
Keeping Data Private while Computing in the Cloud

Yuriy Brun

Computer Science & Engineering
University of Washington

Seattle, Washington, 98195, USA
brun@cs.washington.edu

Nenad Medvidovic

Computer Science Department
University of Southern California

Los Angeles, California, 90089, USA
neno@usc.edu

Abstract—The cloud offers unprecedented access to compu-
tation. However, ensuring the privacy of that computation re-
mains a significant challenge. In this paper, we address the prob-
lem of distributing computation onto the cloud in a way that pre-
serves the privacy of the computation’s data even from the cloud
nodes themselves. The approach, called sTile, separates the com-
putation into small subcomputations and distributes them in a
way that makes it prohibitively hard to reconstruct the data.
We evaluate sTile theoretically and empirically: First, we for-
mally prove that sTile systems preserve privacy. Second, we de-
ploy a prototype implementation on three different networks, in-
cluding the globally-distributed PlanetLab testbed, to show that
sTile is robust to network delay and efficient enough to signifi-
cantly outperform existing privacy-preserving approaches.

I. INTRODUCTION

The emergence of cloud computing has allowed ubiqui-

tous access to computation and data with higher availability

and reliability than possible with personal machines and lo-

cal servers. However, this transformation has created new

challenges in computing. This paper addresses the challenge

of executing computations on untrusted machines in a trust-
worthy manner. In particular, it focuses on preserving data

privacy while solving computationally-intensive problems on

untrusted machines, such as those in the cloud.

We present sTile, a technique for building software sys-

tems that distribute large computations onto the cloud while

providing guarantees that the cloud nodes cannot learn the

computation’s private data. sTile is based on a nature-inspired,

theoretical model of self-assembly. While sTile’s computa-

tional model is Turing universal [34], in this paper, we present

a prototype implementation that solves the NP-complete prob-

lem 3-SAT. Our approach is directly applicable to solving

other NP problems, while future work is required to expand

sTile to other computations.

sTile explores the fundamental cost of privacy through

data distribution. Existing approaches to using the Internet’s

computational resources to perform NP-complete computa-

tions [9], [20], [26] have resulted in commercial enterprises

deployed on over a million machines [3]. However, these

approaches have assumed reliable and trustworthy underlying

networks, and employed only rudimentary fault-tolerance and

privacy safeguards, rendering them useful only (1) for rich

companies that own their own, large, trustworthy clusters, and

(2) in research but not for wide-scale commercial applications.

We evaluate sTile in three ways: First, we formally

prove that sTile systems preserve data privacy as long as no

adversary controls more than one half of the cloud. Second,

to empirically demonstrate sTile’s feasibility, we deploy a

prototype implementation on three distinct networks, includ-

ing the globally-distributed PlanetLab testbed [33]. Third, we

formally analyze the communication and computation costs

induced by sTile, provide bounds on them, and empirically

verify those bounds. We have previously discussed sTile’s

ability to handle faults and malicious attacks [15], [16], and

do not focus on that dimension here. sTile significantly

outperforms existing cryptography-based privacy techniques,

such as homomorphic encryption [23].

The rest of this paper is structured as follows: Section II

explains sTile through an example. Section III details the

sTile approach. Section IV formally analyzes sTile’s privacy-

preservation. Section V discusses sTile’s empirical experi-

ments. Section VI positions our work in terms of related

research. Finally, Section VII summarizes the contributions of

the paper.

II. MOTIVATING EXAMPLE: PRIVATE ADDITION

sTile computes while preserving privacy by breaking a com-

putation into small pieces and distributing those pieces onto a

large network. Each piece is so small that it is prohibitively

difficult for an adversary to collect enough pieces to recon-

struct the confidential data. In this section, we describe sTile

with an example of distributing an addition computation.

To describe adding using sTile, we explain three separate

elements of our solution: the addition tile assembly, the distri-

bution process, and the source of privacy.

A. The Addition Tile Assembly

A tile assembly is a theoretical construct, similar to cellular

automata. It consists of square tiles with static labels on their

four sides. Tiles can attach to one another or to a growing crys-

tal of other tiles when sufficiently many of their sides match.

Figure 1(a) shows eight different types of tiles used for

addition. These tile types are the program — the tile assembly

encoding of the algorithm for adding two integers, in binary,

2012 IEEE Fifth International Conference on Cloud Computing

978-0-7695-4755-8/12 $26.00 © 2012 IEEE

DOI 10.1109/CLOUD.2012.126

285

2012 IEEE Fifth International Conference on Cloud Computing

978-0-7695-4755-8/12 $26.00 © 2012 IEEE

DOI 10.1109/CLOUD.2012.126

285

0

0

0 00
0

0

0 11
1

0

00 1
1

0

11 0
0

1

0 01
0

1

1 10
1

1

01 0
1

1

11 1

(a)

0
0

1
1

0
0

1
1

1
1

0
0

1
1

0

0
0

0
0

1
1

(b)

0
0

1
1

0
0

1
1

1
1

0
0

1
1

0

0
0

0
0

1
1

0

1

0 01

(c)

0
0

1
1

0
0

1
1

1
1

0
0

1
1

0

0
0

0
0

1
1

0

1

0 01
1

1

1 00
0

0

0 11
1

1

1 00
0

0

0 11

(d)

0
0

1
1

0
0

1
1

1
1

0
0

1
1

0
0
0

0
0

1
1

0

1

0 01
1

1

1 00
0

0

0 11
1

1

1 00
0

0

0 11

1̀ 2̀

3̀

4̀

5̀7̀ 6̀8̀

(e)

0
0

1
1

0
0

1
1

1
1

0
0

1
1

0

0
0

0
0

1
1

0

1

0 01
1

1

1 00
0

0

0 11
1

1

1 00
0

0

0 11

1̀ 2̀

3̀

4̀

5̀7̀ 6̀8̀

(f)

Figure 1. An adding tile assembly with (a) eight tile types. A seed crystal (b) encodes the inputs, 10 = 10102 and 11 = 10112. The first attaching tile (c) adds the
least significant bit of each input. The middle row of the final crystal (d) encodes the output 21 = 101012. sTile deploys (e) software objects encoding individual
tiles onto nodes. Even if an adversary compromises a significant fraction of the nodes (e), the probability that it can recover the private data is extremely low.

one bit at a time. Figure 1(b) shows a seed crystal that encodes

an input: 10 (1010 in binary) in the top row and 11 (1011 in

binary) in the bottom row. When an instance of a tile from

Figure 1(a) matches the seed crystal on three sides, that tile

instance attaches to the crystal. Figure 1(c) shows the seed

with a single attached tile. Note that this tile adds the least

significant bit of each input: 0+1 = 1, displayed in the center

of the newly attached tile. The label on the west side of the

newly attached tile is the carry bit: 0. The tiles execute full

adder logic to add the bits, one at a time, eventually producing

the sum 21 = 101012 in the middle row of Figure 1(d).

We designed this addition tile assembly by hand. In practice,

we do not expect sTile developers to program using tile assem-

blies. Section III will discuss compiling distributed systems

without understanding tile assemblies.

B. The Distribution Process

sTile uses the theoretical tile assembly to decompose a

computation into small parts. Each small part represents a

tile. Figure 1(e) shows how the 10+ 11 execution might be

deployed on eight network nodes. Each node only deploys

tiles of a single type, designated by the client machine (de-

scribed in Section III-B1). The client sets up a seed on the

network by asking nodes that can deploy tiles of appropriate

types to deploy instances of those types (described in Sec-

tion III-B1). Each node knows only the tile instances it is

deploying and maintains references to the geometrically adja-

cent tile instances on other nodes. Next, tiles with an empty

neighbor location coordinate with their neighbors to recruit

matching tiles to attach (described in Section III-B3). This

process uses a secure multi-party computation algorithm to

ensure neighbors do not learn each other’s data [41]. (While

a single seed is sufficient for addition, for NP-complete prob-

lems, sTile employs distributed seed replication, described in

Section III-B4.) Each of these steps replies on an algorithm

that ensures the tiles are deployed uniformly randomly on the

available nodes (described in Section III-B2). Once the execu-

tion finishes, the tiles in the middle row report the solution to

the client, indicating their neighbor’s tiles’ nodes’ IDs (e.g.,

IPs), which the client uses to reconstruct the output.

C. The Source of Privacy

Each tile instance is aware of only a single bit of the in-

put, output, or intracomputation data, and not of the bit’s

global location. An adversary may attempt to reconstruct the

confidential data from the nodes it controls. For example,

Figure 1(f) shows an adversary that has compromised three

nodes (2, 3, and 6), and now has access to the data in five tiles.

However, this adversary can only tell that there are some 0 and

1 bits scattered throughout the input, the computation, and the

output, but not how many and not their relative positions. In

fact, in this example, no three nodes contain the entire input

286286

Tile
Assembly

for P
Tile

Architecture

Tile
Algorithms Mahjong

Implementation
FrameworkProblem P

Software System for P:
privacy preserving
fault and attack tolerant
scalable

sTile

Figure 2. A high-level overview of sTile.

(nodes 1, 2, 5 and 7 deploy the input). The adversary may

recover partial information about the frequencies of 0s and

1s, and may be able to reconstruct small parts of the input

and output (e.g., if it is lucky enough to control adjacent tiles).

However, as we will show in Section IV, as long as the ad-

versary controls less than half the network, the probability it

can reconstruct the input is prohibitively small. In the 10+11

example, it is easy to see that controlling half the nodes trans-

lates to controlling roughly half the tiles, which is unlikely to

be sufficient to reconstruct the input or the output.

III. STILE: AN APPROACH TO PRESERVING PRIVACY

sTile is a technique for designing, implementing, and de-

ploying software systems that distribute computation onto

large, insecure, public networks. sTile’s primary concern is

to perform computation while preserving the privacy of the

involved data. Figure 2 shows a high-level overview of sTile.

sTile consists of four components: a tile assembly, the cor-

responding tile architecture, the associated algorithms, and

the Mahjong implementation framework. We have developed

multiple tile assemblies, specifically for sTile. These assem-

blies solve NP-complete problems [12], [13], [14] and factor

integers [11]. In this paper, we use one of those assemblies

to demonstrate how sTile can solve 3-SAT. The nature of NP-

complete problems allows for polynomial-time translations

among them, so it is possible to use sTile for all NP-complete

problems without designing new assemblies, although we do

not discuss that approach here. Finally, tile assemblies are

Turning-universal [34], so future extensions of sTile can be

made to perform arbitrary computations and to automatically

compile programs into tile assemblies.

This paper focuses on 3-SAT to demonstrate using sTile to

solve NP-complete problems. Thus, we describe how sTile

uses a tile assembly for 3-SAT (described in Section III-A) to

create a tile architecture (described in Section III-B). sTile

then uses that tile architecture and the tile algorithms (also

described in Section III-B) to compile a Mahjong-based imple-

mentation of the system (described in Section III-C), which is

the software system used to distribute the 3-SAT computation

onto a cloud, in a privacy-preserving manner.

To build sTile systems, a developer does not need to

understand the underlying theoretical model described in

Section III-A. Due to space limitations, our description of

this model is at a high level; the reader can refer to [13]

for details and proofs that the theoretical model solves

3-SAT. The process we describe here allows the developer to

automatically compile a tile assembly description (such as the

3-SAT assembly [13]) into a distributed, privacy-preserving

software system.

A. Computing with Tiles

A key component of sTile is the tile architecture, which is

based on a tile assembly, an extensively studied mathematical

object [34], [36], [38]. As mentioned, our own previous work

has developed tile assemblies to efficiently solve NP-complete

problems [12], [13], [14]. Others have shown that tile assem-

blies are Turing-universal [34], [38], [1]. Tile assemblies are

theoretical objects that have no notion of privacy, although it

is their basic structure that allows sTile to preserve privacy.

sTile is a reification of a tile assembly as a distributed software

system.

The set of tile types in a tile assembly encodes the

“program” the tiles will execute. For example, the eight tile

types from Figure 1(a) encode integer addition. The assembly

that solves 3-SAT has 64 tile types [13]. Figure 3 shows one

possible example execution (crystal) of that tile assembly.

The clear tiles on the bottom and right edges encode the input:

(x2 ∨¬x1 ∨¬x0)∧ (¬x2 ∨¬x1 ∨¬x0)∧ (¬x2 ∨ x1 ∨ x0). The

shaded tiles then attach, growing the crystal to nondetermin-

istically select a truth assignment and compute whether that

assignment satisfies the formula. The crystal in Figure 3

depicts an assignment that satisfies the formula, indicated

by the � tile in its top left corner. To solve 3-SAT, many

such crystals must self-assemble in parallel, each exploring

a different assignment nondeterministically.

Next, in Section III-B, we describe how sTile uses a network

of computers to reify tile assemblies, resulting in a software

system. In subsequent sections, we argue that such systems

are efficient and possess properties that are important on large

public networks such as clouds.

B. Tile Architecture and Algorithms

A sTile system is a software system that uses a network

of potentially untrusted computers to solve a computational

problem in a privacy-preserving manner. Intuitively, the cloud

will simulate a tile assembly: each computer in the cloud will

deploy tile instances, and will communicate with other com-

puters to self-assemble a solution to a computational problem

following the rules of the tile assembly. Thus, a tile architec-

ture is based on a tile assembly; the software system employing

287287

?

cv0v100 0 0 01 1 1 1 1 ¬vc¬v ¬v ¬vc¬v ¬vv|

1
1

0
0

?
?

||
0

0

0 0 0 0 0 0

c

c

v ?

c

c

¬v ?

0

*0

*0 0

*0

0

0 *0

0

0

v v

0

0

0 0

OK

*0

¬v ¬v
OK

OK
v v

OK

OK

0 0

OK

OK

0 0

OK

OK

1 1

0

0

¬v ¬v

c

c

v ?

c

c

0 0

c

c

0 0

c

c

1 1

c

c

0 0

c

c

1 1

c

c

0 0

c

c

0 0

c

c

1 1

c

c

v v

c

c

¬v ¬v

c

c

0 0

c

c

0 0

c

c

v v

c

c

1 1

c

c

0 0

c

c

0 0

c

c

1 1

c

c

v v

c

c

¬v ¬v

c

c

0 0

c

c

0 0

c

c

v v

c

c

1 1

c

c

0 0

*v

v

v v

*¬v

¬v

¬v ¬v

v

v

¬v ¬v

¬v

¬v

v v
v

v

0 0

¬v

¬v

0 0

v

v

1 1
¬v

¬v

1 1

v

*v

*0 0

¬v

*¬v

*1 1

v

v

0 0

*v

v

v v

v

*v

*0 0
v

v
1 1

*v

v

v v

v

v

¬v ¬v

v

v

0 0

v

v

1 1

v

*v

*0 0
v

v
0 0

*v

v

v v

v

*v

*0 0

v

v

1 1

*v

v

v v

v

v

¬v ¬v

v

v

0 0

v

v

1 1

v

*v

*0 0

v

v

0 0

*v

v

v v

v

*v

*0 0

v

v

1 1

¬v

¬v
0 0

¬v

¬v

0 0

¬v

¬v

v v

¬v

¬v

0 0

*¬v

¬v

¬v ¬v

¬v

¬v

v v

¬v

¬v

0 0

¬v

¬v

1 1

¬v

*¬v

*1 1

¬v

¬v

0 0

¬v

¬v

0 0

¬v

¬v

v v

¬v

¬v

0 0

*¬v

¬v

¬v ¬v

¬v

¬v

v v

¬v

¬v

0 0

¬v

¬v

1 1

¬v

*¬v

*1 1

¬v

¬v

0 0

¬v

¬v

0 0

¬v

¬v

v v

¬v

¬v

0 0

*¬v

¬v

¬v ¬v

¬v

¬v

v v

¬v

¬v

0 0

¬v

¬v

1 1

¬v

*¬v

*1 1

¬v

¬v

0 0

¬v

¬v

0 0

¬v

¬v

v v

¬v

¬v

0 0

*¬v

¬v

¬v ¬v

¬v

¬v

v v

¬v

¬v

0 0

¬v

¬v

1 1

¬v

*¬v

*1 1

¬v

¬v

0 0

¬v

¬v

0 0

¬v

¬v

v v

¬v

¬v

0 0

*¬v

¬v

¬v ¬v

¬v

¬v

v v

¬v

¬v

0 0

¬v

¬v

1 1

¬v

*¬v

*1 1

¬v

¬v

0 0

¬v

¬v

0 0

¬v

¬v

v v

¬v

¬v

0 0

0

0

v v

*0

0

0 *0

*0

0
0 *0

0

0

1 *1

1

1

0 *0
*1

1

1 *1

0

0

v v

1

1

v v

0

*0

*1 1

1

*1

*0 0

0

0

0 0

1

1

0 0
0

0

1 1

1

1
1 1

OK

*0

v v

OK

OK

0 0

OK

OK

1 *1

1

1

¬v ¬v

|

|

v

|

|

¬v

|

|

0

|

|

1

c
| ||

OK

|| |

v

| |
¬v

| |

0

| |

1

| |

|

||

v

|| ||

¬v

|| ||

0

|| ||

1

|| ||

*1

|| ||

1

1

0 0

1

1

v v

1

1

0 *0

1

1

1 1

0

0

v v

0

0

0 0

0

0

0 0
0

0
¬v ¬v

0

0

v v

0

0

0 0

0

0

1 1

0

0

0 0

0

0

1 1

0

0

v v
0

0
0 0

0

0

0 0

0

0

¬v ¬v

0

0

v v

0

0

0 0

0

0

0 0

0

0

1 1

1

1
v v

1

1

v v

1

1

0 0

1

1

0 0

1

1

0 0

1

1

0 0

1

1

¬v ¬v

1

1

1 1

1

1

1 1
0

0

v v

0

0

0 0

0

0

0 0

0

0

¬v ¬v

0

0

v v

0

0

0 0

0

0

0 0

0

0

1 1

0

0

v v

0

0

0 0

0

0

0 0

0

0

¬v ¬v

0

0

v v

0

0

0 0

0

0

1 1

0

0

0 0

0

0

1 1

1

1

v v

1

1

v v

1

1

0 0

1

1

0 0

1

1

0 0

1

1

¬v ¬v

1

1

1 1

0

0

v v

0

0

0 0

0

0

0 0

0

0

¬v ¬v

0

0

1 1

*0

0

0 *0

OK

OK

1 1

0

0

1 *1

0

0

v v

0

0

0 0

0

0

0 0

0

0

¬v ¬v

0

0

v v

0

0

0 0

0

0

0 0

0

0

1 1

1

1

v v

1

1

v v

1

1

0 0

1

1

0 0

1

1

0 0

1

1

0 0

1

1

¬v ¬v

1

1

1 1

1

1

1 1

0

0

1 *1

0

0

1 *1

0

0

v v

0

0

0 0

0

0

0 0

0

0

¬v ¬v

0

0

v v

0

0

0 0

0

0

0 0

0

0

1 1

0

0

v v

0

0

0 0

0

0

0 0

0

0

¬v ¬v

0

0

v v

0

0

0 0

0

0

1 1

0

0

0 0

0

0

1 1

*1

1

1 *1

1

*1

*0 0

OK

*0

v v

OK

OK

0 0

1

1

v v

1

1

v v

1

1

0 0

1

1

0 0

1

1

0 0

1

1

¬v ¬v

1

1

1 1

0

0

v v

0

0

0 0

0

0

0 0

0

0

¬v ¬v

0

0

1 1

*0

0

0 *0

OK

OK

1 1

0

*0

*0 0

*0

0

0 *0

0

0

v v

0

0

¬v ¬v

*0

0

0 *0

0

0

v v

0

*0

*1 1

0

0

0 0

0

0

1 1

1

1

v v

1

1

0 0

1

1

0 *0

1

1

¬v ¬v

1

1

v v

1

1

0 0

1

1

1 1

1

1

0 0

*1

1

1 *1

|

|

0

|

|

0

|

|

v

|

|

1

|

|

0

c

| ||

c

| ||

0

|| ||

1

|| ||

0

| |

0

| |

¬v

| |

OK

|| |

¬v

|| ||

0

|| ||

1

|| ||

¬v

| |

0

| |

0

| |

¬v

| |

1

| |

OK

|| |

v

|| ||

0

|| ||

Figure 3. An example crystal of a 3-SAT-solving tile assembly. Here, the clear tiles along the bottom encode the input Boolean formula φ = (x2 ∨¬x1 ∨¬x0)∧
(¬x2 ∨¬x1 ∨¬x0)∧ (¬x2 ∨ x1 ∨ x0). This crystal represents one possible nondeterministic execution that checks whether the assignment x0 = x2 = TRUE and
x1 = FALSE, encoded in the clear tiles on the right, satisfies φ. Because it does, the � tile attaches in the top left corner.

that architecture solves the particular computational problem

the tile assembly solves.

The components of the tile architecture are instantiations

of the tile types of the underlying assembly. A sTile sys-

tem employing such an architecture will have a large number

of components; on the other hand, there is a comparatively

smaller number of different types of components (e.g., 64

types for solving 3-SAT). Nodes in the cloud will contain

these components, and components that are adjacent in a crys-

tal can recruit other components to attach, thus dynamically

completing the architectural configuration [35] corresponding

to a tile crystal. The components recruit other components,

by sampling nodes until they find one whose interfaces match.

Note that many components in the sTile architecture can run

on a single physical node, as we will further elaborate below.

In addition to defining the tile types, a tile assembly also

directs sTile how to encode the input to the computation into

the set of components comprising the initial architectural con-

figuration. The input consists of a seed crystal, such as the

clear tiles along the right and bottom edges in Figure 3. Fig-

ure 4 summarizes the algorithms a sTile system follows to find

a solution. During initialization, the system sets up a single

input seed crystal on the cloud. The seed then replicates to

create many copies, and each of the copies recruits tiles to

assemble larger crystals and eventually produce the solution.

The solution tile components (e.g., the � component for the

3-SAT assembly) then report their state to the client.

We now elaborate on these operations.

1) Initializing Computation: The client computer initializes

the computation by performing three actions: creating the tile

type map, distributing the map and tile type descriptions, and

setting up a seed crystal.

A tile type map maps node IDs (e.g., all 128-bit IP ad-

dresses) to tile types. It determines the type of tile components

each computer deploys. The tile type map breaks up the set

of numbers into k roughly equal-sized regions, where k is the

number of types of tiles in the tile assembly. For 3-SAT, there

are 64 different tile types, so the tile type map would partition

the set of all 128-bit numbers into 64 regions of size 2122. The

size of the tile type map, which will later be sent to the provi-

sioned subset of the nodes in the cloud, is small. For 3-SAT,

the map is sixty four 128-bit numbers. The client node, and

subsequently the rest of the network, distribute the map by

using a standard gossip protocol, which takes Θ(logN) time,

for a network of N nodes.

The client is also responsible for creating the first seed on

the cloud. For each tile in the seed, the client selects a node

that deploys that tile type (as described next), and asks that

node to deploy a tile. The client then informs each deployed

tile component who its neighbors on the network are. This

procedure is significantly faster and requires less network

communication than the distribution of the tile type map.
2) Discovery: The discovery operation, given a tile type,

returns a uniformly-random IP of some computer deploying

tile components of that type. Thus, every suitable computer

has an equal chance of being returned, in the long run.

Each node keeps a node table of three IP addresses of other

nodes that deploy each component type. When queried for a

Initialization
(Client)

Initialization
(Client)

Replication
(All Nodes)
Replication
(All Nodes)

Recruitment
(All Nodes)

Discovery
(All Nodes)
Discovery

(All Nodes)
Solution
(Client)

Figure 4. Overview of sTile algorithms.

288288

Figure 5. Tile components with both upper and left neighbors (highlighted
in the diagram) can recruit new components to attach to their upper left.

node of a given type, the node will select and return one of the

three entries at random, and replace it’s three entries with the

selected node’s list. This table is small (64×3 = 192 IPs for

3-SAT), and the query procedure takes Θ(1) time. Repeated

queries emulate a random walk on a graph on which each node

has three random neighbors. Such a walk mixes rapidly, which

implies that after Θ(logN) queries, every IP is equally likely

to be returned [31] (formal proof omitted for space).

3) Recruitment: The seed crystal grows into a full assembly

by recruiting tile attachments. Every tile component that has

both an upper and a left neighbor recruits a new tile to attach to

its upper left corner. Figure 5 indicates several places in a sam-

ple crystal where tile components are ready to recruit new tiles.

A recruiting tile component X uses node discovery to pick a

potential attachment node of each tile type and sends those

nodes attachment requests. An attachment request consists

of the X’s upper neighbor’s left interface and left neighbor’s

top interface. If those interfaces match the right and bottom

interfaces, respectively, of the potential attachment tile Y , Y
attaches. X then informs Y of the IPs of its two new neighbors,

and those neighbors of Y ’s IP. X can perform this operation

without ever learning its neighbors’ interfaces by using Yao’s

garbled protocol [41].

Each component’s recruitment is a five-step process: (1)

X asks N (its upper neighbor) to encode its left interface, (2)

N asks W (X’s left neighbor) to encode its top interface, (3)

W responds to X , (4) X sends attachment requests to a set of

potential attachments Y , and (5) those Y s reply to X . We will

analyze these five steps in Section V-D.

In the 3-SAT system, the successful crystal recruits 310 tile

components (non-clear tiles in Figure 3). An unsuccessful

crystal, which we discuss further in Section III-B5 can recruit

fewer, but no more than 310 tiles.

4) Replication: Whenever cloud nodes have extra cycles

they are not using for recruitment, they replicate the seed. Us-

ing node discovery, each node X selects another node Y that

deploys the same tile type as itself, and sends it a replication

request consisting of up to two IP addresses of X’s neighbors.

X informs its neighbors that Y is X’s replica (by sending Y ’s

IP address to X’s neighbors). Those neighbors, when they

replicate using this exact mechanism, will send their repli-

cas’ IP addresses to Y . Thus, the entire seed replicates. Each

component’s replication is a three-step process: (1) X sends

a replication request to Y , (2) Y replies to X , and (3) X tells its

neighbors about Y . We will analyze these steps in Section V-D.

At the start of the computation, the seeds replicate expo-

nentially. When there are sufficiently many seeds to keep the

nodes occupied recruiting, replication naturally slows down

because replication only occurs when cycles are not occu-

pied by recruitment. As some seeds complete recruitment and

free up nodes’ cycles, replication will once again create more

seeds.

The seeds continue to replicate and self-assemble until one

of the assemblies finds the solution, at which time the client

sends a small “STOP” packet to all its neighbors, which they

forward to their neighbors, and so on. Since the diameter

of a large connected network of N nodes with randomly dis-

tributed connections is Θ(logN) [31], the “STOP” message

will propagate in Θ(logN) time.

5) Answering 3-SAT in the Negative: A crystal that finds

the truth assignment that satisfies the Boolean formula reports

the success to the client computer. When there is no satisfying

assignment, no crystal can claim to have found the solution.

Rather, the exhaustive exploration of all assignments finds

the solution. After exploring 2n randomly-selected assign-

ments, the certainty that the formula is unsatisfiable is at least(
1− e−1

)
. As more assignments are explored, the certainty

grows exponentially quickly towards 1. As an example, af-

ter exploring 80 assignments for the example 3-SAT problem

from Figure 3, the probability that the answer is not found is

less than e−10 < 10−4. This amounts to fewer than 25,000 tile

components, which even a single computer can easily deploy.

C. Mahjong Implementation Framework

The final element of sTile is the Mahjong implementation

framework. The framework [10] is realized as a Java-based

middleware platform that faithfully implements the tile archi-

tecture and its algorithms. It takes as input a description of

a tile assembly, implements a software system using the tile

architecture based on that assembly and employing the algo-

rithms described in Section III-B, and outputs (i.e., deploys)

a complete sTile software system. Mahjong has proven to

be flexible and robust to variations in the various networks

on which we have deployed it to date: we have not had to

make changes to adapt Mahjong to distinct networks and a

developer unfamiliar with the project was able to deploy it

without consultation with the authors.

IV. PRIVACY PRESERVATION

In this section, we formally argue that sTile systems pre-

serve privacy. That is, we prove that as long as no adversary

controls more than half the network, the probability of that

adversary learning the input can be made arbitrarily low.

sTile’s privacy preservation comes from each tile being

exposed only to a few intermediate bits of the computation

(see Figure 3) and the tiles’ lack of awareness of their global

position. In order to learn meaningful portions of the data,

an adversary needs to control multiple, adjacent tiles. We

call a distributed software system privacy preserving if, with

high probability, a randomly chosen group of nodes smaller

289289

than half of the network cannot discover the entire input to

the computational problem the system is solving. (We will

also discuss, at the end of this section, the probability of

discovering parts of the input.) We argue that neither (1) a node

deploying a single tile, nor (2) a node deploying multiple tiles

can know virtually any information about the input; moreover,

(3) controlling enough computers to learn the entire input is

prohibitively hard on large networks.

(1) Each tile type in an assembly encodes at most one bit

of the input. A special tile encodes the solution, but has no

knowledge of the input. A node that deploys a single tile is

only able to learn information such as “there is at least one 0

bit in the input,” which is less than one bit of information.

(2) Each node on the network may deploy several tiles

(all of the same type). However, each tile is only aware of

neighboring tiles and not of its global position. Thus, if a

node deploys several non-neighboring tiles, that node cannot

reconstruct any more information than if it only deployed a

single tile. The only way the node may gain more information

is if it deploys neighboring tiles. (We handle this case next.)

(3) Suppose an adversary controls a subset of the network

nodes and can see all the information available to each of

the tiles deployed on those nodes. Then the adversary can

attempt to reconstruct the computation input from parts of the

crystal that consist of tiles deployed on compromised nodes.

Theorem 1 bounds the probability that an adversary can use

this scheme to learn the input.

Theorem 1. Let c be the fraction of the network that an adver-
sary has compromised, let s be the number of seeds deployed
during a computation, and let n be the number of bits (tiles) in
an input. Then the probability that the compromised computers
contain an entire input seed to a sTile system is 1− (1− cn)s.

Proof: If an adversary controls a c fraction of the network

nodes, then for each tile in a seed, the adversary has a probabil-

ity c of controlling it. Thus for a given n-bit seed, distributed

independently on the nodes, the adversary has probability cn

of controlling all the nodes that deploy the tiles in the seed, and

thus the probability that the seed is not entirely controlled is

1−cn. Since there are s independent seeds deployed, the prob-

ability that none of them are entirely controlled is (1− cn)s.

Finally, the probability that the adversary controls at least one

seed is 1− (1− cn)s.

The log-scale plot in Figure 6 graphically illustrates that the

probability of input reconstruction drops exponentially in c.

Let us examine a sample scenario. Suppose we deploy a sTile

system on a network of 220 ≈ 1,000,000 machines to solve a

38-variable 100-clause 3-SAT problem. Let us also suppose a

powerful adversary has gained control of ≈125,000 machines

(1
8 of the network). The adversary will be able to reconstruct

the seed with probability 1− (
1−2−114

)238

< 10−22. As the

input size increases, this probability further decreases. The

probability decays exponentially for all c < 1
2 .

20
20

20

38

38

38

56

56

56

0.1 0.2 0.3

c

0.4 0.5

1�
1

e
� 0.63
10�5

10�10

10�15

10�20

10�25

10�35

10�50

10�75

Pr�reconstruct�

Figure 6. The probability that an adversary controlling c fraction of the
network can reconstruct an entire 20-, 38-, and 56-bit input.

The same analysis and exponential probability drop-off

apply to reconstructing fractional parts (e.g., one third) of

the input. It is somewhat simpler to reconstruct small (e.g.,

three-bit) fragments of the input, but the information contained

in those fragments is greatly limited and cannot be used to

reconstruct larger fragments [17].

V. COMPUTATIONAL FEASIBILITY

In order to demonstrate that sTile is a feasible solution

for building software systems that distribute computationally

intensive problems on clouds, we must show that (1) such

systems are robust to network delay, and (2) real-world-sized

problems can be solved on real-world-sized networks in

reasonable time. In separate experiments not presented here,

we also verified that the computational speed of sTile systems

scales linearly with the number of nodes it is deployed on.

We have built two Mahjong-based implementations and

a simulator called Simjong. The former distribute computa-

tion onto physical networks and the latter is a discrete-event

network simulator that employs accurate models of network

message delays. These implementations establish the correct-

ness of our algorithms and demonstrate the distribution of

a sTile system onto a physical network. Simjong’s goal is

to accurately simulate very large networks (e.g., 1,000,000

nodes).

A. Prototype sTile Implementations

We have built two instances of the Mahjong framework

for NP-complete problems (3-SAT and SubsetSum) and a

discrete-event simulator Simjong, with network-delay simu-

lation capabilities. These implementations are available for

download [10]. Simjong simulates delays for messages sent

between nodes: a constant (e.g., 100ms), chosen at random

from some distribution (e.g., Gaussian around 100ms with

σ = 20ms), or proportional to the geographic distance be-

tween nodes. Simjong’s network model is a simplification of

the network simulator standard ns-2 [21] because it abstracts

290290

away the exact topology of the network, which is not important

for our needs.

B. Experimental Setup

We use three distributed networks for our experimental eval-

uation: (1) a private heterogeneous cluster of 11 Pentium 4

1.5GHz nodes with 512MB of RAM, running Windows XP or

2000; (2) a 186-node subset of USC’s Pentium 4 Xeon 3GHz

High Performance Computing and Communications (HPCC)

cluster [27], whose nodes were distributed in several locations

in a city; and (3) a 100-node subset of PlanetLab [33], a glob-

ally distributed network of machines of varying speeds and

resources that were often heavily loaded by several experi-

ments at a time.

The cross-section of data we present here used four repre-

sentative instances of NP-complete problems, to which we

will refer by their labels:
A : 5-number 21-bit SubsetSum problem,

B : 11-number 28-bit SubsetSum problem,

C : 20-variable 20-clause 3-SAT problem, and

D : 33-variable 100-clause 3-SAT problem.
Our experimental goal was to verify sTile’s robustness to

network delay. Our experiments had two independent vari-

ables — the communication delay, and the computation size —

and one dependent variable — computation time.

First, to verify sTile’s correctness, we solved over 100 Sub-

setSum and 3-SAT problems, including A, B, and C. As a

rule of thumb, we chose problem instances to each execute

in under 4 hours on our 186-node cluster. We verified that

on all networks, the solutions were correct and the execution

exhibited only the expected communication and connections.

C. Robustness to Network Delay

To measure the effect of network delay, we compared sTile

execution times on equal-sized subsets of the three networks.

We then compared Simjong execution times on six virtual

networks of 1,000,000 nodes, with respective network de-

lays of 0ms, 10ms, 100ms, 500ms, drawn from a Gaussian

distribution around 100ms with σ = 20ms, and ones propor-

tional to the geographic distance between randomly assigned

world-wide locations (varying from 20ms to 500ms). Simjong

deployed the first 10−4% of the seeds to estimate the entire

execution time.

Hypothesis: Execution time is independent of network delay.

The intuition behind our hypothesis is that each cloud node

handles the deployment of thousands of lightweight tiles and

whenever a packet travels between nodes, nodes handle other

tiles rather than waiting idly for the network communication

to arrive. Thus, network delay affects the latency but not the

throughput of sTile systems. Figure 7 confirms the hypothesis.

We found that the execution times were closely clustered and

no statistical significance in the small variances.

Prob. # of Nodes Delay Execution Time
Mahjong

A 11

Private Cluster 20.1 sec.

HPCC 19.3 sec.

PlanetLab 18.5 sec.

B 11

Private Cluster 41.6 min.

HPCC 41.2 min.

PlanetLab 43.9 min.

Simjong

D 1,000,000

0ms 65 min.

10ms 57 min.

100ms 64 min.

500ms 60 min.

Gaussian 68 min.

Distance-based 59 min.

Figure 7. The effect of network delay on system execution time.

D. Efficiency

The final claim we address in demonstrating sTile’s fea-

sibility is that real-world-sized problems can be solved on

real-world-sized networks (such as clouds) in reasonable time.

In particular, we posit that sTile systems can outperform solv-

ing the problem on a private machine.

Suppose Mahjong solves an n-variable, m-clause 3-SAT

problem on N nodes. In expectation, the system has to ex-

plore 2n crystals to reach a solution, and each crystal contains

(3m+ n) lgn replicated tiles (clear tiles in Figure 3) and no

more than 3nm lg2 n recruited tiles (non-clear tiles in Figure 3).

On average, each node will need to replicate
(3m+n) lgn

N 2n

tiles and recruit 3nm lg2 n
N 2n tiles. The replication procedure re-

quires three distinct operations, as described in Section III-B4,

each concluded by sending a single network packet; let the

time for these operations be denoted as 3i. Similarly, the re-

cruitment procedure requires five operations, as described in

Section III-B3, each concluded by sending a single network

packet; let the time for these operations be denoted as 5u.

Equation (1) describes this system’s overall execution time.

(
3i
(3m+n) lgn

N
+5u

3nm lg2 n
N

)
2n (1)

2n(n+3m)r (2)

Now suppose a user wishes to solve the 3-SAT instance on

a single computer using the same algorithm that explores 2n

possible assignments. Equation (2) describes the time this pro-

cedure would take using the most efficient available technique,

assuming r is the amount of time each operation takes to exe-

cute: for each assignment, create a hash set containing the n
literal-selection elements and check for each of the 3m literals

whether the hash set contains that literal. sTile’s overhead is

the ratio of (1) and (2). Assuming m > n and i = u = r (which

we verified empirically but omit the evidence here) the over-

291291

Number of Execution Time
Nodes Simjong Estimate

125,000 8.7 hours 9.1 hours

250,000 4.5 hours 4.5 hours

500,000 2.1 hours 2.3 hours

1,000,000 64 min 68 min.

Figure 8. Comparison of execution time for solving D as measured by
Simjong and estimated by Equation (1).

head is no greater than 8n lg2 n
N . In other words, if the size of the

public network exceeds 8n lg2 n, Mahjong will execute faster

than a single machine. For the sizes of problems we discuss

next, that network size is several thousand nodes. We note that

it is also possible to use a small private network, as opposed

to a single private computer. Using M private nodes would at

best improve the single-computer approach by a factor of M,

and thus, in the worst case, would increase the overhead by

that same factor.

We verified the accuracy of Equations (1) and (2) by compar-

ing them to actual measured running times. Figure 8 highlights

some of the results — Simjong running times and Equation (1)

values for D. We consistently found that Equation (1) was

within 8% of the Simjong-measured execution times. As

expected, we found that for large networks, sTile systems out-

perform the single private machine approach. For example,

solving a 38-variable, 100-clause 3-SAT instance on a single

computer takes 3.3×107 seconds ≈ 1 year. Mahjong solves

the same problem on a million-node network in 1.8× 105

seconds ≈ 2.1 days.

E. Threats to Validity

In our evaluation, as well as in targeting our technique, we

make several assumptions that may threaten the validity of our

results.

In comparing sTile and other approaches to solving 3-SAT,

we have used simple underlying algorithms (e.g., exploring

2n assignments). Efficient SAT solving is a popular area of

research and much faster algorithms exist. We have focused

on simple algorithms only for clarity of explanation and ease

of the prototype implementation. sTile can also use the more

complex, efficient algorithms, although we omit that descrip-

tion here. For example, we have already made significant

progress toward implementing a sTile system that explores

only O(1.8394n) assignments to solve 3-SAT [14].

We have taken into account accurate models of network

delay. However, we have assumed the volume of network

traffic created by sTile systems will not affect message delivery.

While our experiments suggest that Mahjong traffic volumes

are not significantly larger than typical, this assumption may

not hold for some networks or clouds.

VI. RELATED WORK

In this section, we describe related work in the areas dis-

tributing computation, cloud privacy, and privacy-preserving

computation.

A. Distributing Computation

The growth of the Internet has made it possible to use pub-

lic computers to distribute computation to willing hosts. Soft-

ware designed to solve computationally intensive problems has

emerged to take advantage of this phenomenon, enticing users

to devote their computers’ idle cycles to some academically or

otherwise worthy cause. This notion focuses the underpinning

of computational grids [22]. Among systems that concentrate

on distributed computation are BOINC systems [3] (such as

SETI@home [28] and Folding@home [30]), MapReduce [20],

and the organic grid [18]. A unique approach — FoldIt —

uses the competitive human nature to solve the protein-folding

problem [5]. FoldIt asks humans, as part of a game, to try to

arrange a protein’s amino acids to minimize the free energy.

The hope is that humans will be more efficient than the brute

force approaches and that a large number of users will help

find the optimal solution. These systems try to solve exactly

the highly parallelizable problems toward which our work is

geared, but unlike sTile, they do not preserve privacy.

Some research, rather than leveraging large networks, has

attempted to accelerate NP-complete computation by develop-

ing faster algorithms for single machines and small clusters.

This work ranges from developing efficient exponential-time

algorithms [29], [39], to using runtime information to dynami-

cally improve the speed of SAT solvers [7], to leveraging local

message-passing protocols such as MPI and OpenMP to use

small clusters to linearly accelerate the computation of spe-

cialized problems [32]. This work is not in competition with

our technique, but is rather complementary. The tile architec-

ture is based on a Turing-universal computational model [8],

[34] and can implement each of these advanced algorithms

on large distributed networks, leveraging both their efficiency

and the tile architecture’s privacy preservation, scalability, and

fault tolerance. In fact, we have already built tile assemblies

that implement fast 3-SAT algorithms that can be leveraged

directly by sTile [14]. At times, in this paper, we compared

simple algorithms that solve NP-complete problems imple-

mented using the tile architecture versus using conventional

methods. The same comparisons can be made for complex,

efficient, state-of-the-art algorithms.

Cloud computing is a relatively new phenomenon that al-

lows outsourcing computation. Corporations such as Google,

Yahoo!, and Amazon have the computational resources to dis-

tribute these computations onto thousands of privately-owned,

networked, fairly reliable machines. Clouds leverage technolo-

gies such as MapReduce [20] to handle the data and computa-

tion distribution. Today, a MapReduce system running on a

10,000-core cluster produces data used in every Yahoo! web

search query [6]; as many as a thousand MapReduce jobs are

292292

executed on Google’s and Amazon’s clusters daily [2], [20];

and Facebook uses a MapReduce system to process more than

15 terabytes of new data every day [43]. While commercially

viable, clouds rely on legal contracts to ensure privacy. For

example, if a pharmaceutical company outsources a protein-

folding problem to Google, that company must share the valu-

able amino acid sequence with Google and is protected from

Google misusing the sequence or making that data public by a

contract. Our approach allows the pharmaceutical company to

distribute its problem, in principle, on several clouds without

having to disclose the private data, while providing guarantees

that the operators of these clouds, as well as potential attackers,

cannot compromise that data.

B. Cloud Privacy

Cloud computing has re-emphasized the importance of data

privacy, causing the emergence of numerous approaches for

keeping data private on the cloud [4], [37], [40], [42]. Most

such approaches concentrate on private data storage and se-

curity policies around user-authorized data retrieval and re-

quire some trusted agents [4], [37], [40] whereas our work

concentrates on preserving privacy during computation and

requires no trusted agents. One approach [42] that begins to

explore the notion of performing computation on private data

uses attribute-based encryption and proxy re-encryption to

distribute client data onto potentially untrusted cloud servers.

In contrast, sTile computes more complex functions (ones that

require knowing the entire input), requires no trusted agents,

and does not disclose the data to the underlying agents.

C. Privacy-Preserving Computation

The majority of research on strategies for getting compu-

tational help without disclosing the input of the computation

has focused on asking a single other computer for help. Yet, in

classical (as opposed to quantum) computing, it is not possible

to get help from a single entity in solving an NP-complete

problem without disclosing most of the information about the

input and the problem one is trying to solve [19]. Our ap-

proach avoids this shortcoming by distributing such a request

over many machines without disclosing the entire problem to

any small-enough subset of them.

Gentry has theorized about using a fully homomorphic en-

cryption scheme to encrypt a circuit describing a problem

and then executing the encrypted circuit on a separate agent

without disclosing the private data [23]. While theoretically

exciting, practically, this approach cannot be used today be-

cause of the exponential amount of computation required to

encrypt and decrypt. In a popular article, Gentry himself es-

timates that using his technique to perform a Google search,

while keeping the query private, would require one trillion

times as much computation as is needed today [25]. Gentry’s

technique is theoretically more powerful than ours because

it keeps the data private from the entire network (as opposed

to subsets of the network). However, as we demonstrated in

Section V, unlike homomorphic encryption, sTile is efficient

enough to be used today.

The field of secure multi-party computation explores

whether multiple computers, each of whom knows part of

an input, can compute a function of that entire input without

sharing their parts with others. sTile is a solution to a related,

but fundamentally different problem: can computers be used

to help compute a function if no sizable group of those com-

puters knows the input to the computation? The seminal work

in the area of secure multi-party computation introduced Yao’s

garbled circuit protocol that allows n nodes, each with access

to a single input, to compute a function of the n inputs while

disclosing only the value of the function to each node [41].

Zero-knowledge compilers bridge that work closer to our ap-

proach by making Yao’s protocol secure even if the parties

cannot be trusted [24]. Secure multi-party computation applies

to functions on large distributed private data sets, while our

work applies to functions on fairly small data sets, but ones

that require exponential time or space to compute. Our work

does, at times, leverage some of the work in secure multi-party

computation, as we described in Section III-B3.

VII. CONTRIBUTIONS

Sensitive computation, such as tax calculations, is rapidly

moving onto the cloud, raising the issue of data privacy of not

only storage but also computation. In this paper, we have pre-

sented sTile, a technique for distributing computation onto the

cloud while keeping the data private, both, from intruders and

from the cloud nodes themselves. Here, we have focused on

solving only NP-complete problems, and have demonstrated

our approach through solving the well-know NP-complete

problem 3-SAT. Future work remains on applying sTile to

a larger class of problems, which is likely feasible because

sTile’s underlying theoretical model is Turing-universal.

We have evaluated sTile theoretically and empirically. First,

we formally proved that sTile systems preserve privacy as long

as no adversary controls one half of the cloud executing the

computation. Second, we deployed a sTile prototype called

Mahjong on three networks, including the globally-distributed

PlanetLab testbed. We used these deployments to demonstrate

that Mahjong (1) is robust to network delay, and (2) signif-

icantly outperforms existing privacy-preserving approaches,

such as homomorphic encryption and computing on privately-

owned, secure hardware.

ACKNOWLEDGMENTS

We would like to thank Jae young Bang for his help deploy-

ing Mahjong-based implementations on PlanetLab.

REFERENCES

[1] L. Adleman, J. Kari, L. Kari, and D. Reishus, “On the decid-
ability of self-assembly of infinite ribbons,” in FOCS, Ottawa,
Ontario, Canada, 2002, pp. 530–537.

[2] “Amazon elastic MapReduce,” http://aws.amazon.com/
elasticmapreduce, 2009.

293293

[3] D. P. Anderson, “BOINC: A system for public-resource com-
puting and storage,” in IEEE/ACM GRID, Pittsburgh, PA, USA,
2004, pp. 4–10.

[4] G. Ateniese, K. Fu, M. Green, and S. Hohenberger, “Improved
proxy re-encryption schemes with applications to secure dis-
tributed storage,” ACM TISSEC, vol. 9, pp. 1–30, 2006.

[5] D. Baker, “Foldit,” http://fold.it, 2009.

[6] E. Baldeschwieler, “Yahoo! launches world’s largest hadoop
production application,” http://developer.yahoo.net/blogs/
hadoop/2008/02/yahoo-worlds-largest-production-hadoop.
html, 2008.

[7] A. Balint, M. Henn, and O. Gableske, “A novel approach to
combine a SLS- and a DPLL-solver for the satisfiability prob-
lem,” in SAT, Swansea, UK, 2009, pp. 284–297.

[8] R. Berger, The undecidability of the domino problem, ser. Mem-
oirs Series. American Mathematical Society, 1966, no. 66.

[9] F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faer-
man, S. Figueira, J. Hayes, G. Obertelli, J. Schopf, G. Shao,
S. Smallen, N. Spring, A. Su, and D. Zagorodnov, “Adaptive
computing on the grid using AppLeS,” IEEE TPDS, vol. 14,
no. 4, pp. 369–382, 2003.

[10] Y. Brun, “Mahjong tile style implementation,” http://csse.usc.
edu/∼ybrun/Mahjong.

[11] ——, “Nondeterministic polynomial time factoring in the tile
assembly model,” Theoretical Computer Science, vol. 395,
no. 1, pp. 3–23, 2008.

[12] ——, “Solving NP-complete problems in the tile assembly
model,” Theoretical Computer Science, vol. 395, no. 1, pp.
31–46, 2008.

[13] ——, “Solving satisfiability in the tile assembly model with a
constant-size tileset,” Journal of Algorithms, vol. 63, no. 4, pp.
151–166, 2008.

[14] ——, “Efficient 3-SAT algorithms in the tile assembly model,”
Natural Computing, vol. in press, 2012, doi: 10.1007/s11047-
011-9299-0.

[15] Y. Brun, G. Edwards, J. young Bang, and N. Medvidovic,
“Smart redundancy for distributed computation,” in ICDCS,
Minneapolis, MN, USA, 2011, pp. 665–676.

[16] Y. Brun and N. Medvidovic, “Fault and adversary tolerance as
an emergent property of distributed systems’ software architec-
tures,” in EFTS, Dubrovnik, Croatia, 2007, pp. 38–43.

[17] M. Chaisson, P. Pevzner, and H. Tang, “Fragment assembly
with short reads,” Bioinformatics, vol. 20, no. 13, pp. 2067–
2074, 2004.

[18] A. J. Chakravarti and G. Baumgartner, “The organic grid: Self-
organizing computation on a peer-to-peer network,” in ICAC,
New York, NY, USA, 2004, pp. 96–103.

[19] A. M. Childs, “Secure assisted quantum computation,” Quan-
tum Information and Computation, vol. 5, no. 456, pp. 456–466,
2005.

[20] J. Dean and S. Ghemawat, “MapReduce: Simplified data pro-
cessing on large clusters,” in OSDI, San Francisco, CA, USA,
2004.

[21] S. Floyd and V. Paxson, “Difficulties in simulating the Internet,”
IEEE/ACM TNET, vol. 9, no. 4, pp. 392–403, 2001.

[22] I. Foster, C. Kesselman, and S. Tuecke, “The anatomy of the
grid: Enabling scalable virtual organizations,” Intl. Journal of
High Performance Computing Applications, vol. 15, no. 3, pp.
200–222, 2001.

[23] C. Gentry, “Fully homomorphic encryption using ideal lattices,”
in ACM STOC, Bethesda, MD, USA, 2009, pp. 169–178.

[24] O. Goldreich, S. Micali, and A. Wigderson, “Proofs that yield
nothing but their validity or all languages in NP have zero-
knowledge proof systems,” Journal of the ACM, vol. 38, no. 3,
pp. 690–728, 1991.

[25] A. Greenberg, “IBM’s blindfolded calculator,” Forbes Maga-
zine, 2009.

[26] A. S. Grimshaw, W. A. Wulf, and the Legion team, “The Legion
vision of a worldwide virtual computer,” Communications of
the ACM, vol. 40, no. 1, pp. 39–45, 1997.

[27] “High performance computing and communications,” http://
www.usc.edu/hpcc.

[28] E. Korpela, D. Werthimer, D. Anderson, J. Cobb, and M. Lebof-
sky, “SETI@home — massively distributed computing for
SETI,” IEEE MultiMedia, vol. 3, no. 1, pp. 78–83, 1996.

[29] O. Kullmann, “New methods for 3-SAT decisions and worst-
case analysis,” Theoretical Computer Science, vol. 223, pp.
1–72, 1999.

[30] S. M. Larson, C. D. Snow, M. R. Shirts, and V. S. Pande, Fold-
ing@Home and Genome@Home: Using Distributed Comput-
ing to Tackle Previously Intractable Problems in Computational
Biology. Horizon Press, 2002.

[31] R. Motwani and P. Raghavan, Randomized Algorithms. Cam-
bridge University Press, 1995.

[32] A. Nakano, R. K. Kalia, P. Vashishta, T. J. Campbell, S. Ogata,
F. Shimojo, and S. Saini, “Scalable atomistic simulation algo-
rithms for materials research,” Scientific Programming, vol. 10,
no. 4, pp. 263–270, 2002.

[33] L. Peterson, T. Anderson, D. Culler, and T. Roscoe, “A blueprint
for introducing disruptive technology into the Internet,” ACM
SIGCOMM Computer Communication Review, vol. 33, no. 1,
pp. 59–64, 2003.

[34] R. M. Robinson, “Undecidability and nonperiodicity for tilings
of the plane,” Inventiones Mathematicae, vol. 12, no. 3, pp.
177–209, 1971.

[35] R. N. Taylor, N. Medvidovic, and E. M. Dashofy, Software
Architecture: Foundations, Theory, and Practice. John Wiley
& Sons, 2009.

[36] H. Wang, “Proving theorems by pattern recognition,” II. Bell
System Technical Journal, vol. 40, pp. 1–42, 1961.

[37] Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li, “Enabling public
auditability and data dynamics for storage security in cloud
computing,” IEEE TPDS, vol. 22, pp. 847–859, 2011.

[38] E. Winfree, “Simulations of computing by self-assembly of
DNA,” California Institute of Technology, Pasadena, CA, USA,
Tech. Rep. CS-TR:1998:22, 1998.

[39] G. J. Woeginger, “Exact algorithms for NP-hard problems: a
survey,” Combinatorial Optimization - Eureka, You Shrink!, vol.
2570/2003, pp. 185–207, 2003.

[40] Z. Yang, S. Yu, W. Lou, and C. Liu, “P2: Privacy-preserving
communication and precise reward architecture for V2G net-
works in smart grid,” IEEE Transactions on Smart Grid, 2011.

[41] A. C.-C. Yao, “How to generate and exchange secrets,” in
FOCS, Toronto, Canada, 1986, pp. 162–167.

[42] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scal-
able, and fine-grained data access control in cloud computing,”
in INFOCOM, San Diego, CA, USA, 2010, pp. 534–542.

[43] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy,
S. Shenker, and I. Stoica, “Job scheduling for multi-user MapRe-
duce clusters,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2009-55, 2009.

294294

