
The ManyBugs and IntroClass Benchmarks
for Automated Repair of C Programs
Claire Le Goues, Neal Holtschulte, Edward K. Smith, Yuriy Brun,Member, IEEE,

Premkumar Devanbu, Stephanie Forrest, Fellow, IEEE, and Westley Weimer

Abstract—The field of automated software repair lacks a set of common benchmark problems. Although benchmark sets are used

widely throughout computer science, existing benchmarks are not easily adapted to the problem of automatic defect repair, which has

several special requirements. Most important of these is the need for benchmark programs with reproducible, important defects and

a deterministic method for assessing if those defects have been repaired. This article details the need for a new set of benchmarks,

outlines requirements, and then presents two datasets, MANYBUGS and INTROCLASS, consisting between them of 1,183 defects in 15 C

programs. Each dataset is designed to support the comparative evaluation of automatic repair algorithms asking a variety of

experimental questions. The datasets have empirically defined guarantees of reproducibility and benchmark quality, and each study

object is categorized to facilitate qualitative evaluation and comparisons by category of bug or program. The article presents baseline

experimental results on both datasets for three existing repair methods, GenProg, AE, and TrpAutoRepair, to reduce the burden

on researchers who adopt these datasets for their own comparative evaluations.

Index Terms—Automated program repair, benchmark, subject defect, reproducibility, MANYBUGS, INTROCLASS

Ç

1 INTRODUCTION

REPRODUCIBLE research is a concern throughout science.
In a 2013 article “How Science Goes Wrong”, The

Economist criticized research validity in fields ranging from
biotechnology (“half of published research cannot be repli-
cated”) to computer science (“three-quarters of papers in [a]
subfield are bunk”) [1]. Similarly, in early 2014, the Presi-
dent’s Commission to Advance Science and Technology
(PCAST) held a meeting devoted to the many problems of
irreproducible and incomparable results in science [2]. The
carefully controlled, reproducible experiment is a bedrock
principle of modern science, but as these two examples high-
light, it is a concept that is more easily stated than imple-
mented. Problems arise from poor statistical methodology,
sloppy experimental design, inadequate reviewing, and idio-
syncratic data sets. Computer science has historically
addressed this last problem through the use of standardized
benchmark problems, e.g., [3], [4], [5]. A well-designed
benchmark set simplifies experimental reproduction, helps
ensure generality of results, allows direct comparisons

between competing methods, and over time enables mea-
surement of a field’s technical progress.

A common set of benchmarks and evaluation methodolo-
gies are good for a research subfield in additional ways.
They stimulate cohesion, collaboration, and technical prog-
ress within a community. Sim et al. argue that benchmarks
capture a discipline’s dominant research paradigms and
represent (and by extension, can promote) consensus on
which problems are worthy of study [6]. When a research
subfield reaches a sufficient level of maturity, common sets
of study objects and baselines, i.e., benchmarks, become
instrumental for further progress.

Since 2009, research in automated program repair, a sub-
field of software engineering, has grown to the point that it
would benefit from carefully constructed benchmarks. Soft-
ware quality in general, and software maintenance in partic-
ular, remain pressing problems [7]. Defect repair is critical
to software maintenance, and there has been significant
progress in automated approaches to repairing software
defects. Research in automated repair has grown consider-
ably in the past decade, as evidenced by the number of sep-
arate projects in the research literature today (e.g., [8], [9],
[10], [11], [12], [13], [14], [15], [16], [17]). This influx of new
ideas is exciting and suggests a promising future for auto-
mated software engineering in research and practice. Few
of these publications, however, include direct empirical
comparisons with other approaches. Thus, it is currently
difficult to evaluate how different algorithms or assump-
tions perform relative to one another, or to particular classes
of defects or programs.

We believe that the rigorous, reproducible evaluation of
and between techniques is critical to allowing researchers to
move from questions such as “can this be done at all?” to
“why does this work, and under what circumstances?” For
example, since 2002, the “MiniSAT Hack” standardized

� C. Le Goues is with the School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA 15213. E-mail: clegoues@cs.cmuedu.

� N. Holtschulte and S. Forrest are with the Department of Computer
Science at the University of New Mexico, Albuquerque, NM 87131.
E-mail: {neal.holts, forrest}@cs.unm.ed.

� E.K. Smith and Y. Brun are with the College of Information and Computer
Science, University of Massachusetts at Amherst, MA 01003.
E-mail: {tedks, brun}@cs.umass.edu.

� P. Devanbu is with the Department of Computer Science, University of
California at Davis, Davis, CA 95616. E-mail: devanbu@cs.ucdavis.edu.

� W. Weimer is with the Department of Computer Science, University of
Virginia, Charlottesville, VA 22904. E-mail: weimer@cs.virginia.edu.

Manuscript received 4 June 2014; revised 31 Mar. 2015; accepted 25 Apr.
2015. Date of publication 8 July 2015; date of current version 11 Dec. 2015.
Recommended for acceptance by M. Pezz�e.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSE.2015.2454513

1236 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 12, DECEMBER 2015

0098-5589� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

benchmarks and challenges (associated with the Interna-
tional Conferences on the Theory and Applications of Satisfi-
ability Testing, e.g., SAT 2013 [18] and SAT 2014 [19]) have
helped foster significant improvement and interest in state-
of-the-art SAT solvers. While we are not proposing an
explicit human competition in the vein of theMiniSATHack,
experiments that improve on prior results using the same
methodology and benchmarks do lead to direct competition
and the ability to compare and contrast research advances.
This sort of direct competition is possible only when bench-
marks are available to serve as a basis for comparison.

Popular benchmarks such as SPEC [5] are inappropriate
for automated repair research because they do not contain
explicit defects, and the common practice of manually
selecting evaluation subjects for each new technique, while
reasonable in a nascent subfield, cannot ultimately establish
general results. This suggests a need for new benchmarks,
tailored to the requirements of research in automated pro-
gram repair.

This article presents two benchmark sets consisting
of defects1 in C programs: MANYBUGS and INTROCLASS.
The benchmarks are available for download: http://
repairbenchmarks.cs.umass.edu/. Both benchmark sets are
designed to support research on automatic program repair,
targeting large-scale production programs (MANYBUGS) and
smaller programs written by novices (INTROCLASS). We
describe themethodologies in detail to encourage the commu-
nity to provide additional scenarios and keep the benchmarks
up to date as new types of programs and bugs emerge. We
also provide baseline results of existing techniques on these
benchmarks, against which future research can be compared.

The primary contributions of this article are:

� The MANYBUGS dataset, which consists of 185 defects
in nine open-source programs. The programs are
large, popular, open-source projects, and each defect
has at least one corresponding patch and test case
written by an original developer. The defects were
captured systematically through version control
repositories (rather than from explicit developer
annotations) from all viable version control versions
within given time windows. The goal is to support
indicative longitudinal studies within each program
and latitudinal studies across programs. To ensure
reproducibility, we provide virtual machine images
on which the programs and defects are known to
execute as described. Each program and defect pair
has been manually categorized and classified, pro-
viding a starting place for qualitative analyses of
techniques. In total, the MANYBUGS benchmark pro-
grams include 5.9 million lines of code and over
10,000 test cases.

� The INTROCLASS dataset, which consists of 998 defects
in student-written versions of six small C program-
ming assignments in an introductory, undergraduate
C programming course. Each of the six assignments
asks students to write a C program that satisfies a

carefully written specification and allows them to
test under-development programs against an
instructor-written test suite. The defects (test case
failures) are collected from these tested versions. For
each such defective program, the benchmark also
includes the final program submitted by that stu-
dent, some of which pass all of the test cases. The six
oracle programs, each implementing one of the six
assignment specifications, total 114 lines of code.
Each assignment’s two independent test suites com-
prise 95 tests in total. The programs’ small sizes,
well-defined requirements, and numerous varied
human implementations enable studies that would
be difficult with MANYBUGS, particularly studies
benefiting from larger numbers of defects, or of tech-
niques that do not yet scale to real-world software
systems or involve novice programmers. INTROCLASS

also supports comprehensive, controlled evaluations
of factors that affect automated program repair.

� A qualitative analysis and categorization of the
benchmark programs and defects. Wemanually cate-
gorize the bugs by defect feature, providing a starting
point to evaluate strengths andweaknesses of a given
repair technique with respect to given defect types.

� Baseline experimental results and timing measure-
ments for three existing repair algorithms, Gen-
Prog [13], [17], [20], AE [21], and TrpAutoRepair [22].

An initial 105-defect subset of the MANYBUGS benchmark
set was previously used as part of a systematic evaluation
of one repair method, GenProg [23]. A subset of those origi-
nal scenarios was similarly used by others to evaluate
TrpAutoRepair [22] (TrpAutoRepair was also published
under the name RSRepair in “The strength of random
search on automated program repair” by Yuhua Qi, Xiao-
guang Mao, Yan Lei, Ziying Dai, and Chengsong Wang in
the 2014 International Conference on Software Engineering;
in this article, we use the original name, as it is associated
with the complete algorithm description.) The INTROCLASS

benchmark was similarly used in another evaluation of Gen-
Prog [24], [25]. This article focuses on the benchmarks and
associated generation methodology. The MANYBUGS bench-
mark significantly extends the previous set, and includes an
additional subject program (valgrind) and additional sce-
narios from other subjects (python, php, wireshark). The
expansion of the php set enables an additional type of longi-
tudinal experiment of repeated defect repair in one subject
program. We have also modified and added more rigorous
validation of all of the scenarios to provide stronger guaran-
tees about their utility in automatic program repair experi-
ments. Finally, we improved the usability of the INTROCLASS

benchmark, categorized all of the defects, and formalized the
methodology used to create the dataset.

The rest of this article proceeds as follows. Section 2 dis-
cusses the importance and increasing prevalence of research
in automatic program repair and the problems with current
empirical evaluations in the area. Section 3 outlines our goals
in designing and evaluating the benchmark sets. Sections 4
and 5, respectively, present the methodology for generating
the MANYBUGS and INTROCLASS benchmarks, outline the pro-
grams and defects, and overview the released scenarios. 6

1. We use the terms bug and defect interchangeably throughout this
article, referring to the colloquial meaning, that is, undesired program
behavior that a programmer would like to repair.

LE GOUES ET AL.: THE MANYBUGS AND INTROCLASS BENCHMARKS FOR AUTOMATED REPAIR OF C PROGRAMS 1237

presents baseline empirical repair results for three automated
repair methods, GenProg, TrpAutoRepair, and AE, on the
two benchmark sets. Section 7 places our work in the context
of related research, Section 8 outlines threats to validity, and
Section 9 summarizes our contributions and conclusions.

2 MOTIVATION

We motivate the need for widely accessible benchmarks for
research in automated program repair by first emphasizing
the importance of the research area, then discussing the
increasing maturity of the subfield, and finally outlining
some deficiencies in current empirical evaluations.

2.1 Program Repair Is an Important Problem

The cost of debugging and maintaining software has contin-
ued to rise, even while hardware and many software costs
fall. In 2006, oneMozilla developer noted, “everyday, almost
300 bugs appear [. . .] far too much for only the Mozilla pro-
grammers to handle” [26, p. 363]. The situation has hardly
improved in the intervening years, as bugzilla.mozilla.org
indicates similar rates of bugs reported in 2013. A 2013 study
estimated the global cost of debugging at $312 billion, with
software developers spending half their time debugging [7].
Since there are not enough developer resources to repair all
of these defects before deployment, it is well known that pro-
grams shipwith both known and unknown bugs [27].

In response to this problem, many companies offer bug
bounties that pay outside developers for candidate repairs to
their open source code. Well-known companies such as
Mozilla ($3,000/bug) [28], Google ($500/bug) [29], and
Microsoft ($10,000/bug) [30], ($10,000/bug) offer significant
rewards for security fixes, reaching thousands of dollars
and engaging in bidding wars [31]. While many bug boun-
ties simply ask for defect reports, other companies, such as
Microsoft, reward defensive ideas and patches as well (up
to $50,000/fix) [32].

The abundance and success of these programs suggests
that the need for repairs is so pressing that some companies
must consider outside, untrusted sources, even though such
reports must be manually reviewed, most are rejected, and
most accepted repairs are for low-priority bugs [33]. A tech-
nique for automatically generating patches, even if those
patches require human evaluation before deployment,
could fit well into this paradigm, with potential to greatly
reduce the development time and costs of software debug-
ging. These examples also suggest that benchmarks for
automatic program repair should address success metrics
relevant to real-world debugging, which include the frac-
tion of queries that produce code patches, monetary cost,
and wall-clock time cost.

2.2 Automatic Program Repair

The importance of defects in software engineering practice
is reflected in software engineering research. Since 2009,
when automated program repair was demonstrated on
real-world problems (PACHIKA [34], ClearView [15],
GenProg [17]), interest in the field has grown steadily, with
multiple novel techniques proposed (e.g., Debroy and
Wong [10], AutoFix-E [16], ARMOR [8], [35], AFix [11],
AE [21], Coker and Hafiz [9], PAR [12], SemFix [14],

TrpAutoRepair [22] Monperrus [36], Gopinath et al. [37],
MintHint [38], etc.). Some of these methods produce multiple
candidate repairs, and then validate them using test cases,
such as by using stochastic search or methods based on
search-based software engineering [39] (e.g., GenProg, PAR,
AutoFix-E, ClearView, Debroy and Wong, TrpAutoRepair).
Others use techniques such as synthesis or constraint solving
to produce smaller numbers of patches that are correct by con-
struction (e.g., Gopinath et al., AFix, etc.) relative to inferred
or human-provided contracts or specifications. We provide a
more thorough treatment of relatedwork in Section 7.

Several recent studies have established the potential of
these techniques to reduce costs and improve software qual-
ity, while raising new questions about the acceptability of
automatically generated patches to humans. See, for exam-
ple, the systematic study of GenProg, which measured cost
in actual dollars [23] and related studies that assess the
acceptability of automatically generated patches [12], [40].

As automatic repair research has matured, interest has
moved from proof-of-concept evaluations to broader quali-
tative questions that identify the circumstances under
which automatic repair is most appropriate. As an indica-
tive example of conventional wisdom, Thomas Zimmer-
mann of Microsoft Research claimed that, “one of the
challenges will be to identify the situations when and where
automated program repair can be applied. I don’t expect
that program repair will work for every bug in the universe
(otherwise thousands of developers will become unem-
ployed), but if we can identify the areas where it works in
advance there is lots of potential.” [41, slide 67]2

Taken together, this body of work and commentary show
the promise of automated software repair methods, and it
highlights the need to understand and improve the quality
of the automated repair methods before they can be adopted
widely in practice. The rapid growth and increasing matu-
rity of the research area suggests a need for community dis-
cussion and consensus on evaluation methodology. While
the work to date is promising in providing proofs of con-
cept, larger-scale, generalizable and comparative evalua-
tions will be necessary to support conclusions about
practical feasibility.

2.3 Empirical Evaluations

The vast majority of published papers on software defect
detection, localization, and repair use empirical evaluation
to demonstrate the effectiveness of the method. Typically, a
repair technique is proposed and then tested on a collection
of bugs in one or more programs. When chosen carefully,
such studies provide evidence that the technique in ques-
tion will generalize or scale to different or larger projects.
Studies of this type tend to use bugs from one or a combina-
tion of three sources:

� Defects in the wild. A number of studies of automatic
bug finding, localization, and fixing techniques have
used bugs “in the wild,” found through ad hoc case
studies, manual search through bug databases,
industrial partnerships, and word-of-mouth (e.g.,
[13], [15], [27]). We previously took this approach to
evaluate GenProg on a variety of defect types [13].

2. http://www.cs.virginia.edu/ weimer/p/weimer-ssbse2013.pdf

1238 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 12, DECEMBER 2015

Similarly, ClearView [15] was evaluated (both in
terms of patching success and via a Red Team evalu-
ation) on a set of previously identified vulnerabilities
from historical bug reports for the FireFox web
browser; these bugs fell into particular defect classes
that are handled by ClearView’s underlying vulnera-
bility detector.

� Systematic search. A dataset constructed by collecting
defects in a systematic fashion helps avoid biased
evaluations. The benchmark set (described earlier)
that was created to support a large-scale evaluation
of GenProg was one of the first examples of a pub-
licly available, systematically assembled set of bugs
constructed specifically for studies of automated
program repair [23]. The approach behind the
iBugs [42] and Defects4J [43] share some features
with the MANYBUGS methodology but focus on Java
benchmarks suitable for evaluating research in fault
localization and testing, respectively. These datasets
or the underlying methodologies could possibly be
adapted for systematic evaluations of automatic pro-
gram repair research, although we are unaware of
any such efforts to date.

� Existing datasets. There are several existing reposito-
ries of programs associated with test suites, some of
which can be and have been adapted for empirical
evaluations of program repair research. These repos-
itories were designed for research on software test-
ing (similar to iBugs). For example, the Software
Artifact Infrastructure Repository (SIR) [44], is
described by its maintainers as “a repository of soft-
ware-related artifacts meant to support rigorous con-
trolled experimentation with program analysis and
software testing techniques, and education in con-
trolled experimentation.” Some evaluations have
used the SIR repository, focusing primarily on the
subset constituting the Siemens benchmark suite [45],
which currently consists of eight programs of 173–
726 lines of code. The SIR C suite overall contains 15
programs ranging from 173 lines (tcas) to over
120,000 lines (vim), although we are unaware of
evaluations that include the latter. Because SIR is
intended to support controlled evaluations of testing
research, the test suites were created to maximize
coverage, and the majority of the faults are seeded.
These conditions are not representative of real-world
development, where, for example, test suite coverage
is often far from maximal and faults occur naturally
during development. The SAMATE benchmark [46],
constructed by NIST to demonstrate particular
common classes of security errors in design, source
code, and binaries. Coker and Hafiz used some of
these programs in an empirical evaluation [9]. The
Defects4J benchmark [43] includes 357 bugs and
20,109 tests in five real-world programs, and targets
testing techniques, specifically focusing on muta-
tion testing. Evaluations have used Defects4J to
show that mutants are a valid substitute for real
faults in software testing [43] and to measure
how likely humans are to accept automatically gen-
erated patches [47]. These datasets are most

suitable for the controlled experiments for which
they were designed, such as measuring success rel-
ative to test suite coverage or defect type.

Few of the published automated software repair projects
report direct comparisons to previous work, which moti-
vates our inclusion of baseline repair results. However, three
recent publications do include empirical comparisons, each
featuring a different repair method: PAR [12], SemFix [14],
and TrpAutoRepair [22]. All three compare new and exist-
ing techniques’ performance on a new dataset (SemFix and
TrpAutoRepair compared to previously released versions of
GenProg, and PAR compared to a GenProg reimplementa-
tion for Java). Such approaches are scientifically valuable
because they make direct empirical comparisons, and reuse
and reproduce an existing technique. However, repeatedly
selecting new benchmarks and reimplementing algorithms
duplicates work, and introduces subtle variations to tech-
nique implementations.

Direct comparisons are rare in part because it is often dif-
ficult to reproduce both the defects to be repaired and the
existing techniques. Although publicly available codebases
help the latter problem, exact replication of experimental
conditions typically requires significantly more detailed
information than can be included in a standard conference
publication. Reproducing a defect requires knowledge of,
and access to, at least (1) the exact version of the source
code containing the defect; (2) the test case(s) or specifica-
tions used to demonstrate the problem and specify correct
behavior, if applicable; (3) instructions for running test cases
for a particular tool, e.g., as part of a framework (JUnit) or
individually, perhaps with a custom script; (4) compilation
mechanism, including the specific compiler and its version,
or other support scripts; and (5) the operating system or
platform and all associated libraries, which can impact
the defect or how it manifests, e.g., integer overflows on 32-
versus 64-bit architectures.

A second set of difficulties arises if the repair methods
have stochastic elements and a large set of parameters. In
many cases, these are not delineated in enough detail to rep-
licate results. Although researchers are increasingly releas-
ing specific details in technical reports or other external
data artifacts to support reproducibility, such efforts are not
yet the norm.

One critical concern in empirical evaluation is how the
dataset is selected. For automated repair, for example, we are
interested in how defects are sampled from the real world. A
recent critical review of GenProg and PARdiscusses this issue
in detail [36, Section 3.2.1]: A benchmark made entirely of
bugs of categoryX favors techniques that performwell onX.
Ideally, a benchmark set for this domain will be indicative of
bugs encountered in development practice, and defect catego-
ries will occur in the benchmark set in the same proportion
that they occur in reality. In practice, such determinations are
hard to make, especially in the face of ever-changing technol-
ogy. This is evident in the evolution of the popular SPEC
benchmarks, which are ubiquitous in evaluating compiler
optimizations [5], and which are often reselected and revised
as the field and available hardware advances.

Motivated by these issues, this article presents a bench-
mark set of program defects that are deterministic and

LE GOUES ET AL.: THE MANYBUGS AND INTROCLASS BENCHMARKS FOR AUTOMATED REPAIR OF C PROGRAMS 1239

reproducible, with the goal of enhancing the a wide range
of experiments with different methods for automatic
program repair.

3 GENERATING THE BENCHMARKS

A benchmark is a standard or point of reference against
which something can be compared or assessed. A bench-
mark for evaluating program repair techniques consists of a
program with a defect and a mechanism for evaluating the
correctness of a repair for that defect. A benchmark set is a
set of such defects in programs. In the ideal case, the bench-
mark set allows quantitative and qualitative analysis of the
characteristics of a given program repair technique. Com-
plete evaluation on a particular defect requires a defect sce-
nario, which consists of: a software system with a defect; the
environment it runs in; a witness to the defect; a specifica-
tion of correct behavior; and optionally, a human-supplied
repair. This section describes these requirements for both
complete defect scenarios and a collection of them.

3.1 Individual Scenarios

A defect scenario consists of:

� A partial or complete software system with a defect
(for example, a source-tree snapshot of an off-
the-shelf C program, including Makefiles). This is
the program that a repair algorithm will attempt to
repair. Repair methods target different representa-
tion levels, including the source code text itself, the
compiled binary, or an intermediate representation
such as an abstract syntax tree (AST) or LLVM Inter-
mediate Representation. Including the full source
tree and compilation mechanisms allows the bench-
marks to support experiments at any of these repre-
sentation levels.

� An environment in which the program can be reliably
and deterministically compiled and executed. Many
repair techniques are dynamic or have dynamic
components, and thus require the ability to compile
and execute both the original program and variants.
The size and complexity of the software system
under repair typically contributes to the complexity
of the environment. Reproducing a set of program
behaviors deterministically often depends on factors
like system architecture, installed libraries, or operat-
ing system. Thus, for the larger programs in the
MANYBUGS set, we provide a virtual machine image
that includes all necessary library versions and com-
pilation scripts (see Section 4.4). This simplifies
reproduction of the defects in question. By contrast,
and by design, the smaller programs in the INTRO-

CLASS set have few environmental dependencies, and
thus can be compiled and run reliably given a set of
common flags to the gcc compiler.

� A witness to the defect, such as one or more test cases
that the program fails. This identifies the bug, usu-
ally corresponding to a test case the software system
is currently failing. The witness also identifies
repairs for the defect by describing expected correct
behavior.

� A (partial) specification of correct behavior. For exam-
ple, a test suite produced by the original application
developers that the program snapshot currently
passes. Although test cases are at best partial and
imperfect measures of program correctness or qual-
ity, they are by far the most prevalent technique for
establishing correctness in practice. Other specifica-
tion mechanisms, such as invariants, annotations, or
supportive documentation, could also fulfill this
requirement as available.

� Optionally, an example human-written repair, or fix.
For example, if the defect in question was repaired in
the program’s source code repository, the scenario
may include the patch from that repository. Such
patches assist in qualitative and quantitative post
facto evaluations by providing a point of comparison.

As mentioned earlier, deterministically reproducing pro-
gram behavior (both correct and incorrect) on a set of test
cases can be challenging, and our benchmarks thus focus on
deterministic defects. Race conditions and other nondeter-
ministic defects [11] are certainly important, but they are
outside the scope of this benchmarking effort and entail a
different set of concerns with respect to evaluation [48].
Limiting the scope to deterministic faults supports our abil-
ity to provide the following guarantees for each scenario:

� The code compiles correctly in the environment pro-
vided with the commands provided.

� The compiled buggy code passes all elements of the
specification, or all normal test cases, except those
that witness the defect.

� The compiled code demonstrates the defect (i.e., fails
all tests that encode the bug).

� Example repairs included in the benchmark produce
programs that compile and pass all elements of the
specification and fail to witness the defect (i.e., retain
all required functionality while repairing the bug).

� Claims regarding deterministic behavior, e.g., that
the program passes all of the positive test cases, is
validated with respect to a combination of manual
inspection (where applicable) and at least 100 trial
executions, all of which were observed to produce
the identical result. Any remaining exceptions (lim-
ited to the INTROCLASS set, see below for details) are
noted carefully in the released data. All tests that
involve timing (e.g., tests that include time outs to
guard against infinite loops) were observed to com-
plete in time over 100 trials on 2013 Amazon EC2
cloud computing c1.medium instances.

� No part of the specification (e.g., no test case) can be
satisfied by a program with explicitly degenerate
behavior, such as a program that crashes immedi-
ately on launch.

� The order in which two specification elements or two
candidate programs are checked (e.g., in which order
two test cases are run or two candidate repairs are
tested) does not influence the result. That is, evalua-
tions are stateless, even if the programs are ill-behaved.

Some of these guarantees merit further explanation. The
specification and witness test cases provide a way to run a

1240 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 12, DECEMBER 2015

sanity check on a scenario before beginning a repair effort. It
is important to establish that the original program compiles,
demonstrates the defect, and otherwise works correctly.
Some human-written test cases are nondeterministic (e.g.,
involve random numbers or machine-specific timeouts).
Because our benchmarks assume determinism, we removed
such test cases from consideration. However, one interest-
ing source of nondeterminism occurred in the INTROCLASS

benchmark set, where in some cases, student programmers
used uninitialized variables or out-of-bounds array reads.
We verified that in our execution environment, each of the
program versions in INTROCLASS produced consistent results
over at least 10 executions.

A full evaluation of the quality, maintainability [40] or
acceptability [12] of a repair is beyond the scope of this
work. Test cases do not provide the final word on repair
quality, and future work is needed to develop methods for
measuring repair quality beyond test suite behavior. In the
absence of such metrics, however, the final three properties
listed above provide additional confidence in the quality of
a machine-generated repair. They address corner cases that
we have observed in practice, where repairs that cause a
program to pass all test cases are unlikely to be acceptable
to humans. As one example (explicitly degenerate behav-
ior), many test suites are written assuming cooperating
developers, and do not rule out truly pathological behavior.
For example, a common test practice runs the program and
then searches the output for a known bad substring; if the
substring is absent, the test passes. This type of test can be
trivially passed by an empty program that returns immedi-
ately, which is rarely the truly desired behavior. Further,
many larger programs use bootstrapping in compilation or
testing (e.g., first automatically generating header files).
Unless care is taken to restore a pristine environment
between test evaluations [49], a low-quality candidate repair
(e.g., one that creates malformed headers during bootstrap-
ping or that fails to properly cleanup after a test case) may
cause all subsequent evaluated candidates to appear to fail,
violating the stateless requirement.

Although they do not provide formal guarantees, these
three properties add confidence, especially compared to
previous evaluations (e.g., [23]), that candidate repairs that
pass all specification elements are not degenerate. With
interest in automated program repair methods on the rise,
there is a need for improved methods for partial correctness
specifications that are robust to automatically generated
code. To date, we have not found other types of these speci-
fications in the types of open-source programs we investi-
gated for these benchmarks.

3.2 The Sets of Scenarios

We now describe the set of experimental questions and
analyses that are common in current automatic program
repair research. We used these to determine requirements
for our benchmark sets with the goal of enabling multiple
classes of experiments:

1) Program generality. Does the repair technique apply
to multiple classes of software programs? Or does it
target or work best on one class of applications (e.g.,
web servers)?

2) Defect generality. Does the repair technique apply to
multiple classes of software defects, or does it success-
fully target one class of bugs (e.g., buffer overflows)?

3) Longitudinal studies. Can the repair technique fix mul-
tiple defects in the same program? Does the repair
technique apply to iterative repair scenarios in which
additional defects are reported over time?

4) Success characteristics. What characterizes defect sce-
narios on which the technique succeeds (e.g., high
priority defects, defects of a certain size, mature host
programs, programs of a particular size, etc.)?

5) Controlled evaluations. How does a technique perform
on hundreds of defects? How do factors like test
suite coverage influence performance?

6) Human comparisons and overall repair quality. How do
the repairs produced by the technique compare to
repairs produced by humans (e.g., students or devel-
opers)? Are the repairs produced by such techniques
of acceptable quality?

There are several plausible use cases addressed by auto-
mated program repair. For example, some repair techniques
may be designed to address particular defect or program
types; others to be generally applicable; still others to
address iterative, closed-loop modification of long-running
systems. Our benchmarks support evaluation of a variety of
use cases and both latitudinal studies (many types of pro-
grams and defects) and longitudinal studies (many defects
in the same program over time). To admit principled com-
parisons and identify fruitful areas of future research, our
benchmarks are categorized (e.g., “technique A performs
well on defects of type B not on those of type C”).

It is desirable to include scenarios that are indicative of the
defects encountered by developers in the real-world. These
defects ideally correspond to high-priority bugs in com-
monly used programs. An important aspect of this property
is that the defects should be systematically identified, avoiding
cherry-picking of ideal candidates. The closer such a defect
set is to those that appear in practice, the more results on
them will be indicative and generalizable to real-world
applications. This provides another reason to include devel-
oper-provided test cases as the partial specifications of both
correct and incorrect behavior: these test cases are indicative
of the types of evidence available in practice for evaluating
program functionality.

In addition, automatic repair techniques vary in their
maturity. One dimension along which techniques vary is
scalability. Ideally, a benchmark enables characterization of
a technique’s scaling behavior. We thus include programs
of varying size, some of which will by necessity be more
indicative of real world code than others.

Finally, the scenarios must support controlled and
reproducible experiments. We addressed some reproducibil-
ity issues through careful definition of defect scenario
(Section 3.1); many of the defects require particular library
versions or otherwise cannot easily be reproduced simply
from a program, a source control repository, and a revision
number specification. This motivated us to include virtual
machine images to support experimentation on the larger
MANYBUGS programs. However, the issue of controlled
experimentation applies at the benchmark level as well.

LE GOUES ET AL.: THE MANYBUGS AND INTROCLASS BENCHMARKS FOR AUTOMATED REPAIR OF C PROGRAMS 1241

Ideally, the scenarios are selected to allow a researcher to
control for various features of a defect or program ahead of
time as well as in post facto analysis.

3.3 Baseline Repair Data

Many benchmarks are associated with baseline measure-
ments against which future evaluations can be compared
(e.g., the SPEC benchmarks). We expect future researchers
to expand the dimensions along which automatic repair
techniques are evaluated beyond time, efficiency, or cost.
However, as the state-of-the-art in industrial practice moti-
vates the use of these metrics as one way of evaluating suc-
cess (see Section 2.1), we use them as baseline metrics.
Baselines reduce the experimental burden of comparative
evaluations on other researchers, so long as the future eval-
uations use the scenarios as-is (for example, modifying the
test suites would necessitate a full re-execution of the base-
line evaluation). Finally, demonstrated integration of exist-
ing repair methods with the defect scenarios in this
benchmark provides a concrete model for how other tools
can be evaluated using these benchmarks.

For each scenario, we report if GenProg (version 2.2, with
its latest published parameters [50]), AE [21], and TrpAutoR-
epair [22] produce a repair, and how long such a search took,
using the parameters and settings from its most recently-
published methodology. GenProg and TrpAutoRepair were
allotted 10 random seeds of up to 12 hours each (totaling 120
hours). AE was allotted one deterministic trial of up to 60
hours, as per its published algorithm description. Because
the INTROCLASS scenarios take substantially less time to pro-
cess, we ran GenProg and TrpAutoRepair on 20 random
seeds instead of 10, which may lead to stronger statistical
results [51]. Although not indicative of all program repair
approaches, GenProg, AE and TrpAutoRepair represent a
family of generate-and-validate repair architectures based
around testing, and GenProg has been used as a comparison
baseline in several evaluations (e.g., [12], [14], [22], [52]).

4 THE MANYBUGS BENCHMARK

The MANYBUGS benchmark consists of 185 defect scenarios,
constructed according to the requirements described in
Section 3.1. The benchmark is designed to allow indicative
evaluations whose results generalize to industrial bug-fix-
ing practice, while allowing qualitative discussions of the
types of programs and defects on which a particular tech-
nique is successful. Because we generate the scenarios sys-
tematically over the history of real-world programs, the set
is less suitable for controlled experimentation, in which fac-
tors like test suite size or initial program quality are varied
in a principled way. The INTROCLASS benchmark, described
in Section 5, is intended to support those types of experi-
ments. It is also comprised of small programs, rendering it
more suitable for evaluating novel methods that may not
immediately scale to large legacy programs.

This section discusses the methodology we used to con-
struct the MANYBUGS benchmark (Section 4.1), providing
details about each of the benchmark programs (Section 4.2),
characterizing the defect scenarios across several dimen-
sions (Section 4.3), and presenting a high-level outline of the
individual scenarios (Section 4.4).

The MANYBUGS benchmark may evolve. This section and
the results in Section 6 describe MANYBUGS v1.0.

4.1 Methodology

Our goal in constructing the MANYBUGS benchmark was to
produce an unbiased set of programs and defects that is
indicative of “real-world usage.”3 We therefore sought sub-
ject programs that contained sufficient C source code, and
included a version control system, a test suite of reasonable
size, and a set of suitable subject defects. We focused on C
because, despite its age, it continues to be the most popular
programming language in the world [53], and because a
large proportion of the existing research projects in auto-
matic repair focus on bugs in C programs. For the purposes
of reproducibility, we adopted only programs that could
run without modification in a common denominator cloud
computing virtualization (see Section 3.1). This limited us to
programs amenable to such environments.

At a high level, to identify a set of subject defects that were
both reproducible and important, we searched systemati-
cally through the program’s source history, looking for revi-
sions at which program behavior on the test suite changes.
Such a scenario corresponds either to a human-written
repair for the bug corresponding to the failing test case, or a
human-committed regression. This approach succeeds even
in projects without explicit bug-test links (which can lead to
bias in bug datasets [54]), and ensures that benchmark
defects are sufficiently important to merit a human fix and
to affect the program’s test suite.

A candidate subject program is a software project con-
taining at least 50,000 lines of C code, 10 viable test cases,
and 300 versions in a revision control system. We acknowl-
edge that these cutoffs are arbitrary rules of thumb; we
selected them in the interest of considering systems of non-
trivial size and development maturity. We consider all viable
versions of a program, defined as a version that checks out
and builds unmodified on 32-bit Fedora 13 Linux.4 A pro-
gram builds if it produces its primary executable, regardless
of the exit status of make.

Testing methodologies vary between projects, to the
point that projects may differ on the definition of what con-
stitutes an individual test case. For example, some program
test suites are divided by area of functionality tested, with
each area breaking down into individualized test suites.
Other programs do not delineate their test cases in this way.
We define a test case to be the smallest atomic testing unit
for which individual pass or fail information is available. If
a program has 10 “major areas” that each contain 5 “minor
tests” and each “minor test” can pass or fail, we say that it

3. Some of the material in this section was previously presented
in [23]. We have adapted and contextualized the text for use here; some
of it remains unchanged.

4. 32-bit Fedora 13 Linux served as a lowest common denominator
OS available on the EC2 cloud computing framework as of May, 2011,
when we began developing these benchmarks. In the time since, new
versions of the operating system have been released, and 64-bit archi-
tectures have increased in common usage. Researchers may legiti-
mately prefer to evaluate their techniques in a more modern
environment. This is indicative of the tension between keeping a bench-
mark set current and allowing reproducibility of previous results. We
attempt to mitigate this tension with two specially constructed virtual
machine images, discussed in Section 4.4.

1242 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 12, DECEMBER 2015

has 50 test cases. A viable test case is a test that is reproduc-
ible, non-interactive, and deterministic in the cloud environ-
ment (over at least 100 trials).

We write testsuiteðiÞ to denote the set of viable test cases
passed by viable version i of a program. We use all available
viable tests, even those added after the version under con-
sideration, under the assumption that the most recent set of
tests correspond to the “most correct” known specification
of the program. We exclude programs with test suites that
take longer than one hour to complete in the cloud
environment.

We say that a testable bug exists between viable versions i
and j of a subject program when:

1) testsuiteðiÞztestsuiteðjÞ and
2) there is no i0 > i or j0 < j with the testsuiteðjÞ�

testsuiteðiÞ ¼ testsuiteðj0Þ � testsuiteði0Þ and
3) the only source files changed by developers to reach

version jwere .c, .h, .y or .l

The second condition requires a minimal ji� jj. The set
of specification tests (i.e., that encode required behavior) is
defined as testsuiteðiÞ \ testsuiteðjÞ. The specification tests
must pass both versions. The witness (i.e., the test cases that
demonstrate the bug) is testsuiteðjÞ � testsuiteðiÞ. Note that
the two sets of tests are disjoint. Note also that the witness
can consist of more than one test case, and that we treat all
test cases in the witness as corresponding to the same defect
(to avoid bias possibly introduced by manually categorizing
the failed test cases). Researchers using this dataset could
treat scenarios with multiple test cases in the witness either
jointly or individually, as appropriate for their application.

Given a viable candidate subject program, its most recent
test suite, and a range of viable revisions, we construct a set
of testable bugs by considering each viable version i and
finding the minimal viable version j, if any, such that there
is a testable bug between i and j. We considered all viable
revisions appearing before our start date in May, 2011 for
all programs besides php and valgrind; these latter pro-
grams include defects appearing before July 2013 as a
potential source of testable bugs. We did not cap the num-
ber of defects per program to a percentage of the total (as in
the initial iteration of this dataset [23]), because we wanted
the dataset to support both latitudinal and longitudinal
studies (that is, studies of repair success across many pro-
grams, and studies of sequential repairs in one program).
The latter benefits from a set that contains at least one pro-
gram with many defects (such as php in our dataset). How-
ever, we expect that latitudinal studies may benefit from
limiting the number of defects from one program (e.g., to
under 50 percent of the total set) to avoid having it domi-
nate or skew the results.

Given these criteria, we canvassed the following sources:

1) the top 20 C programs on popular open-source web
sites sourceforge.net, github.com, and Google code,

2) the largest 20 non-kernel Fedora source packages,
and

3) programs in other repair papers [13], [55] or known
to the authors to have large test suites.

Many otherwise-popular projects failed to meet all of our
criteria. Many open-source programs have nonexistent or

weak test suites; non-automated testing, such as for GUIs;
or are difficult to modularize, build and reproduce on our
architecture (e.g., eclipse, openoffice and firefox had
test harnesses that we were unable to modularize and script;
we were unable to find publicly available test suites for
ghostscript and handbrake). For several programs, we
were unable to identify any viable defects according to our
definition (e.g., gnucash, openssl). Some projects (e.g.,
bash, cvs, openssh) had inaccessible or unusably small
version control histories. Other projects were ruled out by
our 1-hour test suite time bound (e.g., gcc, glibc, sub-
version). These projects typically had disk-intensive test
suites, and would arbitrarily slow in the EC2 environment;
we anticipate that advancement in virtualization infrastruc-
ture will mitigate this limitation, eventually allowing the
inclusion of such programs. Earlier versions of certain pro-
grams (e.g., gmp) require incompatible versions of auto-

make and libtool. Despite these efforts, we acknowledge
that our benchmark set is not exhaustive and will welcome
new additions in the future. By formalizing the methodol-
ogy for generating and reproducing this type of experimen-
tal scenario, we hope to encourage community participation
and consensus in extending and using the scenarios.

4.2 Constituent Programs

Fig. 1 summarizes the programs in the MANYBUGS bench-
mark. This section provides details on the programs them-
selves, to aid in understanding the types of programs in the
dataset and to substantiate our claim that the benchmarks
support experiments that will generalize to real-world prac-
tice. Section 4.3 categorizes and describes the defects.

The MANYBUGS benchmark consists of nine well-estab-
lished open-source programs with mature codebases. These
programs are found on many machines running Linux or
Mac OSX and are common in the pantheon of open-source
software. The benchmark consists of programs developed
by both large and small teams. In total, the programs in the
benchmark are the result of 285,974 commits made by 1,208
contributors writing 7,745,937 lines of code [56]. The pro-
grams in the benchmark are:

1) fbc (FreeBASIC Compiler)5 is a free, open-source
multi-platform (though limited to 32-bit architec-
tures as of June 2014) BASIC compiler whose
codebase covers a large number of common C pro-
gramming idioms including pointers, unsigned data
types, and inline functions. The compiler itself pro-
vides a pre-processor and many libraries supporting
various compiler extensions. fbc has been rated
close in speed with other mainstream compilers
such as gcc.6

2) gmp
7 is a free open-source library supporting arbi-

trary precision arithmetic. The library operates on
signed integers as well as rational and floating-point
numbers. gmp emphasizes speed and efficiency, and
is intended to target and support cryptography,
security applications, and research code.

5. http://www.sourceforge.net/projects/fbc/
6. http://www.freebasic.net/
7. http://www.gmplib.org

LE GOUES ET AL.: THE MANYBUGS AND INTROCLASS BENCHMARKS FOR AUTOMATED REPAIR OF C PROGRAMS 1243

3) gzip (GNU zip)8 is a data compression utility
designed to be a free, superior alternative to
compress.

4) libtiff
9 is a free, open-source library for reading,

writing, and performing simple manipulations of
Tagged Image File Format (TIFF) graphics files.
libtiff works on 32- and 64-bit architectures on a
variety of platforms.

5) lighttpd
10 is a lightweight web server optimized

for high-performance environments. It is designed to
be fast and efficient with a small memory footprint.
It is used by YouTube and Wikimedia, among
others. Beyond efficiency concerns, the lighttpd

project prioritizes compliance to standards, security,
and flexibility.

6) php (PHP: Hypertext Preprocessor)11 is a server-side
scripting language designed for web development.
The php program in this benchmark is the inter-
preter for the language, which is largely written in C,
with a large testing framework and portions of its
compilation phase reliant on php itself. The defect
scenarios in MANYBUGS are restricted to C code, but
make use of the bootstrapped testing and compila-
tion framework; the phpt language noted in the test
suite column of Fig. 1 refers to a declarative test for-
mat used for php testing.12 php was not originally
intended to be a new programming language, but is

now used as such, and has become a critical compo-
nent of the web (used by Facebook, among others).
The php language grew organically, leading to some
inconsistencies in the language; the development
discipline at the project has resulted in a large num-
ber of regression tests and a comprehensive bug and
feature database.

7) python
13 is a widely used general-purpose, high-

level programming language. The benchmark pro-
gram in MANYBUGS is its interpreter, which is
written in both C and python. The scenarios
in the benchmark are restricted to C code.14 The
python language emphasizes code readability
and extensibility, supporting multiple paradigms
such as object-oriented and structured program-
ming among others [57].

8) valgrind
15 is a GPL-licensed programming tool for

memory debugging, memory leak detection, and
profiling. It can be used to build new dynamic
analysis tools. Although valgrind was originally
designed to be a free memory debugging tool for
Linux on x86, it has since evolved to become a
generic framework for creating dynamic analysis
tools such as checkers and profilers.

9) wireshark
16 (originally named Ethereal) is a free

network packet analyzer. It is used for network trou-
bleshooting, analysis, software and communications
protocol development, and education.

The testing methodology varies considerably between
projects. The test suite columns in Fig. 1 provides the num-
ber of test cases in each suite, the dominant language used

Fig. 1. The MANYBUGS subject C programs, test suites, and historical defects: MANYBUGS defects are defined as deviations in program behavior as
compared to the next viable version in the history. MANYBUGS tests were taken from the most recent version available from the specified start date.
This typically corresponds to test case failures fixed by developers in subsequent versions. The test suite columns summarize characteristics of the
test suites, further explained in text. Note that gzip as configured from its repository differs from that which is released in source packages; the latter
includes approximately 50kLOC, depending on the release. The php defects are intended to allow studies of iterative repair, or many sequential
repairs to one program; an evaluation that investigates generality across many different types of programs may restrict the number of php defects
considered (e.g., to 45, as we did in previous work).

8. http://www.gnu.org/software/gzip/
9. http://www.libtiff.org/
10. http://www.lighttpd.net/
11. http://www.php.net/
12. php’s use of the php language for the testing framework

presents a particular challenge in constructing reproducible, idempo-
tent testing scenarios, since test setup, execution, and tear down and
cleanup rely on the interpreter working at least in part as expected. The
default scenarios as presented here, maintain the default testing frame-
work to remain consistent with the developer intent in its design. We
have otherwise worked around the resultant limitations to the best of
our ability.

13. http://www.python.org
14. As with php, python’s build system includes substantial boot-

strapping in its compiler, which complicated the construction of repro-
ducible scenarios.

15. http://valgrind.org/
16. http://www.wireshark.org/about.html

1244 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 12, DECEMBER 2015

to write those tests, the median non-blank lines of code per
test case, and the statement coverage for the modules in
which the defects under repair are found. We exclude com-
mon configuration or initialization scripts, which each proj-
ect’s testing harness includes, as well as the driver code that
execute the tests for a given benchmark, such as the check
target in a Makefile. We also exclude median lines of code
for wireshark because the entire test suite is included in
one large, consolidated bash script that calls the underlying
utilities in turn. The language compilers/interpreters (fbc,
php, and python) construct tests out of fragments of the
language in question; php additionally makes use of a
hand-rolled testing framework. valgrind also includes its
own test framework. vgtest files describe the test plans,
which typically involve analyzing a particular C file.
lighttpd uses the Test::More Perl test framework. gmp
and libtiff largely construct tests out of C programs that
use the library in question.

Test suite size and defective module coverage also vary
significantly between the programs. Coverage in particular
appears to vary especially by testing approach. Notably,
wireshark, libtiff, and gzip’s test suites are probably
best characterized as system tests, in that each test calls
stand alone programs in various sequences (e.g., the base
libtiff library consists of many separate utilities). The
other programs appear to have a more modular program
construction and testing methodology; this is especially true
of php.

4.3 Categorization

As discussed in Section 3.2, one of our goals in designing
these objects of study is to enable qualitative discussion of
the success characteristics of various techniques. To this
end, beyond characterizing the programs by size and type
(described in Section 4.2), we manually categorized each
defect in the MANYBUGS set to provide more information
about the defects. We expect that results will lend them-
selves to statements such as “New technique X is well-
suited to addressing incorrect output, but does not handle
segmentation faults well.” We are releasing this categoriza-
tion with the benchmark scenarios, and anticipate adding
new features to the categories as they are identified (either
in our experiments or the experiments of others as commu-
nicated to us). We provide a high-level description of the
categories and categorization process here, but elide fea-
tures in the interest of brevity; full details are available with
the released data and scenarios.

Wemanually categorized the defects by first searching for
developer annotations surrounding the defect. We analyzed
bug reports, available in 60 percent of the scenarios, for rele-
vant keywords. We also inspected commit comments in the
fix revision, the modification in the human patch, and the
witness test case files for insight about the change or com-
ments describing the behavior or feature under test.

The four most common defect categories were:

� 70 instances of incorrect behavior or incorrect output
� 27 segmentation faults
� 20 fatal errors (non-segmentation fault crashes of

otherwise unspecified type)
� 12 instances of feature additions

There is some overlap in these categories. For example,
crashing errors can be related to segmentation faults, buffer
overruns, integer overflows, or a number of other possible
causes. Our goal was to label the scenarios as informatively
as possible for those attempting to either slice the defect set
according to their experimental needs, or categorize their
results based on defect type. We tried to be as specific as
possible with our labeling scheme, and included multiple
labels when supported by our investigation. For example,
if a particular defect caused a segmentation fault because
of a buffer overflow, we label the scenario with both
“segmentation fault” and “buffer overflow.” We anticipate
adding more labels as they are identified by ourselves or
other researchers.

We define “incorrect behavior or output” as any instance
of the program printing unexpected values or storing unex-
pected values in memory. For example, PHP bug #61095 is
a hexadecimal bug in which 0x00þ 2 incorrectly sums to 4
instead of 2. Some cases of incorrect behavior apply specifi-
cally to exceptional situations, such as in lighttpd revi-
sion #2259, which addressed a defect (bug #1440) in the
secdownload module that resulted in the error code
410 (“Gone”) being returned instead of the appropriate
408 code (“Timeout”). “Feature additions” are bugs that
humans addressed by, for example, adding support for a
new type definition, adding optional variables to a function,
or adding new behaviors to a module. For example, commit
5252 in the fbc compiler added support for octal numbers
formatted with &. . .(where previously just &O was sup-
ported). Feature requests are often tracked in the same
repository as regular defects, and in several cases we were
able to link such scenarios to reports.

We classified defects further along dimensions such as
assigned bug priority (when available), whether or not the
defect is security related, and wall clock time between bug
revision and fix revision. We manually evaluated each
developer-provided patch, and note whenever variable
types are changed or conditionals are added in the modified
code. Finally, we used the diff between the bug revision
and fix revision to calculate the number of files and the
number of lines edited. We elide summary statistics for
brevity, but have made this information available as part of
the dataset release.

We hope that these categories and annotations will sup-
port the qualitative analyses of program repair techniques.
For instance, repair techniques that focus on fixing segmen-
tation faults can report results for the subset of defects cor-
responding to segfaults and possibly other fatal errors.
Similarly, repair techniques that limit the scope of their
repairs to modifying conditionals can report results for the
subset of defects in which the developers modified condi-
tionals in their patch.

4.4 Environment and Scenario Structure

The MANYBUGS scenarios, categorization data, and baseline
results and output logs, are available for download: see
http://repairbenchmarks.cs.umass.edu/. We give a high-
level view of the scenario structure here and provide
detailed READMEs, including the categorization details
discussed in Section 4.3, with the dataset.

LE GOUES ET AL.: THE MANYBUGS AND INTROCLASS BENCHMARKS FOR AUTOMATED REPAIR OF C PROGRAMS 1245

Each MANYBUGS scenario is named following a conven-
tion indicating the software system name and revision iden-
tifiers in question.17 Each scenario archive includes at least
the following components:

� The program source code tree, checked out and con-
figured to build at the defect revision.

� A text file listing the modules or source code impli-
cated in the change (simplifying the slicing of the
system’s functionality to just the source under repair
by the humans, if relevant).

� A test script that takes as arguments a test name and
the name of a compiled executable to test. The test
names distinguish between initially passing test
cases and the witnesses of the bug, and are indexed
by number.

� A compile script that takes the name of an execut-
able, corresponding to a folder in which the source
code for a program variant is placed.

� A folder containing the version of the implicated
files committed at the human-written fix revision.

� A folder containing the patches produced by diff-

corresponding to that human-written change.
� A folder containing the preprocessed C code corre-

sponding to the files implicated in the change (for
ease of parsing).

� Sample configuration files for GenProg v2.2, for
demonstration and reproduction. These configura-
tion files, with additional arguments, may also be
used to initialize AE and replicate the TrpAutoRe-
pair experiments.

� A bug-info folder containing data on the defect
and tests in the scenario.

Many scenarios include additional support files, primar-
ily intended to support compilation and testing of particular
software systems.

We provide two sets of virtual machine images on which
we intend the scenarios to be evaluated. While it is possible
that the defects at the associated revisions are reproducible in
other environments (including in other operating systems),
we only make claims and provide explicit reproduction sup-
port for the environment we provide. Each set includes an
image that can be directly imported into VirtualBox,18 a free
and open-source desktop virtualization software. As of the
writing of this article, this format is interoperable with and
importable to other popular virtualization options, such as
VMWare.19 The other image is a raw bit-wise dump of the
image, which can be imported (with some conversion) into
other cloud or virtual environments. We have also created
and made public Amazon Machine Images (AMI) that repli-
cate these machines in the EC2 environment. See the docu-
mentation associatedwith the download for details.

The first set of virtual machine images reproduces the 32-
bit Fedora 13 environment first used in the evaluation
in [23] and to produce the baseline results described below.

This represents a reasonable lowest-common denominator
for use on Amazon’s EC2 cloud computing environment.
These images allow direct reproduction of and comparison
to previous results (including the baseline results in this
article) and trivially enable execution and analysis of the
defects that require 32-bit architectures (especially those in
fbc, which, despite our best efforts and the claims of the
associated documentation, we have been consistently
unable to compile in a 64-bit environment).

The second set of images reproduces a 64-bit Fedora 20
environment, with a chroot jail that replicates the 32-bit
Fedora environment. Not all the programs and defects in
the MANYBUGS set can be compiled and run directly in a 64-
bit environment (though most can). The chroot jail allows
tools and techniques that require more recent library ver-
sions or 64-bit environments to be compiled outside the jail
and executed within it on defects that require the 32-bit envi-
ronment. Instructions are included with the README asso-
ciated with the virtual machine images.

5 THE INTROCLASS BENCHMARK

The INTROCLASS benchmark consists of 998 defect scenarios,
and is designed for evaluations that can identify the factors
that affect the success of repair techniques. The programs
are associated with carefully designed test suites that yield
either high specification coverage or 100 percent branch
coverage on a reference implementation. These suites make
this benchmark particularly suitable for evaluating the
effects of test suite quality, coverage, and provenance on
the repair. The varied severity of the defects, in terms of the
number of test cases they cause the program to fail, makes
these scenarios particularly suitable for evaluating the effect
of initial program quality on repair. As this benchmark is
composed of small programs, it can also be used to evaluate
early-stage techniques that do not yet scale to programs of
larger size or complexity.

This section discusses the methodology we used to con-
struct the INTROCLASS benchmark (Section 5.1), the process
for creating the two test suites for each benchmark program
(Section 5.2), the methodology for using the test suites to
identify the defects (Section 5.3), the details of each of the
benchmark programs (Section 5.4), and the instructions on
how to download, run, and otherwise use the programs
(Section 5.6).

The INTROCLASS benchmark may evolve. This section and
the results in Section 6 describe MANYBUGS v1.0.

5.1 Methodology

The INTROCLASS dataset is drawn from an introductory C
programming class (ECS 30, at UC Davis) with an enroll-
ment of about 200 students. The use of this dataset for
research was approved by the UC Davis IRB (intramural
human studies review committee), given that student iden-
tities are kept confidential. To prevent identity recovery,
students’ names in the dataset were salted with a random
number and securely hashed, and all code comments were
removed.

The programming assignments in ECS 30 require stu-
dents to write C programs that satisfy detailed specifica-
tions provided by the instructor. For each assignment, up to

17. For software associatedwith git repositories, we include the date
of the fix commit in the scenario name to impose an easily-identifiable
temporal ordering on the defects in each program set.

18. http://www.virtualbox.org
19. http://www.vmware.com

1246 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 12, DECEMBER 2015

the deadline, the students may submit their code at any
time, and as many times as they want; there is no penalty
for multiple submissions. Each time they submit, they
receive a notification about how many tests their program
passed, but they see neither the test inputs nor the test out-
puts. The students then may rethink the specification, their
implementations, and resubmit. The students also have
access to an oracle, which they may query with inputs and
receive the expected output. A portion of the grade is pro-
portional to the number of tests the program passes.

For each of the six assignments (see Fig. 2), each time the
students submit a potential solution, this solution is
recorded in a git repository unique to that student and
that assignment. The INTROCLASS benchmark consists of 998
submitted solutions, each of which fails at least one and
passes at least one black-box test or fails at least one and
passes at least one white-box test (Section 5.2 describes the
test suites, and Section 5.3 describes the defects.) Further,
the benchmark includes the final student solutions, many
(but not all) of which pass all the tests.

5.2 Test Suites

For each benchmark program, we developed two test suites:
a black-box test suite and a white-box test suite. These test
suites are intended to be different while each covering the
program’s behavior.

The black-box test suite is based solely on the program
specification and problem description. The course instructor
constructed this test suite manually, using equivalence par-
titioning: separating the input space into several equivalent
partitions, based on the specification, and selecting one
input from each category. For example, given a program
that computes the median of three numbers, the black-box
test suite contains tests with the median as the first, second,
and third input, and also tests where two and all three
inputs are equal.

The white-box test suite is based on the oracle program for
each assignment, whose output is by definition correct for
the assignment in question. The white-box test suite
achieves branch coverage on the oracle. Whenever possible,
we create the white-box test suite using KLEE, a symbolic
execution tool that automatically generates tests that

achieve high coverage [58]. When KLEE fails to find a cover-
ing test suite (typically because of the lack of a suitable con-
straint solver), we construct a test suite manually to achieve
branch coverage on the oracle.

The black-box and white-box test suites are developed
independently and provide two separate descriptions of the
desired program behavior. Because students can query how
well their submissions do on the black-box tests (without
learning the tests themselves), they can use the results of
these tests to guide their development.

5.3 Defects

We evaluated the student-submitted program versions
(corresponding to potential assignment solutions) against
each of the two test suites. We identify subject defects by
considering every version of every program that passes at
least one test and fails at least one test, for each test suite.
We exclude versions that fail all tests because of our
requirement that benchmark scenarios conform at least in
part to a (partial) correctness specification. Program ver-
sions that fall all tests in a test suite are typically so mal-
formed that they are too different from a correct solution
to be considered a defect.

As Fig. 2 summarizes, we identified a total of 778
defects using the black-box test suite, and 845 defects
using the white-box test suite. The intersection of these
two sets is 998 defects. Of course, some students may
have made similar mistakes and introduced similar, or
even identical bugs in their code. Because the INTROCLASS

benchmark is representative of both the type and the fre-
quency of bugs made by novice developers, we did not
remove duplicates from our dataset; however, some uses
of the dataset may require first identifying and then
removing these duplicates.

5.4 Constituent Programs

Fig. 2 summarizes the programs in the INTROCLASS bench-
mark. This section provides details on the programs them-
selves, to help users of the benchmark understand the types
of programs available for their evaluation.

The INTROCLASS benchmark consists of six small C pro-
grams. These programs can be compiled by gcc with
default settings. The programs are:

1) checksum takes as input a char* single-line string,
computes the sum of the integer codes of the charac-
ters in the string, and outputs the char that corre-
sponds to that sum modulo 64 plus the integer code
for the space character. The black-box test suite
includes inputs strings of all lower-case letters,
upper-case letters, numbers, special characters, and
combinations of those types of characters.

2) digits takes as input an int and prints to the
screen each base-10 digit appearing in that input,
from the least significant to the most significant, in
the order in which they appear. Each digit is to be
printed on a separate line. The black-box tests
include positive and negative inputs, inputs with
single and with multiple digits, and inputs consist-
ing of a repeated digit.

Fig. 2. The six INTROCLASS benchmark subject programs. The black-box
(bb) tests are instructor-written specification-based tests, and the white-
box (wb) tests are generated with KLEE to give 100 percent branch cov-
erage on the instructor-written reference implementation. The 998
unique defects are student-submitted versions that fail at least one, and
pass at least one of the tests.

LE GOUES ET AL.: THE MANYBUGS AND INTROCLASS BENCHMARKS FOR AUTOMATED REPAIR OF C PROGRAMS 1247

3) grade takes as input five double scores. The first
four represent the thresholds for A, B, C, and D
grades, respectively. The last represent a student
grade. The output is the string “Student has a X
gradenn”, with “X” replaced by the grade based on
the thresholds. The black-box test suite includes a
student grade that falls in each of the ranges defined
by the thresholds, outside of the ranges, and on each
boundary.

4) median takes as input three ints and computes
their median. The students are asked to use as few
comparisons as possible, and are told that it is possi-
ble to produce a correct program that performs only
three comparisons. The black-box test suite includes
sets of numbers such that each of the positions is the
median, and sets of numbers with two and with
three identical numbers.

5) smallest takes as input four ints, computes the
smallest, and prints to the screen “X is the

smallest” where “X” is replaced by the smallest
int. The students are asked to use as few com-
parisons as possible. The black-box test suite
includes orderings of the four inputs such that
the minimum falls in each of the positions, posi-
tive and negative numbers, and sets that include
three or four identical integers.

6) syllables takes as input a char* string of 20 or
fewer characters and counts the number of vowels

(a, e, i, o, u, y) in the string. The program should
print to the screen “The number of syllables is

X.”, where “X” is replaced by the number of vowels.
The black-box test suite includes strings with spaces,
special characters, as well as zero and one vowel.

5.5 Categorization

As with the MANYBUGS suite, we categorized the defects in
the INTROCLASS suite. For each of the 998 code versions from
Fig. 2, we ran each test and observed the code’s behavior on
that test. There were a total of 8,884 test failures. The over-
whelming majority of the failures were caused by incorrect
output. The causes of the failures were:

� 8,469 instances of incorrect output
� 85 timeouts (likely infinite loops)
� 76 segmentation faults
� 254 other (non-segmentation fault) exit status errors

The metadata file for each defect (see Section 5.6 and
Fig. 3) includes the failure cause for each failing test.

5.6 Environment and Scenario Structure

The INTROCLASS download package contains the instruc-
tor-written (correct) programs, the defects, the white-
and black-box test suites, execution infrastructure test
scripts, makefiles for compiling the programs, and pro-
gram metadata.

Fig. 3. File structure of the INTROCLASS benchmark. The hex labels are anonymized student id hashes and the metadata.json file in each program
version directory contains metadata on the tests that version passes and fails, the test execution outputs, and if the version is nondeterministic. Each
commitID directory contains one defect; the largest commitID is the final student-submitted version, which usually passes all tests, but sometimes is
a defect. The .log files are the execution logs of the repair tools. Due to nondeterminism, the repair tools failed to run on some defects (e.g.,
because a test expected to fail sometimes passed), so no .log are reported for tool executions on those defects. The final student-submitted
versions that pass all tests do not have .log files they are not defects.

1248 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 12, DECEMBER 2015

Fig. 3 describes the structure of the downloadable INTRO-

CLASS package. Each defect’s metadata file lists which tests
that program version passes and fails, and contains the
version’s outputs on each of the test cases. Finally, each
defect contains two shell test scripts (one for white-box test-
ing and one for black-box testing), with an interface analo-
gous to the one described in Section 4.4. To build the
INTROCLASS dataset, run GNU make in the top-level direc-
tory, or in any subdirectory (to build a subset of the dataset).

6 EMPIRICAL RESULTS

In this section, we report the results of runningGenProg v2.2,
TrpAutoRepair, andAE v3.0 on all of our defect scenarios (as
discussed in Section 3.3). We remind the reader that the pur-
pose of this article is not to evaluate GenProg, TrpAutoRe-
pair, and AE or any other particular repair technique. Other
work, e.g., [23], [24], [25] has used these datasets or parts of
these datasets to evaluate techniques. Instead, our goal is to
provide a useful benchmark suite for the subfield of auto-
mated program repair. Thus we neither examine nor discuss
the results in detail, but instead provide them here to save
researchers time, money, and compute resources; to admit
rapid comparisons against previous techniques when new
tools are developed; and to demonstrate by example the use
of these benchmark suites for the purposes of evaluating
state-of-the-art techniques in automatic repair. Note that
these baseline results are suitable for comparison only when
the programs, test suites, and environments are kept the
same; reruns will still be necessary otherwise. We have
released these results with the dataset. We anticipate that
they could serve to highlight categories of programs and
defects that are not well-handled by the current state of the
art, focusing future research efforts.

6.1 Experimental Setup

These baseline results are based on experimental parame-
ters using the latest published methodology for each algo-
rithm. We used the off-the-shelf GenProg v2.2 and AE v3.0,
from the GenProg website (http://genprog.cs.virginia.edu).
TrpAutoRepair [22] is described by its authors as extending

the publicly available GenProg codebase, although the
novel features described for TrpAutoRepair (notably the
test suite prioritization technique) were independently
developed in AE [21]. Since the TrpAutoRepair prototype is
not publicly available, we reimplemented the TrpAutoRe-
pair algorithm based on its publication [22].

Because both GenProg and TrpAutoRepair are random-
ized algorithms, each effort to repair a given scenario con-
sists of a number of random trials run in parallel. For
MANYBUGS, we performed 10 such trials (following their
published descriptions); for INTROCLASS, which is much less
compute-intensive to evaluate, we performed 20 to admit
additional statistical confidence. For GenProg and TrpAu-
toRepair, each MANYBUGS trial was given up to 12 hours or
10 generations, whichever came first, again following pub-
lished experimental methodologies; each INTROCLASS trial
was given 100 generations. Timing results are reported for
the first of the trials to succeed for each scenario. Full
GenProg parameters are provided with the debug logs of
these results. As high-level guidance and following
reported values for these algorithms, we set the population
size to be 40, mutated each individual exactly once each
generation, performed tournament selection, and applied
crossover once to each set of parents. Because of the com-
pute costs involved in fitness evaluation on large test suites,
for MANYBUGS, the fitness function samples 10 percent of the
passing test suite for all benchmarks for the evaluation of
intermediate candidate solutions; if a solution passes the
full 10 percent of the test suite as well as the initially failing
test cases (encoding the defect under repair), the variant is
tested on the remaining 90 percent to determine if it repre-
sents a candidate solution. We did not sample for INTRO-

CLASS. For both datasets, we use the fault space, mutation
operation weighting, and other choices described in the
most recent large study of GenProg effectiveness [50].

TrpAutoRepair uses random search and a test suite selec-
tion strategy and is thus not generational. In keeping with
its published parameters, each trial consisted of 400 random
individuals, and we otherwise matched the random weight-
ing parameters provided to GenProg. Test suite sampling
does not apply to TrpAutoRepair.

Fig. 4. MANYBUGS: Baseline results of running GenProg v2.2, TrpAutoRepair, and AE v3.0 on the 185 defects of the MANYBUGS benchmark. For each
of the repair techniques, we report the number of defects repaired per program; the average time to repair in minutes (GenProg and TrpAutoRepair
were run on 10 seeds per scenario, with each run provided a 12-hour timeout; AE is run once per scenario, with a 60-hour timeout); and the number
of fitness evaluations to a repair, which serves as a compute- and scenario-independent measure of repair time (typically dominated by test suite
execution time and thus varies by test suite size). Complete results, including individual log files for each defect, are available for download with the
dataset.

LE GOUES ET AL.: THE MANYBUGS AND INTROCLASS BENCHMARKS FOR AUTOMATED REPAIR OF C PROGRAMS 1249

Because AE is not randomized, each effort to repair a
given defect scenario consists of a single trial with the edit
distance k set to 1; AE has no notion of population or fitness.
Each AE trial was given up to 60 hours to complete for
MANYBUGS, and 25 minutes for INTROCLASS.

For the MANYBUGS experiments, we used Amazon’s EC2
cloud computing infrastructure with our Fedora 13 virtual
machine image. Each trial was given a high-cpu medium
(c1.medium) instance with two cores and 1.7 GB of mem-
ory.20 For the INTROCLASS experiments, we used Ubuntu
13.10 double-extra large high CPU instances (c3.2xlarge)
with eight cores and 15 GB of memory.21

6.2 Baseline Results on MANYBUGS and INTROCLASS

Fig. 4 shows the results of executing GenProg v2.2, TrpAu-
toRepair, and AE v3.0 on the 185 defects in the MANYBUGS

dataset. (The unified results reported here differ slightly
from previously published results for php and wire-

shark [23] due to the higher standards in this work for
reproducible, deterministic test cases.) Fig. 5 shows the same
baseline results on the INTROCLASS dataset. For each of the
techniques, we report the number of defects repaired per
program out of the total scenarios per program, with the
parameters described in Section 6.1. Following the impor-
tance of efficiency in real-world program repair, we report
wall-clock time to repair on average across all scenarios
repaired for a program. We also present the average number
of test suite executions (“fitness evaluations” in the figures)
in runs leading to a repair. This measurement serves as a
compute- and scenario-independent measure of efficiency,
which is typically dominated by test suite execution time.

There are many other interesting measurements that we
could report, such as monetary cost on public cloud

compute resources (which we omit because it serves as a
proxy for compute time), patch size, patch complexity or
readability, etc. We choose these baselines based on their
ubiquity in previous studies of repair success and their rela-
tionship to the real-world use case of automatic repair.
However, we believe there is much work to be done in
defining new and more comprehensive measurements of
repair efficiency and quality, in particular. Because such
patches will likely be maintained and thus must be under-
stood by human developers, good quality measurements
are an important area of current and future research.

An in-depth discussion of these results is outside the
scope of this article; our goal is to provide baselines and
illustrate the potential use of the benchmarks. However, a
few observations are worth discussing as part of that illus-
tration. As expected, TrpAutoRepair and AE are generally
faster than GenProg. On MANYBUGS, the three techniques
repair roughly the same defects, with only minor variation
(for example, with respect to which php defects are
repaired). Even though the techniques vary in several cru-
cial details—determinism, how test cases are used, whether
edits can be combined—their common operators may con-
trol which defects they are broadly able to tackle. GenProg
succeeds more often than TrpAutoRepair and AE on INTRO-

CLASS, suggesting that multi-edit repairs may be particularly
important on these smaller programs. On the other hand,
AE (and, to a much lesser extent, TrpAutoRepair) is much
faster: it repairs only half as many defects, but does so in
roughly one-tenth the time. The two search approaches—
deterministic versus stochastic—may thus represent differ-
ent tradeoffs in the design space.

We provide with the downloadable dataset complete
results, including individual log files for each defect, which
can be used to reconstruct the produced patches. We
encourage other researchers to use these results in support
of the generation of new metrics.

Fig. 5. INTROCLASS: Baseline results of running GenProg v2.2, TrpAutoRepair, and AE v3.0 on the 845 white-box-based defects, and 778 white-box-
based defects of the INTROCLASS benchmark. For each of the repair techniques, we report the number of defects repaired per program; the average
time to repair in second (all three techniques were given timeouts); and the number of fitness evaluations needed to produce a repair. Complete
results, including individual log files for each defect, are available for download with the dataset.

20. https://aws.amazon.com/ec2/previous-generation/
21. http://aws.amazon.com/ec2/instance-types/

1250 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 12, DECEMBER 2015

7 RELATED WORK

Automated program repair. The subfield of automated pro-
gram repair is concerned with automatically bringing an
implementation more in line with its specification, typically
by producing a patch that addresses a defect. Since 2009,
interest in this subfield has grown substantially, and cur-
rently there are at least twenty projects involving some form
of program repair (e.g., AE [21], AFix [11], ARC [59],
Arcuri and Yao [60], ARMOR [8], and AutoFix-E [16], [61],
Axis [62], BugFix [63], CASC [64], ClearView [15], Coker and
Hafiz [9], Debroy and Wong [10], Demsky and Rinard [65],
FINCH [66], GenProg [23], Gopinath et al. [67], Jolt [68],
Juzi [69], MintHint [38] PACHIKA [34], PAR [12], Sem-
Fix [14], Sidiroglou and Keromytis [70], TrpAutoRepair [22],
etc.). While there are multiple ways to categorize program
repair approaches, one of the most salient distinctions is
betweenwhat we call generate-and-validate techniques (which
heuristically produce multiple candidate repairs for a given
bug and then validate each candidate for acceptability) and
correct-by-construction techniques (in which the particular
problem formulation or constraints employed lead to repairs
that are provably correct in a mathematical sense). We also
distinguish between general or generic repair approaches
(which target arbitrary software engineering defects) and
defect-specific or targeted repair approaches (which focus
on one particular class of bugs). While many correct-by-con-
struction or defect-specific techniques employ implicit speci-
fications (e.g., AFix addresses single-variable atomicity
violations, which are assumed to be undesired; Coker and
Hafiz fix integer bugs, such as overflow, which are also
assumed to be undesired) the majority of current repair
approaches target general defects and thus require a specifi-
cation of desired behavior as well as evidence of the bug.
This specification typically takes the form of formal specifica-
tions or annotations (as in AutoFix-E), test cases (as in
GenProg) or various hybrids (as in SemFix, where annota-
tions are derived from test cases). Several of the more
formal repair approaches, particularly those that are correct-
by-construction, share commonalities with and are informed
by advances in program synthesis, such as component-
based [71] and test-driven program synthesis [72]. Such
approaches, particularly those that rely on input-output
examples or test traces, may also benefit from a standard set
of programs with test cases (particularly those that include
feature additions). Despite the common bond of operating
on off-the-shelf programs with test cases, very few papers in
this area compare directly against other techniques, with a
few notable exceptions [12], [14], [22]. A few techniques are
designed as interactive or developer assistance tools (e.g.,
Jolt, MintHint, and BugFix), though the underlying princi-
ples are consistent with the others.

Novel automated program repair approaches serve
as the key client or target application for this article and
its benchmark suites. The explosion of program repair
approaches, most of which address general defects and can
make use of test cases, suggests that this effort is well-timed.
This suggests at a high level that our proposed benchmarks
may be sufficiently broadly applicable to unify some subset
of evaluation of new techniques moving forward. We dis-
cuss potential benchmark applicability to the evaluations of
these previous techniques in Section 8.

We believe the subfield is mature enough now that new
approaches can profitably compare themselves against
others in the field, rather than inventing entirely new (and
thus incomparable) specialized defect scenarios. While
automated program repair shows great promise, it is far
from being accepted commercially: many potential
improvements remain to be made. In that regard, this article
and benchmark set are a response to the adage, “you cannot
improve what you cannot measure,” in the research domain
of program repair.

Software engineering benchmarks.Sim et al. issued a call to
arms to the software engineering community by presenting
case studies of research communities for which a common
benchmarking methodology served to build consensus and
drive research forward. They argued that “The technical
progress and increased cohesiveness in the community
have been viewed as positive side-effects of benchmarking.
Instead, [they] argue that benchmarking should be used to
achieve these positive effects” [6]. We follow this reasoning
in presenting the MANYBUGS and INTROCLASS datasets, and
hope that doing so will have positive effects on research in
automatic bug repair.

Computer science research in general and software engi-
neering in particular have produced several datasets that are
well-suited to the study and comparison of particular prob-
lem areas. The first set, including SPEC, ParSec, andDaCapo,
were designed for performance benchmarking and do not
contain the intentional semantic defects required for the
automated repair problem. The SPEC benchmarks aim to
“produce, establish, maintain and endorse a standardized
set” of performance benchmarks for computing [5]. The Par-
Sec suites serve similar purposes, focusing specifically on
multi-threaded programs and chip multiprocessors [3]. The
DaCapo suite supports performance evaluation of compila-
tion and dynamic analyses like garbage collection for Java
programs, designed specifically to address failings in the
SPEC suite with respect to Java [4].

Other researchers have developed benchmark methodol-
ogies and suites to evaluate bug finding techniques; these are
closer in spirit to the MANYBUGS and INTROCLASS suites
because they by definition consist of programs with defects.
These datasets have each proved useful, but none of them
addresses all of the concerns thatmotivated our benchmarks.

Bradbury et al. constructed a suite to evaluate techniques
that test or analyze concurrency programs; their argument is
similar to the one we present here, namely, that comparison
between techniques requires consensus on suitable objects
of study. While our datasets focus on deterministic bugs,
Bradbury et al.’smethodology serves as a useful startingpoint
for corresponding evaluations of nondeterministic defects.

BugBench proposed a suite of programs and defects for
use in evaluating bug finding techniques [73]. As we do,
they characterize the space of research in automated bug
finding and use their conclusions to guide the selection of
bugs to include in the suite. Their use case (bug detection) is
close to but not identical to our own (bug repair). We focus
on the origin of the specifications of both correct and incor-
rect behavior to ensure that the MANYBUGS benchmark is
indicative of real-world defects; the test suites in BugBench
are constructed largely by hand by the authors, which is
compatible with their evaluation goals, but not with all of

LE GOUES ET AL.: THE MANYBUGS AND INTROCLASS BENCHMARKS FOR AUTOMATED REPAIR OF C PROGRAMS 1251

ours. The iBugs suite and methodology [42] is close in spirit
to MANYBUGS. The authors propose to construct datasets to
evaluate bug finding and localization techniques by mining
repositories for key words that indicate revisions at which a
bug is repaired. By contrast, we look specifically for revi-
sions at which observed dynamic behavior on the test suite
(serving as the specification of desired behavior) changes.
In their case, this means that the iBugs scenarios do not
always contain test cases for a defect. By construction, our
scenarios always do. We argue that a witness test case and a
partial specification (e.g., positive test cases) are required
for bug scenarios that are suitable for evaluating most exist-
ing automatic repair techniques. Defects4J [43] follows a
similar methodology, again on Java programs, intended for
evaluation of testing techniques.

Perhaps the most common set of programs with defects
is from the SIR or Siemens suite [44], [45]. The Siemens suite
does provide programs with test suites and faults. How-
ever, as with the other existing suites, it was designed with
a distinct purpose: to support controlled testing and evalua-
tion of software testing techniques. Thus, the test suites are
all constructed, and most of the faults are seeded.

It is possible to evaluate repair methods using many of
these suites, and likely on subsets of all of them. However,
they each lack support for one or more key aspects of com-
mon comparative evaluations. Although MANYBUGS and
INTROCLASS are certainly not complete nor perfect for any
possible evaluation, we constructed them specifically with
the needs of the community in mind. Reproducibility is a
core concern, and we present a methodology for developing
benchmarks, which can support extensions as new pro-
grams and techniques arise with new complications.

An initial version of the MANYBUGS benchmark suite
was described in previous work [23]. That publication
reported on a large-scale systematic evaluation of one
specific repair method, and it introduced a set of 105
bugs to facilitate that evaluation. This article focuses on
the benchmarks and associated methodology specifically;
it extends the original MANYBUGS dataset significantly,
adds the INTROCLASS dataset, improves several scenarios
to catch degenerate behavior, categorizes all of the bugs,
and formalizes the methodology.

Many software engineering benchmarks involve the use
of seeded defects. We have previous experience applying
GenProg to a subset of the Siemens benchmark suite [74,
Table 1] as well as to seeded defects [74, Section 5] follow-
ing an established defect distribution [75, p. 5] and fault
taxonomy (e.g., “missing conditional clause” or “extra
statement”). In both cases, GenProg behaved similarly on
seeded defects and on real-world defects. There exists
both direct and indirect evidence that seeded defects can
be as useful as real defects in some settings. For example,
some seeded defects are as difficult to locate as real
defects [76]. Just et al. found both that there exists a corre-
lation between mutant detection and real fault detection
by test suites, and that mutation strategies and operators
could be improved [43]. Seeded defects and mutations
are also studied in the mutation testing community [77];
see Weimer et al. [21, Section VI] for a discussion of the
duality between mutation testing and program repair.
Fault seeding might therefore serve as a suitable

mechanism for generating defect scenarios of intermedi-
ate complexity, between the small, student-written pro-
grams of INTROCLASS and the larger legacy C programs of
MANYBUGS. However, there is currently no direct evidence
that seeded defects are suitable for evaluating automated
program repair.

8 BENCHMARK GENERALITY

No benchmark set is perfect. Consensus benchmarks enable
large-scale experiments, replication of results, and direct
comparison between techniques. However, as case studies,
they enable limited control, which reduces their generaliz-
ability. We mitigate this threat by providing the INTROCLASS

dataset, which is designed to allow controlled experimenta-
tion. Moreover, performance on a benchmark set typically
does not produce results that are amenable to the construc-
tion of explanatory theories [6]. In general, having a
benchmark may cause researchers to over-optimize their
techniques for the benchmark, thus reducing generalizabil-
ity of the techniques. Further, the relative ease of using a
benchmark may unintentionally reduce evaluations that
focus on important but harder-to-evaluate measures. For
example, in the field of fault localization, researchers opti-
mized for finding localizing faults without, for a long time,
considering if perfect fault location information would be of
use to developers [78]. This concern is particularly impor-
tant for automated program repair, because, as discussed in
Section 3.1, test cases are flawed as partial correctness speci-
fications. We hope researchers who use these benchmarks
will perform multiple types of qualitative analysis and pres-
ent multiple sources of evidence to support their claims,
and that we will continue as a field to develop better ways
to measure repair quality overall. Comparative empirical
evaluations are important to high-quality empirical science,
but we do not believe they are the only source of important
evidence to support claims about automatic program repair.

There exist other open-source C programs that could be
included in the MANYBUGS set, as well as additional defects
farther back in the history of some of the programs that,
given additional time and resources, could be identified. Our
benchmarks may not be as general, nor as indicative of real-
world defects, as we claim. Because we do not know the true
distribution of bugs in legacy programs, it is difficult to
assess the degree to which results on these defects, however
systematically identified, can be generalized to the true pop-
ulation of defects in open-source C programs. Our require-
ment that test suites be modularizable, deterministic, and
scriptable likely limits the types of programs that can be
included. We mitigate the threat to generalizability and sci-
entific utility by including a broad set of program types and
sizes, by categorizing the defects, and by formalizing the
methodology by which we constructed both INTROCLASS and
MANYBUGS. We hope this will allow principled development
of the datasets to follow advances in compute resources and
software. The categorization of defects will allow researchers
to identify the subsets of defects on which they evaluate and
on which their techniques succeed. We plan to incorporate
additional labeling schemes when they become available
and to either repair or flag problematic scenarios when
reported by users.

1252 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 12, DECEMBER 2015

As software systems continue to grow and as program-
ming and educational paradigms shift, the defects con-
tained in the datasets may become less indicative of those
that appear in the wild (as with MANYBUGS), or the types of
mistakes that novice programmers make (as with INTRO-

CLASS). By following the examples set by SPEC [5], SIR [44],
and others, these benchmarks can be maintained and con-
tinually improved, both by the authors and the community
of researchers in automated repair. We also constructed a
virtual machine image that emulates a current operating
system, with support for emulating the original virtual
machine. This shows how empirical experiments and test-
beds can evolve with technology while still providing back-
wards compatibility.

It is possible that the scenarios were tailored too nar-
rowly to our own use cases as researchers who study
automatic repair. We mitigated this threat by using them
to evaluate three different techniques using several suc-
cess metrics, and by providing two quite different data-
sets. Our collaboration includes both authors of the tool
that initiated our benchmarking effort (GenProg) and
authors who have used and evaluated that tool indepen-
dently with very different experimental purposes. Fur-
ther, TrpAutoRepair [22] was developed by authors not
involved in the benchmarking project. They evaluated on
a subset of an earlier version of the defects and used
another subset in a focused study of fault localization for
program repair [52]. Our combined and diverse experi-
ence with the research problems presented by automatic
program repair research helps to mitigate the risks of sin-
gle-project myopia in experimental design. Similarly, the
fact that other researchers have already adapted previous
and impoverished versions of the scenarios provides evi-
dence of general utility.

Despite our best efforts, it is possible that the scenarios
will not prove suitable for evaluating a completely novel
program repair techniques in the future, limiting their util-
ity. To help assess this risk, we examined the program
repair papers cited in this article (attempting to be exhaus-
tive, although the field is moving quickly and this list is sim-
ply our best effort). More than half of the papers are
specialized to C programs or are language independent;
and all required test cases or workloads at some stage.
Based on these criteria, MANYBUGS or INTROCLASS or both
(depending largely on scalability, which we could not
always judge) could have been used to evaluate TrpAutoRe-
pair [22]; SemFix [14]; Debroy and Wong [10]; He and
Gupta [79], whose technique requires test suites with high
structural coverage and targets a subset of C, suggesting
INTROCLASS could be suitable; Coker and Hafiz [9], who used
historical human repairs (which we provide) in their evalu-
ation; BugFix [63]; MintHint [38]; and CASC [64]. Similarly
Jolt [68] and ClearView [15] are language independent,
address defect types that are included in either or both of
the defect sets, and require indicative or runtime workloads.

The remaining papers focus on specific defect classes, or
use cases that are not well represented in our datasets [65],
[70], or involve non-C languages. The most common such
language was Java (PAR [12], Juzi [69], Gopinath et al. [67],
Axis [62], AFix [11], and FINCH [66]). A diverse set of
other languages round out the remainder of the work we

surveyed: database selection statements [37], Eiffel [16],
[61], Javascript [8], and a demonstration language [80].

The vast majority of the reported techniques, regardless
of language, require test cases, and well over half target C.
Note that our benchmark construction methodologies are
not language-specific. This may allow cross-language tech-
nique comparisons for certain types of empirical claims,
such as the proportion of a historic set of open-source
defects a technique can address [23]. Defects4J [43], for exam-
ple, is constructed via a process similar to the one we use to
produce MANYBUGS. Defects might be sliced by the amount
or type of code that must be changed to address them,
enabling the identification of a “core” set of defect types com-
mon to, e.g., imperative languages, further enabling cross-
language defect and repair technique comparisons. How-
ever, cross-language comparisons are likely to remain lim-
ited: Is it meaningful to compare a Java-specific technique to
one that targets C pointer errors? Ultimately, we expect that
different languages will benefit from language-specific
benchmark construction methodologies. See, for example,
the DaCapo suite, which addressed methodological prob-
lems with SPEC’s direct translation of benchmark construc-
tionmethodologies for C or Fortran to Java [4]. Although our
defect sets certainly cannot apply to all program repair
research, the trends we observe in the current state of the
field suggests that the general use case we adopted forMANY-

BUGS and INTROCLASS covers a broad swath of the current
research activity in the space of program repair.

We encountered many unanticipated challenges to
constructing robust defect scenarios while preparing MANY-

BUGS and INTROCLASS for public release, and it is unlikely that
we found every inconsistency. In particular, MANYBUGS test
suites were adapted from those provided by the developers
of the subject programs, which may mask degenerate behav-
ior inways that we did not detect. Wemitigated this threat by
conducting numerous external checks for possibly degenerate
behavior, through multiple sanity checks on each scenario
and each potential source of nondeterministic behavior, and
we noted other sources of known nondeterminism.

We address other unforeseen sources of nondetermin-
ism, unexpected behavior, or otherwise incorrect analysis
through a public release of our datasets and log files for the
experiments described in this article. We encourage other
researchers to contact the authors with discrepancies they
discover or suggestions for improvement, and we will
endeavor to keep them and the results as up to date as pos-
sible in the face of new information. Finally, we assigned
version numbers to each benchmark and associated virtual
machines, which we will update as we make changes to the
underlying artifacts.

9 CONTRIBUTIONS

Research fields rarely begin with standardized methods or
evaluation benchmarks. This absence can, at times, empower
both creativity and productivity of research. However, as we
argued earlier, common benchmarks become important as a
field matures to enable researchers to properly reproduce
earlier results, generalize, and to compare, contrast, and
otherwise evaluate new methods as they come along.
Historically, in computer science, the creation of standard

LE GOUES ET AL.: THE MANYBUGS AND INTROCLASS BENCHMARKS FOR AUTOMATED REPAIR OF C PROGRAMS 1253

benchmarks has led to principled evaluations and significant
progress in associated fields, e.g., [3], [4], [5].

To that end, we developed two collections of defect
scenarios—MANYBUGS and INTROCLASS—consisting of 1,183
defects in 15 C programs. These benchmarks are diverse
and allow for comparative evaluation of different types of
automatic repair algorithms and experimental questions.
Each program includes multiple defects, test suites, and
human-written fixes. We illustrated the use of the bench-
marks with three repair techniques, GenProg, TrpAutoRe-
pair, and AE to provide baseline data that can be used in
future studies. One of our goals in creating these bench-
marks was to enable a broad set of use cases for automatic
program repair researchers. We hope that the benchmarks
will be useful, even for methods that don’t require all of the
included components. For example, a technique might not
explicitly require a set of initially passing test cases, or an
evaluation might not compare to the human-provided
patches. We devoted a significant amount of effort to
enhance usability and experimental reproducibility, with
the goal of increasing the benchmarks’ longterm contribu-
tion to the research community.

The scenarios, data (including baseline output and cate-
gorization information) and virtual machine images are
available at http://repairbenchmarks.cs.umass.edu/. The
web site provides detailed README files explaining the
structure of the package, scenarios, results, and virtual
machines information (including AMI numbers for the EC2
images). Errata and feedback on these resources should be
sent to the authors.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the partial support of
AFOSR (FA9550-07-1-0532, FA9550-10-1-0277), US Defense
Advanced Research Projects Agency (DARPA) (P-1070-
113237), US Department of Energy (DOE) (DE-AC02-
05CH11231), US National Science Foundation (NSF) (CCF-
0729097, CCF-0905236, CCF-1446683, CNS-0905222), and
the Santa Fe Institute. In addition, Martin Rinard provided
insightful discussions regarding repair quality and identi-
fied and corrected several concerns in the defect scenarios.

REFERENCES

[1] “How science goes wrong,” Economist, vol. 409, no. 8858, Oct.
2013, http://www.economist.com/news/leaders/21588069-sci-
entific-research-has-changed-world-now-it-needs-change-itself-
how-science-goes-wrong

[2] President’s council of advisors on science and technology
(PCAST) public meeting agenda [Online]. Available: http://
www.whitehouse.gov/sites/default/files/microsites/ostp/
PCAST/pcast_public_agenda_jan_2014.pdf, 2014.

[3] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC bench-
mark suite: Characterization and architectural implications,” in
Proc. 17th Int. Conf. Parallel Archit. Compilation Techn., 2008,
pp. 72–81.

[4] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z.
Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A.
Phansalkar, D. Stefanovi�c, T. VanDrunen, D. von Dincklage, and
B. Wiedermann, “The DaCapo benchmarks: Java benchmarking
development and analysis,” in Proc. 21st Annu. ACM SIGPLAN
Conf. Object Oriented Programm. Syst. Languages Appl., 2006,
pp. 169–190.

[5] “SPEC open systems group policies and procedures document,”
Aug. 2013.

[6] S. E. Sim, S. Easterbrook, and R. C. Holt, “Using benchmarking to
advance research: A challenge to software engineering,” in Proc.
25th Int. Conf. Softw. Eng., 2003, pp. 74–83.

[7] T. Britton, L. Jeng, G. Carver, P. Cheak, and T. Katzenellenbogen,
“Reversible debugging software,” Judge Bus. School, Univ. Cam-
bridge, Cambridge, U.K., Tech. Rep., 2013.

[8] A. Carzaniga, A. Gorla, A. Mattavelli, N. Perino, and M. Pezz�e,
“Automatic recovery from runtime failures,” in Proc. Int. Conf.
Softw. Eng., 2013, pp. 782–791.

[9] Z. Coker and M. Hafiz, “Program transformations to fix C inte-
gers,” in Proc. Int. Conf. Softw. Eng., 2013, pp. 792–801.

[10] V. Debroy and W. E. Wong, “Using mutation to automatically
suggest fixes for faulty programs,” in Proc. Int. Conf. Softw. Testing,
Verification, Validation, 2010, pp. 65–74.

[11] G. Jin, L. Song, W. Zhang, S. Lu, and B. Liblit, “Automated atomic-
ity-violation fixing,” in Proc. 32nd ACM SIGPLAN Conf. Program.
Language Des. Implementation, 2011, pp. 389–400.

[12] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation
learned from human-written patches,” in Proc. Int. Conf. Softw.
Eng., 2013, pp. 802–811.

[13] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “GenProg: A
generic method for automated software repair,” IEEE Trans. Softw.
Eng., vol. 38, no. 1, pp. 54–72, Jan./Feb. 2012.

[14] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra,
“SemFix: Program repair via semantic analysis,” in Proc. Int. Conf.
Softw. Eng., 2013, pp. 772–781.

[15] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach,
M. Carbin, C. Pacheco, F. Sherwood, S. Sidiroglou, G. Sullivan,
W.-F. Wong, Y. Zibin, M. D. Ernst, and M. Rinard, “Automatically
patching errors in deployed software,” in Proc. ACM Symp. Oper-
ating Syst. Principles, Big Sky, MT, USA, Oct. 12–14, 2009, pp. 87–
102.

[16] Y. Wei, Y. Pei, C. A. Furia, L. S. Silva, S. Buchholz, B. Meyer, and
A. Zeller, “Automated fixing of programs with contracts,” in Proc.
Int. Symp. Softw. Testing Anal., 2010, pp. 61–72.

[17] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest,
“Automatically finding patches using genetic programming,” in
Proc. Int. Conf. Softw. Eng., 2009, pp. 364–367.

[18] M. J€arvisalo and A. V. Gelder, Eds., Proc. 16th Int. Conf. Theory
Appl. Satisfiability Testing, Jul. 2013.

[19] U. Egly and C. Sinz, Eds., Proc. 17th Int. Conf. Theory Appl. Satisfi-
ability Testing, Jul. 2014.

[20] C. Le Goues, S. Forrest, and W. Weimer, “Current challenges in
automatic software repair,” Softw. Quality J., vol. 21, no. 3,
pp. 421–443, 2013.

[21] W. Weimer, Z. P. Fry, and S. Forrest, “Leveraging program equiv-
alence for adaptive program repair: Models and first results,” in
Proc. IEEE/ACM 28th Int. Conf. Automated Softw. Eng., Nov. 2013,
pp. 356–366.

[22] Y. Qi, X. Mao, and Y. Lei, “Efficient automated program repair
through fault-recorded testing prioritization,” in Proc. Int. Conf.
Softw. Maintenance, Eindhoven, The Netherlands, Sep. 2013,
pp. 180–189.

[23] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A sys-
tematic study of automated program repair: Fixing 55 out of 105
bugs for $8 each,” in Proc. Int. Conf. Softw. Eng., 2012, pp. 3–13.

[24] Y. Brun, E. Barr, M. Xiao, C. Le Goues, and P. Devanbu. (2013).
Evolution vs. intelligent design in program patching. UC Davis:
College Eng., Tech. Rep. [Online]. Available: https://escholar-
ship.org/uc/item/3z8926ks

[25] E. K. Smith, E. Barr, C. Le Goues, and Y. Brun, “Is the cure worse
than the disease? overfitting in automated program repair,” in
Proc. Joint Meeting Eur. Softw. Eng. Conf. ACM SIGSOFT Symp.
Found. Softw. Eng., Bergamo, Italy, Sept. 2015, pp. 2–4.

[26] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?”
in Proc. Int. Conf. Softw. Eng., 2006, pp. 361–370.

[27] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan,
“Scalable statistical bug isolation,” in Proc. ACM SIGPLAN Conf.
Program. Language Des. Implementation, 2005, pp. 15–26.

[28] (2014, Feb.) [Online]. Available: http://www.mozilla.org/secu-
rity/bug-bounty.html

[29] (2014, Feb.) [Online]. Available: http://blog.chromium.org/2010/
01/encouraging-more-chromium-security.html

[30] (2014, Feb.) [Online]. Available: http://msdn.microsoft.com/en-
us/library/dn425036.aspx

1254 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 12, DECEMBER 2015

[31] C. World. (2014, Feb.) [Online]. Available: http://www.-
computerworld.com/s/article/9179538/Google_calls_raises_Mo-
zilla_s_bug _bounty_for_Chrome_flaws

[32] (2014, Feb.) [Online]. Available: http://msdn.microsoft.com/en-
us/library/dn425036.aspx

[33] (2014, Feb.) [Online]. Available: http://www.daemonology.net/
blog/2011-08-26-1265-dollars-of-tarsnap-bugs.html

[34] V. Dallmeier, A. Zeller, and B. Meyer, “Generating fixes from
object behavior anomalies,” in Proc. IEEE/ACM Int. Conf. Auto-
mated Softw. Eng., 2009, pp. 550–554.

[35] A. Carzaniga, A. Gorla, N. Perino, and M. Pezz�e, “Automatic
workarounds for web applications,” in Proc. Int. Symp. Found.
Softw. Eng., 2010, pp. 237–246.

[36] M. Monperrus, “A critical review of ‘Automatic patch generation
learned from human-written patches’: Essay on the problem state-
ment and the evaluation of automatic software repair,” in Proc.
Int. Conf. Softw. Eng., 2014, pp. 234–242.

[37] D. Gopinath, S. Khurshid, D. Saha, and S. Chandra, “Data-guided
repair of selection statements,” in Proc. 36th Int. Conf. Softw. Eng.,
2014, pp. 243–253.

[38] S. Kaleeswaran, V. Tulsian, A. Kanade, and A. Orso, “Minthint:
Automated synthesis of repair hints,” in Proc. 36th Int. Conf. Softw.
Eng., 2014, pp. 266–276.

[39] M. Harman, “The current state and future of search based soft-
ware engineering,” in Proc. Int. Conf. Softw. Eng., 2007, pp. 342–
357.

[40] Z. P. Fry, B. Landau, and W. Weimer, “A human study of patch
maintainability,” in Proc. Int. Symp. Softw. Testing. Anal., 2012,
pp. 177–187.

[41] W. Weimer, “Advances in automated program repair and a call to
arms,” in Proc. 5th Int. Symp. Search Based Softw. Eng., St. Peters-
burg, Russia, Aug. 2013, pp. 1–3.

[42] V. Dallmeier and T. Zimmermann, “Extraction of bug localization
benchmarks from history,” in Proc. IEEE/ACM 22nd Int. Conf.
Automated Softw. Eng., 2007, pp. 433–436.

[43] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G.
Fraser, “Are mutants a valid substitute for real faults in software
testing?” in Proc. 22nd ACM SIGSOFT Int. Symp. Found. Softw.
Eng., 2014, pp. 654–665.

[44] H. Do, S. Elbaum, and G. Rothermel, “Supporting controlled
experimentation with testing techniques: An infrastructure and
its potential impact,” Empirical Softw. Eng., vol. 10, no. 4, pp. 405–
435, Oct. 2005.

[45] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “Experiments
of the effectiveness of dataflow-and control flow-based test ade-
quacy criteria,” in Proc. Int. Conf. Softw. Eng., 1994, pp. 191–200.

[46] National Institute of Standards and Technology (NIST),
“Samate—Software software assurance metrics and tool eval-
uation,” 2012.

[47] T. Durieux, M. Martinez, M. Monperrus, R. Sommerard, and J.
Xuan. (2015). Automatic repair of real bugs: An experience report
on the Defects4J dataset. CoRR, abs/1505.07002 [Online]. Available:
http://arxiv.org/abs/1505.07002

[48] J. S. Bradbury, I. Segall, E. Farchi, K. Jalbert, and D. Kelk, “Using
combinatorial benchmark construction to improve the assessment
of concurrency bug detection tools,” in Proc. Workshop Parallel Dis-
trib. Syst.: Testing, Anal. Debugging, 2012, pp. 25–35.

[49] S. Zhang, D. Jalalinasab, J. Wuttke, K. Muşlu, W. Lam, M. D.
Ernst, and D. Notkin, “Empirically revisiting the test indepen-
dence assumption,” in Proc. Int. Symp. Softw. Testing. Anal., San
Jose, CA, USA, Jul. 2014, pp. 385–396.

[50] C. Le Goues, S. Forrest, and W. Weimer, “Representations and
operators for improving evolutionary software repair,” in Proc.
Genetic Evol. Comput. Conf., 2012, pp. 959–966.

[51] A. Arcuri and G. Fraser, “On parameter tuning in search based
software engineering,” in Proc. Int. Symp. Search Based Softw. Eng.,
2011, pp. 33–47.

[52] Y. Qi, X. Mao, Y. Lei, and C. Wang, “Using automated pro-
gram repair for evaluating the effectiveness of fault localiza-
tion techniques,” in Proc. Int. Symp. Softw. Testing. Anal., 2013,
pp. 191–201.

[53] Programming language popularity [Online]. Available: http://
langpop.com, 2014.

[54] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V.
Filkov, and P. T. Devanbu, “Fair and balanced? Bias in bug-fix
datasets,” in Proc. ACM SIGSOFT Symp. Found. Softw. Eng.,
2009, pp. 121–130.

[55] E. Fast, C. Le Goues, S. Forrest, and W. Weimer, “Designing better
fitness functions for automated program repair,” in Proc. Genetic
Evol. Comput. Conf., 2010, pp. 965–972.

[56] Black Duck Software. (Inc., http://www.ohloh.net/, Feb. 2014.
[57] Wikipedia, “Python (programming language),” http://en.wikipe-

dia.org/wiki/Python_(programming_language), Feb. 2014.
[58] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and auto-

matic generation of high-coverage tests for complex systems pro-
grams,” in Proc. 8th USENIX Conf. Operating Syst. Des.
Implementation, San Diego, CA, USA, 2008, pp. 209–224.

[59] J. S. Bradbury and K. Jalbert, “Automatic repair of concurrency
bugs,” in Proc. Int. Symp. Search Based Softw. Eng.—Fast Abstracts,
Sep. 2010, pp. 1–2.

[60] A. Arcuri and X. Yao, “A novel co-evolutionary approach to auto-
matic software bug fixing,” in Proc. Congr. Evol. Comput., 2008,
pp. 162–168.

[61] Y. Pei, C. A. Furia, M. Nordio, Y. Wei, B. Meyer, and A. Zeller,
“Automated fixing of programs with contracts,” IEEE Trans.
Softw. Eng., vol. 40, no. 5, pp. 427–449, May 2014.

[62] P. Liu and C. Zhang, “Axis: Automatically fixing atomicity viola-
tions through solving control constraints,” in Proc. Int. Conf. Softw.
Eng., 2012, pp. 299–309.

[63] D. Jeffrey, M. Feng, N. Gupta, and R. Gupta, “BugFix: A learning-
based tool to assist developers in fixing bugs,” in Proc. Int. Conf.
Program Comprehension, 2009, pp. 70–79.

[64] J. L. Wilkerson, D. R. Tauritz, and J. M. Bridges, “Multi-objective
coevolutionary automated software correction,” in Proc. Genetic
Evol. Comput. Conf., 2012, pp. 1229–1236.

[65] B. Demsky, M. D. Ernst, P. J. Guo, S. McCamant, J. H. Perkins, and
M. C. Rinard, “Inference and enforcement of data structure consis-
tency specifications,” in Proc. Int. Symp. Softw. Testing. Anal., 2006,
pp. 233–244.

[66] M. Orlov and M. Sipper, “Flight of the FINCH through the Java
wilderness,” Trans. Evol. Comput., vol. 15, no. 2, pp. 166–192, 2011.

[67] D. Gopinath, M. Z. Malik, and S. Khurshid, “Specification-based
program repair using SAT,” in Proc. 17th Int. Conf. Tools Algorithms
Construction Anal. Syst., 2011, pp. 173–188.

[68] M. Carbin, S. Misailovic, M. Kling, and M. C. Rinard, “Detecting
and escaping infinite loops with Jolt,” in Proc. Eur. Conf. Object
Oriented Program., 2011, pp. 609–633.

[69] B. Elkarablieh and S. Khurshid, “Juzi: A tool for repairing com-
plex data structures,” in Proc. Int. Conf. Softw. Eng., 2008, pp. 855–
858.

[70] S. Sidiroglou and A. D. Keromytis, “Countering network worms
through automatic patch generation,” IEEE Security Privacy,
vol. 3, no. 6, pp. 41–49, Nov. 2005.

[71] S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari, “Oracle-guided
component-based program synthesis,” in Proc. 32nd ACM/IEEE
Int. Conf. Softw. Eng., 2010, vol. 1, pp. 215–224.

[72] D. Perelman, S. Gulwani, D. Grossman, and P. Provost, “Test-
driven synthesis,” SIGPLAN Not., vol. 49, no. 6, pp. 408–418, Jun.
2014.

[73] S. Lu, Z. Li, F. Qin, L. Tan, P. Zhou, and Y. Zhou, “Bugbench:
Benchmarks for evaluating bug detection tools,” in Proc. Workshop
Eval. Softw. Defect Detection Tools, 2005, pp. 16–20.

[74] E. Schulte, Z. Fry, E. Fast, W. Weimer, and S. Forrest, “Software
mutational robustness,” Genetic Program. Evolvable Mach., vol. 15,
no. 3, pp. 281–312, 2014.

[75] Z. P. Fry and W. Weimer, “A human study of fault localization
accuracy,” in Proc. Int. Conf. Softw. Maintenance, 2010, pp. 1–10.

[76] J. C. Knight and P. Ammann, “An experimental evaluation of sim-
ple methods for seeding program errors,” in Proc. 8th Int. Conf.
Softw. Eng., 1985, pp. 337–342.

[77] Y. Jia and M. Harman, “An analysis and survey of the develop-
ment of mutation testing,” IEEE Trans. Softw. Eng., vol. 37, no. 5,
pp. 649–678, Sep./Oct. 2011.

[78] C. Parnin and A. Orso, “Are automated debugging techniques
actually helping programmers?” in Proc. Int. Symp. Softw. Testing.
Anal., Toronto, ON, Canada, 2011, pp. 199–209.

[79] H. He and N. Gupta, “Automated debugging using path-based
weakest preconditions,” in Proc. 7th Int. Conf. Fundam. Approaches
Softw. Eng., 2004, pp. 267–280.

[80] A. Arcuri, “On the automation of fixing software bugs,” in Proc.
Doctoral Symp.—30th Int. Conf. Softw. Eng., 2008, pp. 1003–1006.

LE GOUES ET AL.: THE MANYBUGS AND INTROCLASS BENCHMARKS FOR AUTOMATED REPAIR OF C PROGRAMS 1255

Claire Le Goues received the BA degree in com-
puter science from Harvard University and the MS
and PhD degrees from the University of Virginia.
She is an assistant professor in the School of
Computer Science, Carnegie Mellon University,
where she is primarily affiliated with the Institute
for Software Research. She is interested in how to
construct high-quality systems in the face of con-
tinuous software evolution, with a particular inter-
est in automatic error repair. More information is
available at: http://www.cs.cmu.edu/ clegoues.

Neal Holtschulte received the BA degree in
mathematics from Williams College. He is
currently working toward the PhD degree at the
University of New Mexico, where he studies auto-
mated program repair and biologically inspired
computation with Professor Melanie Moses. He
is also interested in genetic programming, pro-
gram structure, and computer science education.

Edward K. Smith received the BS degree from
the University of Maryland in 2013. He is currently
working toward the PhD degree in the College of
Information and Computer Science, University of
Massachusetts, Amherst. His research interests
include human factors, programming languages,
and software engineering. More information is
available on his homepage: https://people.cs.
umass.edu/tedks/.

Yuriy Brun received the the MEng degree from
the Massachusetts Institute of Technology in
2003, and the PhD degree from the University of
Southern California in 2008. He is an assistant
professor in the College of Information and Com-
puter Science, University of Massachusetts,
Amherst. He completed his postdoctoral work in
2012 at the University of Washington as a CI fel-
low. His research focuses on software engineer-
ing, distributed systems, and self-adaptation. He
received the US National Science Foundation

(NSF) Career Award in 2015, a Microsoft Research Software Engineer-
ing Innovation Foundation Award in 2014, and an IEEE TCSC Young
Achiever in Scalable Computing Award in 2013. He is a member of the
IEEE, the ACM, and the ACM SIGSOFT. More information is available
on his homepage: http://people.cs.umass.edu/brun/

Premkumar Devanbu received the BTech
degree from IIT Madras, in Chennai, India, and
the PhD degreee from Rutgers University. After
spending nearly 20 years as both a developer
and a researcher at Bell Labs and its various off-
shoots, he left Industry to join the CS faculty at
UC Davis in late 1997, where he is currently a
professor of computer science.

Stephanie Forrest received the BA degree from
St. John’s College and the MS and PhD degrees
from the University of Michigan. She is currently
Regents distinguished professor of computer sci-
ence at the University of New Mexico and a mem-
ber of the External Faculty of the Santa Fe
Institute. Her research studies complex adaptive
systems, including immunology, evolutionary
computation, biological modeling, and computer
security. She is a fellow of the IEEE.

Westley Weimer received the BA degree in com-
puter science and mathematics from Cornell Uni-
versity and the MS and PhD degrees from the
University of California, Berkeley. He is currently
an associate professor at the University of Vir-
ginia. His main research interests include static
and dynamic analyses to improve software qual-
ity and fix defects.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1256 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 12, DECEMBER 2015

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

