG(cost)
FROM cars

SmartCDTTC uses dynamic analysis to compress tests: When a
new test query is added to the test execution queue, SmartCDTTC
compares it with the other tests in the queue, identifies possible com-
pressions, and rewrites the compressed queries. This (1) reduces the
time before test results are available, and (2) eliminates redundancy,
which lowers the computational overhead.

SmartCDTIT: Incremental testing. Complex test queries on
large datasets may be slow and may consume system resources. To
address this, incremental query computation uses the change to the
data as an input to the query computation. For example, if a single
datum in a large range is changed, a test that computes a SUM of
that range needs only to update the previously computed sum with
the value of the change, rather than recompute the entire sum from
scratch. SmartCDTIT uses dynamic analysis to identify queries in
the execution queue that can be computed incrementally, uses row-
level database triggers to retrieve the change values, and computes
the results incrementally. Our prototype implementation (Section 5)
handles queries without joins and selection predicates, but in the

future, we will extend incremental testing to more complex queries
using related work on incremental view maintenance [12, 32].

We refer to the version of CDT that combines all the above
strategies as SmartCDTTC+IT.

Based on our experimental evaluation in Section 5, the above
strategies are sufficient to make CDT practical. We identify three
more potential execution strategies that can further increase CDT’s
efficiency, but leave implementing and evaluating these strategies
to future work. First, in performance-critical domains, it may be
worthwhile to reduce CDT overhead at the expense of increasing
notification delay. Running CDT with a lower scheduling priority
than the application’s operations guarantees that CDT does not de-
grade application performance. Second, CDT can reorder tests in
the execution queue to reduce the notification delay. Our imple-
mentation executes tests in FIFO priority, but could prioritize tests
that are more likely to reveal an error. This prioritization can take
into account prior effectiveness of each test in exposing data errors,
the number of changed values that affect each test, and the time
since the last execution of each test. Third, our implementation
uses a coarse-grained (table- and attribute-level) static analysis to
determine which data affect which tests. A finer-grained (e.g., tuple-
level) and dynamic analysis that considers the concrete changed data
values can better determine which changes can, and which cannot
affect which tests, identifying a more precise mapping between data
and tests. For example, while our static analysis will run a test
that computes the SUM of a range whenever any datum in that range
changes, a fine-grained dynamic analysis can determine that this test
need not run after a change that swaps two data values in the range.

3.4 Challenge 4: Unobtrusive and Precise
Interface

Because users of data-dependent software are less familiar with
testing than software developers, for CDT to effectively interface
with those users and identify data errors, it must (1) alleviate the user
from deciding when to run the tests, (2) display test results in terms
of artifacts familiar to the user, such as the data and recent changes
relevant to the potential error, as opposed to the tests themselves,
and (3) avoid distracting the user and altering the user’s workflow.

The execution strategies described in Section 3.3 already relieve
the user from worrying about when to execute the tests. CDT
automatically determines which tests are relevant to run and runs
them in the background.

To effectively display test failure results, CDT integrates into
the application’s UI and highlights data that is potentially causing
an error (data touched by the failing test), and, if appropriate, the
recent changes that affected this data. This makes it clear to the
user that there may be a problem, where the problem likely resides,
and what caused it. The user can review recent changes, decide if
a change needs to be undone, and if another change needs to be
enacted. The user may explicitly tell CDT that a test failure is not
indicative of an error, which enables CDT to correct its expected
test output.

CDT’s integration into the application’s UI complicates the im-
plementation effort but is necessary to effectively interface with the
user. As Figure 2 shows, when a test fails, CDT generates a warning
message that contains the data and change affecting the failing test.
The application then uses this warning to highlight the data and
change in its own interface that is familiar to the user. Figure 3
shows an example interface of a data entry application (which we
use in our user study in Section 4) highlighting three data items
relevant to a failing test. For application interfaces that do not dis-
play data directly, CDT recommends creating a non-focus-stealing
pane in the user interface that displays the potentially problematic
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data. Highlighting can convey the severity of the error: For example,
a test that computes the profit of a dealership may highlight data
in yellow if the profit is within a single standard deviation of the
historical median profit, orange within two standard deviations, and
red outside of that range. Alternatively, the color may indicate how
many failing tests are affected by a changed datum.

Finally, CDT must neither distract the user nor alter the user’s
workflow because obtrusive feedback that breaks the users’ work-
flow may be detrimental to the user’s productivity [7]. CDT’s high-
lighting does not affect the application’s operation, and may be
hidden temporarily, again, at the discretion of the user. This makes
CDT’s feedback unobtrusive and gives the user the power to decide
how to proceed when a warning is issued. The user may decide
the error is worth investigating now, or may simply continue with
the normal workflow. This makes CDT far less intrusive and dis-
tracting than prior work on detecting data errors using update certifi-
cates [15] and integrity constraints [82]. Update certificates require
the user to stop current actions and provide an expected answer to
an automatically generated query before proceeding, and before the
data change can even be applied to the data. Integrity constraints
prevent updates from taking place and requires user action before
proceeding.

Our future work will include extending the user interface beyond
highlighting relevant data errors and changes by using causal analy-
sis [56], which generates human-readable explanations for test query
failures by computing data’s relative contributions to a query result
and identifying the data most responsible for differences between
test passing and test failing results.

It is important to point out that we do not envision CDT having
perfect precision in practice. Good tests reduce but cannot elimi-
nate the number of false positives — warning that arise even when
the data is error-free. CDT’s unobtrusive interface eases quickly
inspecting and moving past the false positives, and as our user study
in Section 4 shows, even when faced with 40% false positives, CDT
users are able to effectively, and quickly correct errors. In contrast,
techniques with obtrusive, workflow-breaking false-positive warn-
ings are likely to annoy the users, reduce productivity, and cause
the users to turn those techniques off. For example, our user study
shows that integrity constraint users were more than three times as
slow at correcting errors as CDT users.

4. CDT EFFECTIVENESS
We have built CONTEST, a prototype CDT implementation for the

PostgreSQL database management system. The full implementation
is available here: https://bitbucket.org/ameli/contest/. This
section uses CONTEST to evaluate CDT’s effectiveness in accom-
plishing its goal of reducing data errors.

The most direct way to evaluate CDT is to compare the experience
of application users with and without CDT, and with prior error de-
tecting technologies. For this evaluation, we developed a web-based,
data entry application for entering ranges of data into a database
and used Mechanical Turk workers as users. Figure 3 shows a
screenshot of the application, whose source code is also available at
https://bitbucket.org/ameli/contest/. The user study used
real-world data and human users to most accurately evaluate CDT’s
effectiveness.

4.1 Real-World Data
We obtained real-world data that humans may be asked to enter

in real life by extracting data from spreadsheets from data.gov and
from the EUSES corpus [26]. We filtered the spreadsheets to select
ten data tables that contained (1) at least seven columns of cells,
(2) at least one column with numerical values of ten digits or more,

and (3) at least one formula that used some of those numerical values
(to be used as tests). From data.gov, we obtained seven tables
from the long-range model project (http://catalog.data.gov/
dataset/long-range-model) that contains 75-year projections of
receipts, spending, deficit, and interest on US public debt. From the
EUSES corpus, we obtained one financial table from FannieMae,
and two tables of pulp, paper, and paperboard estimates for 1997
and 2001.

We loaded the data into a PostgreSQL relational database and
generated tests in two ways: First, the formulae embedded in the
spreadsheets are domain-specific uses of the data and constitute
targeted data tests. Second, we use the SUM aggregate on the tables’
columns to generate tests. In practice, these tests were sufficient to
prevent false negatives.

4.2 Data Entry Application
Our web-based, data entry application first selects, at random,

one row of 7–12 columns of data and creates an image depicting
this row. The UI (Figure 3) displays this image, the appropriate
number of cells into which to enter the data, simple instructions, an
informed consent form required by the IRB, and a “Submit” button.
The application submits updates to the database every time the user
removes focus from a non-empty cell. For treatment groups running
CDT, the application highlighted with a red background the cells
used by failing tests. The application logs the values and timestamps
of all data entries, and timestamps of starting the application and
every submit attempt. Attempting to submit with one or more empty
cells resulted in a pop up asking the user to enter all data.

4.3 Treatment Groups
Our experiment compared four treatment groups to test the effec-

tiveness of CDT, CDT with false positives, and integrity constraints.
Because the integrity constraints used by today’s database manage-
ment systems are highly limited (e.g., they can require data to be in
a specific range, or that data values are unique, but cannot perform
arbitrary computations over the data as CDT tests can), we signifi-
cantly extended the integrity constraints PostgreSQL can handle to
include the same semantically complex constraints as CDT tests.

Control: The control group saw no warning highlighting. The
user was allowed to enter and correct data and submit once all cells
were non-empty. The control group is representative of typical data
entry tasks today, without the help of error-detecting tools.

CDT: The CDT group was identical to the control group, except
the cells used by failing tests were highlighted in red. We used the
NaïveCDT execution strategy, as performance was not a major issue
in this experiment.

CDTFP: The CDTFP group was identical to the CDT group,
except 40% of the highlighting were false positives: After the user
entered correct data into a cell, the cell was permanently highlighted
in red with a probability of 5%. (We chose to highlight 5% of the
correct cells after empirically measuring the users’ error rates; 5%
resulted in 40% of the highlighting being false positive, and 60%
true positive, as described next.)

Integrity constraints: As we have previously described, we sig-
nificantly extended the PostgreSQL implementation of integrity
constraints to handle the complexity of CDT queries. To emulate
application use with these extended integrity constraints, this group
was identical to the control group but clicking the “Submit” button
checked all data cells, and if any mistakes were found, the applica-
tion halted, informed the user there were mistakes, and returned the
user to the data entry task.
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Figure 3: A screenshot of a data entry application used to evaluate CDT’s effectiveness. Mechanical Turk workers were asked to enter the
numbers shown at the top (displayed as images) into the cells below, and the application stored the entered data in a database. CDT warnings
highlight potential errors; one of the treatment groups received false positive warnings, as is shown in cell E.

4.4 Experimental Methodology and Results
We used the Amazon Mechanical Turk (http://www.mturk.

com) service to hire anonymous web workers to complete our data
entry tasks. For each experimental group, we deployed 100 tasks,
collecting a minimum of 900 cell entries per group. Overall, 96
distinct users participated in our study. We measured how often the
users made erroneous entries, submitted the errors, attempted to sub-
mit, and the time it took to enter data and correct mistakes. We used
a two-tailed heteroscedastic Student’s t-test to analyze the statistical
significance of our experimental results. Figure 4 summarizes our
results.

The data entry user study answers three research questions.

RQ1: How effective is CDT (with no false positives) at
preventing data entry errors?

Reducing error rates is CDT’s primary goal, and we first examine
how well it performs in an idealized scenario with no false positives.
As expected, there was no statistical significance in the data entry
errors made by the users in the different configurations (p > 0.05),
but there were differences in how the users corrected the errors. The
control group users only corrected 40.2% of their errors, but CDT
users corrected 100% of their errors before submitting. This result
was statistically significant with p = 0.007.

The CDT group took 12.5% longer to complete tasks than the
control group (126 sec. vs. 112 sec.), presumably because they were
correcting more errors. However, the average time to correct an
error was 52.2% lower for the CDT group (17.8 seconds vs. 37.2
seconds), and the difference was statistically significant (p = 0.004).
This means that without CDT, the errors survived longer and had a
higher chance of resulting in a real-world error. Extrapolating to the
admittedly more complex car dealership scenario, the wrong price
being in the database longer increases the chance that a car is sold
at that price. Further, as time elapses after the error’s introduction,
fixing the underlying cause of the error becomes more difficult and
costly [6, 45, 73].

RQ2: Do false positives reduce CDT’s effectiveness?

The CDTFP group made 63 erroneous and 846 correct entries,
42 (5% of 846) of which were highlighted as false positives. This
resulted in a 40% false positive rate (42 out of 105 total highlighted
cells were false positive). Adding 40% false positives had mini-
mal effect on the error submission rates — only a single error was

submitted. The users were able to identify the falsely highlighted
cells and still corrected 98.4% of the errors. The users were able to
complete the task even faster, but this difference was not statistically
significant (p > 0.05). Because none of our metrics showed a statis-
tically significant difference between CDTFP and CDT, we conclude
that a 40% false positive rate did not impact CDT behavior.

We anticipate that higher rates of false positives will slow down
the users and will impact the error correction rates as the users begin
to distrust the red highlighting. Additionally, our data entry task had
a simple user interface that may have mitigated the effects of false
positives, and more complex tasks or tasks with less intuitive user
interfaces may increase the impact of false positives. Future work
will examine higher false positive rates and the effects of interfaces.

RQ3: What are the effects of CDT and integrity con-
straints on data entry speed?

The integrity constraints group was not allowed to submit data
with errors, so its submitted error rate was 0% (as was the CDT
group’s rate, without being forced). However, the CDT group was
more than 3.2 times faster at correcting errors as the integrity con-
straint group (17.8 seconds vs. 57.3 seconds) with high statistical
significance (p = 2 ·10−6). Again, correcting errors quickly reduces
the chance that they propagate and cause real-world damage, reduc-
ing their cost and easing their resolution [6,45,73]. Even when faced
with false positives, users were still 2.9 times faster at correcting
errors (20.1 seconds vs. 57.3 seconds) with high statistical signif-
icance (p = 3 ·10−7). Overall, CDT users were 18.2% faster than
those using integrity constraints (126 seconds vs. 154 seconds) at
completing their entire data entry tasks with statistical significance
(p = 0.024).

CDT (1) directs the users to the error by highlighting the relevant
cells, (2) warns them about the errors sooner after the data is entered,
which means the users may still be thinking about or visualizing
the number they are entering, and (3) presents a sense of progress
toward a goal by highlighting multiple cells when there are multiple
likely errors. We expect that these factors contributed most signifi-
cantly to CDT being more effective than even our extended integrity
constraint mechanism, which is more powerful and flexible than
what today’s database management systems allow.

5. CDT EFFICIENCY
CDT must scale to real-world applications and data, and must be

efficient enough to execute without significantly degrading applica-
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errors time
group total entries total corrected submitted per task to correct error

control 1,209 82 6.8% 33 40.2% 49 59.8% 112 sec. 37.2 sec.
CDT 1,097 67 6.1% 67 100 % 0 0 % 126 sec. 17.8 sec.
CDTFP 909 63 6.9% 62 98.4% 1 1.6% 97 sec. 20.1 sec.
integrity constraints 1,083 50 4.6% 50 100 % 0? 0? % 154 sec. 57.3 sec.

Figure 4: Error rate and timing measurements for the data entry user study. ?The integrity constraints forced a 0% error rate by disabling
submission of errors.

 0

 20

 40

 60

 80

 100

corrected errors (%) time to correct (sec)

control
integrity constraints

CDT
CDTFP

Figure 5: Using CDT, our crowd study participants identified and
corrected all the errors they made, much faster than with the enforce-
ment of integrity constraints. False positives had negligible impact
both on the errors corrected and the time to correction (CDTFP).

tion performance. This section evaluates CONTEST’s efficiency on
a range of benchmark application workloads.

5.1 Benchmark Data and Workload
TPC-H [81] is a popular benchmark used in database research

to simulate real-world workloads. TPC-H consists of a suite of
business oriented data and queries. The data and query workloads
are representative of real-world, industry-relevant situations [81].
The benchmark can be used to generate large datasets and pools of
workload queries. We evaluated CONTEST against a 1GB database
instance and created three pools of queries for our experiments,
which we later sampled to create workloads:

Read-only workload pool: TCP-H has 22 SELECT query tem-
plates that can be used to generate SELECT queries. We directly used
21 of these templates to generate our read-only workload pool. The
last template involved an intermediate view, which CONTEST does
not currently support.

Test pool: We generated tests using 6 queries from the SELECT
workload pool, omitting nested queries, which CONTEST’s pro-
totype static analysis does not yet handle. We split queries with
multiple aggregators into multiple test queries, one per aggregator.
This created a total of 13 test queries.

Update workload pool: For each attribute in each test, we cre-
ated an UPDATE query that changes the data for that attribute in a
way that breaks the test. Thus, by design, each UPDATE caused at
least one test to fail, and many caused multiple tests to fail.

5.2 Experimental Methodology and Metrics
Our evaluation simulated application operations using a workload

generated randomly, with replacement, from the read-only workload
pool. We executed this workload continuously, without pauses

between queries. We randomly selected update queries from the
update workload pool and injected them into this workload at regular,
varying, controlled intervals, to observe how the frequency of the
updates affects CDT’s performance. We measured how many read-
only queries were able to complete in 30 minutes as a measure of
speed of the application operation. We ran the workload executions
on an Intel i5 dual core 1.7 GHz processor with 4GB of RAM.

We designed these experiments as a worst-case scenario for CDT,
in which the workload is executed continuously, simulating ex-
tremely demanding applications. Most of today’s data-using appli-
cations are not nearly as demanding, including data entry systems
and applications such as the car dealership system from Section 2.
As a result, CDT overhead in those applications would be negligible.
But here, we explore CDT’s overhead on a performance-intensive
application.

5.3 Experimental Results
We evaluated the six CDT execution strategies described in Sec-

tion 3.3. The overhead of each configuration is measured in com-
parison to a base execution of a 30-minute experimental run of the
workload without CDT. For example, an overhead of 15.6% for
NaïveCDT means that the 30-minute execution with NaïveCDT
completed 15.6% fewer queries than the 30-minute execution with-
out CDT. Figure 6 summarizes the observed overhead of the CDT
executions strategies, varying the frequency of the update query
workload.

RQ4: What effect does CDT have on the performance of
performance-intensive applications, and how well do the
execution strategies mitigate this overhead?

The NaïveCDT strategy, which executes test continuously, re-
sulted in overheads between 15.6% and 16.8%. As expected, this
strategy’s performance is not affected by the update frequency, since
NaïveCDT is oblivious to concurrent application activity. A baseline
overhead of under 17% is a great starting point for CDT and suggests
that CDT is likely practical in many real-world applications.

All of our execution strategies were effective at reducing the
overhead. SimpleCDT with infrequent updates (1 every 10 minutes)
lowered the overhead to 6.4%, but its performance degraded quickly
as the update frequency increases. SmartCDT reduced the number of
tests that needed to execute, which reduced the overhead to 2.6% for
infrequent updates. SmartCDTTC and SmartCDTIT further improve
the overhead to 1.8% and 1.0%, respectively. SmartCDTTC+IT
demonstrates the best performance across all workloads.

The overhead increased with the frequency of the update opera-
tions, but was never higher than 17.4%, even for these performance-
intensive applications. Overall, even in this worst-case evaluation
scenario, CDT performed very well and justified its use, given its
effectiveness detecting errors described in Section 4.

380



 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

0.1/min 0.2/min 0.33/min 1/min 2/min

O
ve

rh
ea

d
 (

%
)

NaïveCDT
SimpleCDT

SmartCDT
SmartCDTTC

SmartCDTIT
SmartCDTTC+IT

execution overhead (per update frequency)
strategy 0.1/min 0.2/min 0.33/min 1/min 2/min
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SmartCDTIT 1.0% 1.6% 3.1% 9.7% 13.8%
SmartCDTTC+IT 1.0% 1.6% 3.1% 9.4% 13.5%

Figure 6: TPC-H benchmark performance overhead for CDT exe-
cution strategies.

6. DISCUSSION & THREATS TO VALIDITY
Test suite quality. CDT’s effectiveness depends on the quality of
its test queries. Our user study showed that even if tests produce
40% false positive warnings, CDT is still very effective at preventing
data entry errors. This suggest that if CDT were using even less
accurate tests, it would likely have a significant positive effect on
maintaining data correctness, but we have not tested at what point
CDT’s effectiveness reduces.

Automated test generation. We have not focused in this paper on
automatically generating tests for CDT. Prior work, and decades
of industrial experience demonstrate that in developing software,
even manually writing tests is worth the effort [1], and we believe
the same is true in the data domain as well. However, such tests
would likely need to be written by database administrators and sys-
tem developers, not by the end users the CDT interface targets. To
alleviate this concern, we have outlined several approaches for au-
tomatically mining tests from the history of application operation.
We demonstrated the potential utility of these approaches in our
effectiveness evaluation (Section 4) by automatically mining test
queries from spreadsheet formulae. However, we have not fully
evaluated the quality of tests that may be automatically mined from
database systems. This threat is, however, ameliorated by the fact
that database systems generally maintain a rich log of queries rel-
evant to the applications that use them. Using queries as tests, or
as templates to generate tests, is likely to lead to a powerful set of
domain-specific tests, but, again, we have not yet fully evaluated this
hypothesis. Even without such an evaluation, we feel that because
manual test writing has been so powerful in software development,
CDT provides significant value even in the unlikely scenario that
data tests cannot be mined automatically effectively.

CDT user interface. An important aspect of CDT’s effectiveness
is its interface to notify users of potential errors and enable those
users to correct those errors. This paper has discussed the challenges
of this aspect of CDT and outlined guidelines for the interface design
(recall Section 3.4), however, it has only built and evaluated one

interface. CDT interfaces are highly system specific and would need
to be designed as part of the overall system interface. Section 4
showed that even simple techniques, such as highlighting cells in
data entry systems, are highly effective at preventing errors; however,
data entry systems may be better suited for CDT than some other
systems.
Discussion of error patterns. In our user study, we observed that
CDT not only minimizes the number of errors that entry tasks intro-
duce, but also helps users identify and fix common error patterns.
Our experiments showed that several data entry errors follow spe-
cific patterns. For example, users often omitted periods and negative
signs. Such errors may sometimes arise due to a user misunder-
standing the task, such as assuming that periods could be omitted.
By producing quick notifications of erroneous updates, CDT helps
users realize this misunderstanding quickly and correct their be-
havior faster, saving them the work of having to retract a series of
otherwise avoidable mistakes.

7. RELATED WORK
CDT combines ideas from several software engineering and

database research areas.
Importance of data errors. The need for CDT is motivated by the
combination of the high frequency of data errors in real-world appli-
cations, the significant impact data errors have one those real-world
applications, and prevalence of end users, as opposed to trained pro-
grammers, who deal with data errors. One spreadsheet study found
that 24% of spreadsheets used by the Enron Corporation contained
at least one error [36]. Other studies [21, 33, 75, 76] have shown
that data errors are ubiquitous. The impact of data errors is high:
For example, the now famous Reinhart-Rogoff study concluded
that when a nation’s indebtedness crossed 90%, its growth rates
plummeted [70]. This false conclusion was reached due to errors in
the spreadsheet the study used [39] but had a vast impact on society
as the study was used widely by politicians to justify austerity mea-
sures taken to reduce debt loads in countries around the world [39].
Meanwhile other database errors have caused insurance companies
to wrongly deny claims [86], serious budget miscalculations [31],
medical deaths [71], and major scientific errors [3, 40]. Erroneous
price data in retail databases, as in our motivating example from
Section 2, cost US consumers $2.5 billion per year [23]. Meanwhile,
end users without significant programming experience who use
and interpret the output of systems that rely on this erroneous data
outnumber skilled programmers by an order of magnitude [2, 78].
Accordingly, CDT tackles this important problem by helping users
reduce the introduction of data errors without requiring them to
write programs and even tests.
Software testing. Running software tests continuously and no-
tifying developers of test failures quickly help write better code
faster [73,74]. Reducing the notification time for compilation errors
eases fixing those errors [45, 62], but can also distract and reduce
productivity [7]. Continuous execution of programs, even data-
driven programs such as spreadsheets, can inform developers of the
programs’ behavior as the programs are being developed [34, 43].
Continuous integration and merging can notify developers of merge
conflicts quickly after they are created [10, 11]. These findings have
led to work on simplifying the development of continuous tools for
the IDE [60, 61], but not for databases. CDT focuses on preventing
data errors, but the primary finding of this related work that notify-
ing developers sooner of problems makes it easier to resolve those
problems is supportive of CDT’s thesis.
Data cleaning. Most data cleaning work differs from CDT by fo-
cusing on removing existing errors from large datasets, as opposed
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to guarding data from new errors. Record-linkage [16, 18, 19, 51]
identifies and purges integrated data that correspond to the same
entity. Schema mapping [44, 59, 80] resolves data integration con-
flicts in schemas by generating the queries needed to transform one
schema to the other. Standard approaches to cleaning include statis-
tical outlier analysis for removing noisy data [85], interpolation to
fill in missing data (e.g., with averages), and using cross-correlation
with other data sources to correct or locate errors [38, 66]. Several
approaches let programmers apply data cleaning tasks programmati-
cally or interactively [28, 30, 41, 69]. Luebbers et al. [52] describe
an interactive data mining approach that derives logical rules from
data, and marks deviations as errors. This work is complementary
to CDT, which monitors and prevents new errors.

Data bugs in spreadsheets can be discovered by finding outliers in
the relative impact each datum has on formulae [4], by detecting and
analyzing data region clones [37], and by identifying certain patterns,
called smells [17]. By contrast, CDT uses data semantics, rather than
statistics, that allow it to detect application-specific errors. CDT also
applies more broadly than to only spreadsheet-based applications.

Diagnosis and explanations. Complementary to data cleaning,
diagnosing techniques attempt to describe where and how errors
occur. For example, Data X-Ray [83] derives optimal diagnoses
as a set of features that best summarize known errors in a dataset.
In a similar spirit, causality techniques [56, 57] aim to identify
inputs to queries that have a large impact to a particular result.
These methods focus on explaining errors in the data, rather than
identifying, preventing, or correcting them.

Data error prevention. CDT focuses on preventing the introduc-
tion of errors. Errors introduced in data streams can be reduced
using integrity constraints [47]. This approach requires users to
specify integrity constraints in a special language, and probabilisti-
cally applies the constraints to incoming data to dismiss or modify
erroneous data. Instead, CDT allows the user to decide how to han-
dle errors, without requiring an a priori, one-rule-fits-all policy for
handling errors. Update certificates ask the user a challenge ques-
tion to verify an update by comparing the answer with the modified
data [15]. Unlike CDT, this approach breaks the user’s workflow
and halts application execution.

Tools such as RefBook [2], BumbleBee [35], and CheckCell [4]
can help prevent errors in spreadsheets. For example, RefBook and
BumbleBee help programmers and end users, respectively, create
refactoring macros for spreadsheet formulae, which minimizes copy-
and-paste and manual editing errors. CheckCell uses the formulae
encoded in a spreadsheet to identify each datum’s impact and high-
light the data with the most impact so that end users can prioritize
verifying that data to remove high-impact data errors. Again, CDT
goes beyond these techniques by using data semantics to detect
application-specific errors.

Constraint-based repair. Methods that allow administrators to
repair errors, typically rely on expressing these repairs as constraint
optimization problems [58]. System developers can use topes to
explicitly encode multiple formats for input data, which enables
handling some entry errors and detecting partially correct data [77].
This process relies more heavily on the developer anticipating the
kinds of data errors that may occur than CDT does, and cannot
identify errors resulting from incorrect but properly formatted data
in reasonable ranges. Meanwhile integrity constraints improve and
maintain data quality in databases [82]. In practice, this mechanism
is limited to enforcing primary (data item is unique in a range)
and foreign key (inserted data item must correspond to an existing
data item) constraints. Verifying integrity constraints is a blocking
operation, so complex constraints are hard or impossible to enforce

without significant impact on the database responsiveness, which is
why most database management systems do not implement complex
constraints and assertions. Our evaluation in Section 4 had to extend
PostgreSQL’s handling of integrity constraints. In contrast, CDT
is more expressive, non-blocking, and does not interfere with the
user’s workflow and the application’s operation. Constraint-based
repair generalizes data dependencies to identify inconsistencies in
the data [23,24,25,29], but unlike CDT, cannot handle complex data
dependencies and semantics that can be encoded with test queries.

Test generation. Database testing research has focused on generat-
ing tests [14, 79], discovering application logic errors [49], measur-
ing the quality of existing tests [9], and debugging performance [5,
46, 64], but not detecting data errors. These techniques are comple-
mentary to CDT as they generate tests that CDT can use. In soft-
ware engineering, testing and test generation work is quite extensive
(e.g., [8, 22, 27, 42, 50, 53, 54, 55, 72, 84, 88]). However, unlike CDT,
this work has focused neither on data testing, nor query generation.

8. CONTRIBUTIONS AND FUTURE WORK
We have presented continuous data testing (CDT), a technique

for preventing the introduction of well-formed but semantically in-
correct data into a dataset in use by a software application. While
existing data cleaning techniques focus on identifying likely data er-
rors, inconsistencies, and statistical outliers, they are not well suited
for removing well-formatted, incorrect data that look acceptable
statistically, but fail to satisfy semantic requirements.

CDT uses automatically mined and manually written test queries
to test the soundness of the dataset as users and applications query
and update the data. We have built CONTEST, an open-source pro-
totype implementation of CDT available at https://bitbucket.
org/ameli/contest/. A 96-person user study showed that CDT
was extremely effective at helping users correct data errors in a data
entry application, and that it does so two to three times faster than
existing methods. Further, CDT is robust to poor quality tests that
produce false positives. Prior work has shown that reducing the time
to find an error reduces the time and cost of the fix, and prevents
the error from having real-world impact [6, 45, 73]. Evaluating CDT
using workloads from the TCP-H benchmark of business-oriented
data and queries shows that even for performance-intensive applica-
tions, CDT’s overhead is never more than 17.4%, and that our design
execution strategies can reduce the overhead to as low as 1.0%.

Encouraged by the results, we foresee several interesting future
directions of research. CDT can be extended to discover not only
correctness errors but also performance-degrading errors, leading
to database and application tuning. CDT uses static and dynamic
analyses to enable its execution strategies and these analyses can
be made finer-grained and more precise to further improve CDT’s
efficiency. CDT can be made more aware of its environment and
improve its use of the available resources, such as idle CPU cy-
cles, to improve responsiveness and efficiency. Test prioritization
techniques can further reduce CDT’s notification delay to improve
responsiveness and effectiveness. We have discussed CDT’s appli-
cability and empirically demonstrated its potential for effectiveness.
These extensions would make CDT more broadly applicable and
increase its impact.

9. ACKNOWLEDGMENTS
This work is supported by the National Science Foundation un-

der grants CCF-1349784, IIS-1421322, CCF-1446683, and CCF- 
1453474, by Google Inc. via the Faculty Research Award, and by 
Microsoft Research via the Software Engineering Innovation Foun-
dation Award.

382

https://bitbucket.org/ameli/contest/
https://bitbucket.org/ameli/contest/


10. REFERENCES
[1] P. Ammann and J. Offutt. Introduction to Software Testing.

Cambridge University Press, 1st edition, 2008.
[2] S. Badame and D. Dig. Refactoring meets spreadsheet formu-

las. In ICSM, pages 399–409, 2012.
[3] K. A. Barchard and L. A. Pace. Preventing human error: The

impact of data entry methods on data accuracy and statisti-
cal results. Computers in Human Behavior, 27(5):1834–1839,
2011.

[4] D. W. Barowy, D. Gochev, and E. D. Berger. CheckCell:
Data debugging for spreadsheets. In OOPSLA, pages 507–523,
2014.

[5] A. Boehm, K.-T. Rehmann, D. H. Lee, and J. Wiemers. Con-
tinuous performance testing for SAP HANA. In International
Workshop on Reliable Data Services and Systems, 2014.

[6] B. W. Boehm. Software Engineering Economics. Prentice Hall
PTR, 1981.

[7] C. Boekhoudt. The big bang theory of IDEs. Queue, 1(7):74–
82, 2003.

[8] M. Böhme and S. Paul. On the efficiency of automated testing.
In FSE, pages 632–642, 2014.

[9] I. T. Bowman. Mutatis mutandis: Evaluating DBMS test ad-
equacy with mutation testing. In DBTest, pages 10:1–10:6,
2013.

[10] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin. Proactive
detection of collaboration conflicts. In ESEC/FSE, pages 168–
178, 2011.

[11] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin. Early detec-
tion of collaboration conflicts and risks. IEEE Transactions on
Software Engineering, 39(10):1358–1375, October 2013.

[12] S. Ceri and J. Widom. Deriving production rules for incremen-
tal view maintenance. In VLDB, pages 577–589, 1991.

[13] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani. Robust
and efficient fuzzy match for online data cleaning. In SIGMOD,
pages 313–324, 2003.

[14] D. Chays, J. Shahid, and P. G. Frankl. Query-based test genera-
tion for database applications. In DBTest, pages 6:1–6:6, 2008.

[15] S. Chen, X. L. Dong, L. V. Lakshmanan, and D. Srivastava.
We challenge you to certify your updates. In SIGMOD, pages
481–492, 2011.

[16] A. Culotta and A. McCallum. Joint deduplication of multiple
record types in relational data. In CIKM, pages 257–258, 2005.

[17] J. Cunha, J. P. Fernandes, H. Ribeiro, and J. Saraiva. Towards a
catalog of spreadsheet smells. In ICCSA, pages 202–216, 2012.

[18] P. Domingos. Multi-relational record linkage. In Workshop on
Multi-Relational Data Mining, pages 31–48, 2004.

[19] X. Dong, A. Halevy, and J. Madhavan. Reference reconcilia-
tion in complex information spaces. In SIGMOD, pages 85–96,
2005.

[20] X. L. Dong and F. Naumann. Data fusion: Resolving data con-
flicts for integration. PVLDB, 2(2):1654–1655, August 2009.

[21] W. W. Eckerson. Data warehousing special report: Data qual-
ity and the bottom line. http://www.adtmag.com/article.
asp?id=6321, 2002.

[22] S. Elbaum, G. Rothermel, and J. Penix. Techniques for improv-
ing regression testing in continuous integration development
environments. In FSE, pages 235–245, 2014.

[23] W. Fan, F. Geerts, and X. Jia. A revival of integrity constraints
for data cleaning. PVLDB, 1(2):1522–1523, August 2008.

[24] W. Fan, F. Geerts, and X. Jia. Semandaq: A data quality sys-
tem based on conditional functional dependencies. PVLDB,
1(2):1460–1463, August 2008.

[25] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Conditional
functional dependencies for capturing data inconsistencies.
ACM Transactions on Database Systems, 33(2):6:1–6:48, June
2008.

[26] M. Fisher II and G. Rothermel. The EUSES spreadsheet cor-
pus: A shared resource for supporting experimentation with
spreadsheet dependability mechanisms. SIGSOFT Software
Engineering Notes, 30(4):1–5, May 2005.

[27] J. P. Galeotti, G. Fraser, and A. Arcuri. Extending a search-
based test generator with adaptive dynamic symbolic execution.
In ISSTA, pages 421–424, 2014.

[28] H. Galhardas, D. Florescu, D. Shasha, and E. Simon. AJAX:
An extensible data cleaning tool. In SIGMOD, page 590, 2000.

[29] F. Geerts, G. Mecca, P. Papotti, and D. Santoro. The LLU-
NATIC data-cleaning framework. PVLDB, 6(9):625–636, July
2013.

[30] L. Golab, H. Karloff, F. Korn, and D. Srivastava. Data auditor:
exploring data quality and semantics using pattern tableaux.
PVLDB, 3(1-2):1641–1644, Sept. 2010.

[31] B. Grady. Oakland unified makes $7.6M accounting error in
budget; asking schools not to count on it. Oakland Local, 2013.

[32] T. Griffin and L. Libkin. Incremental maintenance of views
with duplicates. In SIGMOD, pages 328–339, 1995.

[33] J. Hellerstein. Quantitative data cleaning for large databases.
UNECE, 2008.

[34] P. Henderson and M. Weiser. Continuous execution: The
VisiProg environment. In ICSE, pages 68–74, 1985.

[35] F. Hermans and D. Dig. BumbleBee: A refactoring environ-
ment for spreadsheet formulas. In FSE Tool Demo track, pages
747–750, 2014.

[36] F. Hermans and E. Murphy-Hill. Enron’s spreadsheets and re-
lated emails: A dataset and analysis. In ICSE SEIP track, 2015.

[37] F. Hermans, B. Sedee, M. Pinzger, and A. van Deursen. Data
clone detection and visualization in spreadsheets. In ICSE,
pages 292–301, 2013.

[38] M. A. Hernández and S. J. Stolfo. The merge/purge problem
for large databases. In SIGMOD, pages 127–138, 1995.

[39] T. Herndon, M. Ash, and R. Pollin. Does high public debt
consistently stifle economic growth? A critique of reinhart
and rogoff. Working Paper 322, Political Economy Research
Institute, University of Massachusetts Amherst, April 2013.

[40] D. Herring and M. King. Space-based observation of the Earth.
Encyclopedia of Astronomy and Astrophysics, 2001.

[41] S. R. Jeffery, G. Alonso, M. J. Franklin, W. Hong, and J. Widom.
A pipelined framework for online cleaning of sensor data
streams. In ICDE, pages 140–142, Apr. 2006.

[42] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes,
and G. Fraser. Are mutants a valid substitute for real faults in
software testing? In FSE, pages 654–665, 2014.

[43] R. R. Karinthi and M. Weiser. Incremental re-execution of pro-
grams. In SIGPLAN Papers of the Symposium on Interpreters
and Interpretive Techniques, 1987.

[44] V. Kashyap and A. Sheth. Semantic and schematic similari-
ties between database objects: A context-based approach. The
VLDB Journal, 5(4):276–304, Dec. 1996.

[45] H. Katzan Jr. Batch, conversational, and incremental compil-
ers. In the American Federation of Information Processing
Societies, pages 47–56, May 1969.

383

http://www.adtmag.com/article.asp?id=6321
http://www.adtmag.com/article.asp?id=6321


[46] S. A. Khalek and S. Khurshid. Systematic testing of database
engines using a relational constraint solver. In ICST, pages
50–59, 2011.

[47] N. Khoussainova, M. Balazinska, and D. Suciu. Towards cor-
recting input data errors probabilistically using integrity con-
straints. In ACM International Workshop on Data Engineering
for Wireless and Mobile Access, pages 43–50, 2006.

[48] A. J. Ko, R. Abraham, L. Beckwith, A. Blackwell, M. Burnett,
M. Erwig, C. Scaffidi, J. Lawrance, H. Lieberman, B. My-
ers, M. Rosson, G. Rothermel, M. Shaw, and S. Wiedenbeck.
The state of the art in end-user software engineering. ACM
Computing Surveys, 43(3):21:1–21:44, Apr. 2011.

[49] C. Li and C. Csallner. Dynamic symbolic database application
testing. In DBTest, pages 7:1–7:6, 2010.

[50] G. Li, E. Andreasen, and I. Ghosh. SymJS: Automatic sym-
bolic testing of javascript web applications. In FSE, pages
449–459, 2014.

[51] P. Li, C. Tziviskou, H. Wang, X. L. Dong, X. Liu, A. Maurino,
and D. Srivastava. Chronos: Facilitating history discovery by
linking temporal records. PVLDB, 5(12):2006–2009, August
2012.

[52] D. Luebbers, U. Grimmer, and M. Jarke. Systematic develop-
ment of data mining-based data quality tools. In VLDB, pages
548–559, 2003.

[53] R. Mahmood, N. Mirzaei, and S. Malek. EvoDroid: Segmented
evolutionary testing of android apps. In FSE, pages 599–609,
2014.

[54] L. Mariani, M. Pezzè, O. Riganelli, and M. Santoro. Link:
Exploiting the Web of data to generate test inputs. In ISSTA,
pages 373–384, 2014.

[55] D. Marinov and S. Khurshid. TestEra: A novel framework for
automated testing of Java programs. In ICASE, page 22, 2001.

[56] A. Meliou, W. Gatterbauer, K. F. Moore, and D. Suciu. The
complexity of causality and responsibility for query answers
and non-answers. PVLDB, 4(1):34–45, 2010.

[57] A. Meliou, S. Roy, and D. Suciu. Causality and explanations
in databases. PVLDB, 7(13):1715–1716, 2014.

[58] A. Meliou and D. Suciu. Tiresias: The database oracle for
how-to queries. In SIGMOD, pages 337–348, May 2012.

[59] R. J. Miller, L. M. Haas, and M. A. Hernández. Schema map-
ping as query discovery. In VLDB, pages 77–88, 2000.
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