
The Plastic Surgery Hypothesis

Earl T. Barr† Yuriy Brun Premkumar Devanbu? Mark Harman† Federica Sarro†

†University College London University of Massachusetts ?University of California Davis
London, UK Amherst, MA, USA Davis, CA, USA

{e.barr,mark.harman,f.sarro}@ucl.ac.uk, brun@cs.umass.edu, ptdevanbu@ucdavis.edu

ABSTRACT
Recent work on genetic-programming-based approaches to auto-
matic program patching have relied on the insight that the content
of new code can often be assembled out of fragments of code that
already exist in the code base. This insight has been dubbed the
plastic surgery hypothesis; successful, well-known automatic repair
tools such as GenProg rest on this hypothesis, but it has never been
validated. We formalize and validate the plastic surgery hypothe-
sis and empirically measure the extent to which raw material for
changes actually already exists in projects. In this paper, we mount
a large-scale study of several large Java projects, and examine a
history of 15,723 commits to determine the extent to which these
commits are graftable, i.e., can be reconstituted from existing code,
and find an encouraging degree of graftability, surprisingly indepen-
dent of commit size and type of commit. For example, we find that
changes are 43% graftable from the exact version of the software
being changed. With a view to investigating the difficulty of finding
these grafts, we study the abundance of such grafts in three possible
sources: the immediately previous version, prior history, and other
projects. We also examine the contiguity or chunking of these grafts,
and the degree to which grafts can be found in the same file. Our
results are quite promising and suggest an optimistic future for au-
tomatic program patching methods that search for raw material in
already extant code in the project being patched.
Categories and Subject Descriptors: D.2.7 [Software Engineer-
ing]: Distribution, Maintenance, and Enhancement, D.2.13 [Soft-
ware Engineering]: Reusable Software
General Terms: Experimentation, Languages, Measurement
Keywords: Software graftability, code reuse, empirical software en-
gineering, mining software repositories, automated program repair

1. INTRODUCTION
Software has successfully relieved humans of many tedious tasks,

yet many software engineering tasks remain manual, and require
significant developer effort. Developers have long sought to auto-

Author order is alphabetical.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

Copyright held by the owner/author(s). Publication rights licensed to ACM.

FSE ’14, November 16–22, 2014, Hong Kong, China
ACM 978- 1-4503-3056-5/14/11
http://dx.doi.org/10.1145/2635868.2635898

mate development tasks. In 2009, the advent of GenProg [41] and
Clearview [31] demonstrated automated bug repair. Automatically
fixing bugs requires searching a vast space of possible programs,
and a key insight that limits that search space is the assumption that
fixes often already exist elsewhere in the codebase [2, 40]. This
insight arises from the idea that code is locally repetitive, and that
the same bug appears in multiple locations, but, when fixed, is not
likely to be fixed everywhere. In fact, program source code changes
that occur during development can often be constructed from grafts,
snippets of code located elsewhere in the same program [41]. The
act of grafting existing code to construct changes is known as plastic
surgery [13]. Reformulated as a hypothesis, the insight follows:

The Plastic Surgery Hypothesis: Changes to a codebase contain
snippets that already exist in the codebase at the time of the change,
and these snippets can be efficiently found and exploited.

The early success in automating program repair has triggered a
dramatic recent upsurge in research on automated repair [2,9,19,24,
29], refactoring [10, 12, 36], and genetic improvement [14, 22, 23,
30, 42]. These approaches have implicitly assumed the correctness
of the plastic surgery hypothesis since they rely, in part, on plastic
surgery. Despite the fact that a growing body of work depends on it,
the plastic surgery hypothesis has not been validated experimentally.
The goal of this paper is to validate this hypothesis empirically, on
the large scale, on real-world software. Le Goues et al. [24] and
Nguyen et al. [29] considered repetitiveness of changes abstracted
to ASTs, and Martínez et al. [25] considered changes that could be
entirely constructed from existing snippets. Both restricted their
search to changes, neglecting primordial, untouched code that was
inherited (unchanged) from the first version to the last. Both report
the portion of repetitiveness in their datasets, but do not consider the
cost of finding it. In this work, we consider both the changes and the
primordial code and also explore aspects of the cost of searching in
these spaces. In short, our result provides a solid footing to new and
ongoing work on automating software development that depends on
the plastic surgery hypothesis.

The plastic surgery hypothesis has two parts: 1) the claim that
changes are repetitive relative to their parent, the program to which
they are applied, and 2) the claim that this repetitiveness is usefully
exploitable. To address each claim, we focus our inquiry on two
questions: “How much of each change to a codebase can be con-
structed from existing code snippets?” and “What is the cost of
finding these snippets?”

To answer the first question, we measure the graftability of each
change. The graftability of a change is the number of snippets in
it that match a snippet in the search space (we clarify the intuitive
term “snippets” below). We study over 15,000 human-implemented
changes to a program. If the graftability of these changes is high,
then this explains part of the success of automated repair, refactoring,

306

http://dx.doi.org/10.1145/2635868.2635898

and genetic improvement and it is an encouraging news for further
research in these areas. We consider only line-granular snippets
and search for exact matches, ignoring whitespace. We make this
choice because 1) developers tend to think in terms of lines, and,
2) practically, this choice reduces the size of the search space with
which any tool seeking to help construct changes must contend.
Our choice is informed by our practical experience with GenProg,
which allows within-line expression granular changes. When we
experimented with this setting on a large — hundreds of fairly
small buggy programs — dataset, the genetic programming search
algorithm almost always bogged down within a few generations
because of the search space explosion [7].

To answer the second question, we consider three spaces in which
we search for grafts: 1) the parent of a change, the search space of
the plastic surgery hypothesis, 2) a change’s non-parental ancestors,
and 3) the most recent version of entirely different projects. During
search, we consider all the lines in each version, and not merely
its changes, as this allows us to search those lines that survive
unchanged from the start of a version history to its end. This matters
when the start of a version history is not empty, as is often the
case, since many projects are bootstrapped from prototypes, adapted
from existing projects, migrated from one version control system
to another, or undergo extensive development outside of version
control. In particular, our dataset covers an interval of each project’s
history that starts from a nonempty change and, on average, these
core lines account for 30% of all lines searched. To quantify our
answer to the second question, we simply count the number of grafts
found in the different search spaces over their size.

We take a pragmatic, actionability-oriented view of the plastic
surgery hypothesis. We argue that it is not merely about repeti-
tiveness of changes relative to their parent. This fact alone is not
actionable, if the cost of finding grafts were prohibitive. The practi-
cal success of work on automated repair has demonstrated both the
existence of grafts and the tractability of finding them. Thus, the
hypothesis is about richness of the first of these search spaces, the
parent of a change. We therefore validate it by comparing cost of
finding grafts in this search space against the cost of finding them in
the other two.

Over the first search space, we find that, on average, changes
are 43% graftable, and that 11% of them can be 100% graftable.
This suggests that a fair amount of the lines in code changes could
be derived from code that already exists in the project. When we
compare this result to the other two search spaces, we see that on
average the non-parental ancestors contribute only 5% more grafts
than the parents, while other projects only provide 9% on average.
Moreover, we found that graftability from parent is significantly
higher than graftability from both non-parental ancestors and other
projects with a high effect size (0.84 and 0.80, respectively). Thus,
we can answer the first question, which captures the claim that many
donor sites exist at the time of the change in the plastic surgery
hypothesis does hold (Section 4.1).

An initial answer to the second question is to count the lines
searched for each of the search spaces and report the work done
to find each donor as the ratio of number of donor sites found to
the number of total lines searched (i.e., density). We found that
the density of the parent is significantly higher than those of both
non-parental ancestors and other projects with a high effect size.
Here, again, we see that the plastic surgery hypothesis holds. We
found that the cost to search from parent is significantly lower than
the cost to search in the other two search-spaces (Section 4.1).

Having validated the plastic surgery hypothesis, we turn our
attention to how to exploit it. The success of automated bug fixing,
refactoring, and genetic improvement demonstrates the utility of

incorporating the search of existing code into techniques seeking to
automate software engineering tasks; that is, the consequences of
plastic surgery hypothesis are indeed exploitable.

The grafts we have found are mostly single lines (57%), with
the distribution following a power law. Thus, grafts would not be
considered clones, because the traditional threshold for minimal
clone size is 5–7 lines [38]. These smaller repetitive snippets are
micro-clones. Syntactic repetitiveness below this threshold has sim-
ply been considered uninteresting because it lacks sufficient content.
53% of our grafts fall below this threshold and are, therefore, a
micro-clones. The success of automated repair, refactoring, and
genetic improvement are evidence that these micro-clones, of which
our grafts form a subset, are, to the contrary, useful. We contend that
micro-clones are the atoms of code construction and therefore are
fundamental to code synthesis. Indeed, Gabel and Su demonstrated
that line-length micro-clones from a large corpus can reconstruct
entire programs [11]. Regardless of the intrinsic interest (or lack
thereof) of a particular graft to a human being, such as a trivial
assignment statement over the correct variable names, grafts can
usefully bootstrap the automation of software development.

To reduce the cost of searching for grafts, we tried to correlate
features of changes with graftability (Section 4.3). If we found such
a correlation, we could exploit it to search more or less intensively.
To this end, we studied if different categories of human-written
changes, e.g., bug fixes, refactorings, or new feature additions, are
more graftable than others. We also asked if graftability depends on
size (Section 4.2). However, we found no such correlations. Indeed,
concerning the category of change, the success of automatic bug
fixing, refactoring, and genetic improvement suggest that different
kinds of changes exhibit the same graftability, as we found.

As a community, we have learned that several lines of code are re-
quired for a change to be unique [11] and that a surprising number of
changes are redundant, in the sense that they repeat changes already
made [25,29]. We also know that automated repair can be improved
by including elements of human-constructed bug fixes [19]. We
know that source code is locally repetitive to a greater degree than
natural language [16]. To this growing body of knowledge about
the repetitiveness of code and its exploitation, we add the validation
of the plastic surgery hypothesis, augmented with insights into the
proximity of grafts to each other.

The primary contributions of this paper are:
• A formal statement and validation of the plastic surgery hy-

pothesis;
• A large-scale, empirical study of the extent to which develop-

ment changes can be constructed from code already available
during development, i.e., their graftability; and
• An analysis of the relationship between commit features (i.e.,

size and type) and commit graftability;
• An analysis of the locality of the distribution of grafts in

codebase to which a commit applies.
These findings relating to the plastic surgery hypothesis bode

well for the likelihood of continuing success of patching-by-grafting
approaches (including GenProg); they generally suggest that donor
grafts to compose a patch can be feasibly found in temporal and
spatial proximity to the patch site.
• Donor grafts can often be found in the current version of the

program to be patched and it is rarely necessary to search
earlier versions (Section 4.1).
• The graftable portions of a patch can usually be composed out

of lines from just one contiguous donor graft site, and very
often from no more than two (Section 4.4).
• A significant portion (30%) of donor graft code can be found

in the same file as the patch site (Section 4.5).

307

The rest of this paper is structured as follows. Section 2 formally
defines the problem we tackle and Section 3 describes our experi-
mental design and data. Section 4 discusses our findings. Section 5
places our work in the context of related research. Finally, Section 6
summarizes our contributions.

2. PROBLEM FORMULATION
We are interested in the graftablity of changes to a codebase

with respect to three search spaces: its parents, its non-parental
ancestors, and other projects. In this section, we define graftability,
its granularity, these three search spaces, and the cost of finding
grafts in each of them.

Figure 1 depicts how we measure the graftability of a change.
We are interested in the limits of graftability, so we formulate the
problem as a thought experiment in which we take the commit as
a given, and ask if we can find its pieces in various search spaces,
rather than trying to put pieces from a search space together, then
ask if they form a commit. We also assume that we can find where
a potential graft applies in a target host commit in constant time;
this assumption is reasonable in practice, since commits are small,
with median range 11–43 lines (Figure 4). The change, shown on
the right of Figure 1, is the target host for the grafts. It is cut up into
the snippets S1–Sn. We search the donor codebase for grafts that
exactly match these snippets. The shaded snippets in the change are
graftable, the unshaded snippets are not. We match snippets that are
contiguous in both the host and the donor, when possible, as with
S1–S2. Contiguity holds the promise of reducing the search space
(Section 4.4).

Our interest is redundancy in general, not merely the existence
of a snippet shared across donor and host; we want to track the
abundance of grafts in a donor search space, as this bears directly on
the richness of the search space, which we measure using density as
defined in Definition 2.2 below. Recall that a multiset generalizes a
set to allow elements to repeat. The number of repetitions of an ele-
ment is its multiplicity. For example, in the multiset {a,a,a,b,x,y},
the multiplicity of a is 3. We use multisets, therefore, to track the
abundance of a particular snippet.

We can view the file f as a concatenation of strings, f = αβγ,
over some alphabet Σ. Snippets are the strings into which any file
can be decomposed. Snippets define our unit of granularity; they are
the smallest units of interest to us. The smallest a snippet can be is
a symbol in Σ; the largest is the file itself. Snippets allow us to treat
a file as an ordered multiset of its snippets. We require ordering to
impose coordinates that we use to measure distances.

We define a snipper function s that fragments a file into its
snippets, and rewrites the whitespace in each snippet to a well-
defined normal form (e.g., a single blank). For f defined above,
s(f) = {α,β,γ}: in other words, s cuts up its input into substrings
from which its input can be reconstructed. The details of how s
accomplishes this task are unimportant, so we treat s as a black box.

We are now ready to model version-control systems, including
ones that facilitate branching and multi-way merges. A version V
of a project is an ordered multiset of files. ∆ models a change, or
commit in a distributed version control system like git or hg. For us,
each ∆ : V k→V is a function that rewrites a k-tuple of versions to
produce a new version. When k > 1, ∆ merges the k parents to form
the new version, as when a branch is merged into the master branch
in a distributed version control system like git or hg. Our data is
drawn from subversion repositories in which branching is rare and
k = 1, so we drop k when writing ∆(V). In addition to files, our
snip function s applies to versions, so s(V) is the ordered multiset
of the snippets in all the files in V ; s also applies to changes, so s(∆)
is the set of snippets in ∆. Each ∆ is a sequence of snippets added,

codebase donor

S1 S2 S3 S4 S5 S6 S7 S8

S2

S1

S1

S5

S7

S3

grafts

commit host

contiguous
snippets

Figure 1: Graftability: We break up a commit into the snip-
pets S1, . . . ,Sn, and search the donor — the codebase — for
these snippets. Matches for the snippet in the codebase are
grafts (rectangles). A single snippet may have alternate grafts,
as with S1; we try to match snippets that are contiguous in both
the donor and the host, as with S2–S3. The graftability of the
change is the proportion of its snippets we can cover from the
donor codebase (shaded grey).

deleted, and modified, where a modification is a paired addition and
deletion, as in Myers [27] and in Unix diff. When our snipping
function s cuts up a commit, it retains only the snippets, producing
a multiset, and does not track whether a snippet was added, deleted,
or modified, which produces two snippets.

A version history is the function composition

Vn = ∆n−1(∆n−2(· · ·(∆0(V0] . (1)

For clarity, we write this function composition as an alternating
sequence of versions Vi and changes ∆i:

V0 ∆0 V1 ∆1 V2 ∆2 · · · ∆n−1 Vn. (2)

The first version V0 is special: it can be empty. When V0 = ε, we
have a project’s very first commit. Typically, V0 = ε⇒ |∆0| �
|∆i|, i > 0, because projects often start from a skeleton drawn from
another project or inherit code from a prototype. Otherwise, we do
not have a project’s first commit, but are starting from somewhere
within a project’s history, as is true in our data set. V0 ∩Vn is the
core of a project, those lines that remain unchanged between the
first and last commits of a version history, including lines that may
have been deleted then re-added in some intermediate versions.

Definition 2.1 (Graftability). The graftability of the change ∆

against the search space S is

g(∆,S) =
|s(∆)∩ s(S)|
|s(∆)|

,

where S is an ordered multiset of snippets and ∩ is multiset inter-
section, multiplicity of whose elements is the minimum of its two
operands. The graftability of ∆i against its parent is g(∆i,Vi).

Our notion of graftability measures the partial, not just total,
constructibility of changes. Thus, it generalizes previous measures,
which focus on 100% graftability. This previous focus was natural,

308

since such changes are entirely reconstructible. Nonetheless, the
existence of changes that are highly, but not completely, graftable,
falling into the interval [0.7..1), suggests that the search for grafts is
more generally worthwhile than focusing solely on 100% graftable
changes, since any nontrivial grafts that are found may considerably
constrain the search space, even for novel lines. While it remains
to be shown, even lower proportions of graftability may be useful,
since a single graft may, in some cases, be highly informative.
Nonparental Ancestral Snippets. The ancestors of the change
∆ j are all the changes ∆i where i < j. Our search spaces consist
of snippets, so when searching a version history, our interest is
in identifying all the snippets from which a change, in principle,
could be constructed. One’s parent is, of course, an ancestor, but
we already consider this search space; indeed, the plastic surgery
hypothesis is couched in terms of a change’s parent. Thus, here we
are interested only in the snippets that did not survive to a change’s
parent. This consists of all the snippets in all the ancestors of ∆ j
that did not survive to the parent. Thus, we define

as(∆ j) =
⊎
i< j

s(∆i)\ s(V j). (3)

Note that a snippet repeatedly added and deleted in a version history
has high multiplicity in Equation 3. In practice, |as(∆ j)| � |s(V j)|
because snippets rarely die, although there are notable exceptions,
such Apache’s transition in its 2.4 release to handling concurrency
via its MultiProcessing Modules, which abandoned many lines.
Search Spaces. Let C be the set of all changes and P be the set of
projects. The three search spaces we consider in this paper follow.

∀∆i ∈C,

S = s(Vi) Parent
S = as(∆i−1), i > 0 Ancestral lines not in parent

S =
⊎
p∈P

s(V p
head) Other projects

In terms of a version history, the existence component of the plastic
surgery hypothesis states s(∆i)∩ s(Vi) 6= /0.
Search Cost. To compare the relative richness of these search
spaces, we compute their graft density, the number of grafts found
in them over their size, averaged over all changes. For the search
space S and the change ∆, let

grafts(S ,∆) = {l ∈ S | ∃k ∈ s(∆) s.t. l = k} (4)

be the grafts found in S for the snippets in ∆. This definition of
grafts captures the multiplicity in S of a shared element, with the
consequence that grafts(S ,∆) 6= s(S)∩ s(∆), since the intersection
on the right-hand side computes a set where the multiplicity of each
element is the minimum of its two operands.

Definition 2.2 (Search Space Graft Density). The graft density of a
search space is then

gd(S) =
1
|C| ∑

∆∈C

|grafts(S ,∆)|
|S |

Graft density is the search space analog of commit graftability. It
models the likelihood that a searcher guessing uniformly at random
will find a graft for a line in a commit, averaged over all commits.
In Section 4.1, we compute and compare the graft density of each
of these three search spaces.

Graftability and graft density are the measures we apply to com-
mits and our three search spaces to study the degree to which the
plastic-surgery hypothesis applies in a large corpus of versioned
repositories of project code.

Project Description Commits
Camel Enterprise Integration Framework 1,600
CXF Services Framework 175
Derby Relational Database 820
Felix OSGi R4 Implementation 1,003
HadoopC Common libraries for Hadoop 639
Hbase Distributed Scalable Data Store 3,826
Hive Data Warehouse System for Hadoop 25
Lucene Text Search Engine Library 344
OpenEJB Enterprise Java Beans 534
OpenJPA Java Persistence Framework 84
Qpid Enterprise Messaging system 3,672
Wicket Web Application Framework 3,001

Figure 2: Experimental corpus: 12 Apache projects;
HadoopCommon is abbreviated as HadoopC.

3. EXPERIMENTAL DESIGN
We describe our corpus and present aggregate statistics for its

commits, then discuss how we concretely realized our problem
formulation for the experiments that follow.

3.1 Corpus
Our corpus contains the 12 software projects listed in Figure 2.

All are Java-based, and maintained by Apache Software Foundation.
They range in size from 2,712 to 371,186 LOC, from 25 to 3,826
commits, and come from a very diverse range of domains, e.g.,
service framework, relational database, distributed data storage,
messaging system, and web applications.

We mined Apache’s git repository1 to retrieve the change history
of the projects from 2004 to 2012. Since Apache uses Subversion
and provides only git mirrors, all the changes belong to a single
branch. Using git allowed us to access to relevant attributes for
each change, such as date, committer identity, source files where the
change applies, and so on.

Moreover, since all the projects use the JIRA issue tracking sys-
tem2, for each change, we were also able to retrieve the kind of
issue (e.g., bug fixing or enhancement commits), its status (e.g.,
open, closed), and its resolution (i.e., Fixed, Incomplete). Depend-
ing on how an organization uses JIRA, a change could represent a
software bug, a project task, a help desk ticket, a leave request form,
etc. By default, JIRA specifies the following five change types:

1. Bug: A problem which impairs or prevents the functions of
the product.

2. Improvement: An enhancement to an existing feature.
3. New Feature: A new feature of the product.
4. Task: A task that needs to be done.
5. Custom Issue: A custom issue type, as defined by the organi-

zation if required.

The first four types are self-explanatory. The last category groups
issues not covered by the other four, but needed by an organiza-
tion using JIRA. In our dataset, the commits belonging to this set
generally concern user wishes, testing code, and sub-tasks.

Each issue has a status label that indicates where the issue cur-
rently is in its lifecycle, or workflow:

1. Open: this issue is ready for the assignee to start work on it.
2. In Progress: this issue is being actively worked on at the

moment by the assignee.
1http://git.apache.org.
2https://issues.apache.org/jira/.

309

http://git.apache.org
https://issues.apache.org/jira/
https://issues.apache.org/jira/
http://git.apache.org
https://issues.apache.org/jira/

Type Camel CXF Derby Felix HadoopC Hbase Hive Lucene OpenEJB OpenJPA Qpid Wicket

Bug 553 110 626 538 376 2319 15 97 298 28 2102 1855
Improvement 777 57 170 298 160 1053 4 165 82 41 992 839
New Feature 146 0 0 110 31 163 2 54 34 4 252 173
Task 68 3 9 43 4 115 3 11 17 0 115 25
Custom Issue 56 5 15 14 68 176 1 17 103 11 211 109

Figure 3: Count of commit types in our corpus.

Commit Type Median Mean St. Dev.

Bug 11 44.40 156.46
Improvement 43 146.50 289.62
New Feature 16 116.50 359.55
Task 20 76.10 293.69
Custom Issue 37 126.50 197.87

Figure 4: Commit size aggregate statistics.

3. Resolved: a resolution has been identified or implemented,
and this issue is awaiting verification by the reporter. From
here, issues are either Reopened or are Closed.

4. Reopened: This issue was once Resolved or Closed, but is
now being re-examined.

5. Closed: this issue is complete. This means it has been identi-
fied, implemented and verified by the reporter.

An issue can be resolved in many ways. The JIRA default resolu-
tions are listed below:

1. Fixed: A fix for this issue has been implemented.
2. Won’t Fix: This issue will not be fixed, e.g., it may no longer

be relevant.
3. Duplicate: This issue is a duplicate of an existing issue.
4. Incomplete: There is not enough information to work on

this issue.
5. Cannot Reproduce: This issue could not be reproduced at

this time, or not enough information was available to repro-
duce the issue. If more information becomes available, the
issue can be reopened.

An issue is initially Open, and generally progresses to Resolved,
then Closed. A more complicated life cycle includes an issue
whose initial resolution was Cannot Reproduce then changed to
Reopened when the issue becomes reproducible. Such issues can
subsequently transition to In Progress and, eventually to Won’t
Fix, Resolved or Closed.

Figure 3 shows the number of changes distinguished per type
related to the projects contained in our corpus. We considered
only those changes that have been successfully closed, i.e., sta-
tus=closed and resolution=fixed. Moreover, we did not consider
changes made to non-source code files or containing only comments.
As result, we analyzed a total of 15,723 commits. Figure 4 shows
the size of the different kinds of commits considered in this study.
Note that we did not take into account deleted lines since they are
obviously graftable from the parent. We can observe that, on aver-
age, Bug commits are smaller than all the other types of commits,
while Improvement commits are the largest.

Figure 5 shows the size of each project’s core, the lines that
survive untouched from the first version to the last in our version
histories for each project. The existence of nonempty first commits
is one the reasons for the effectiveness of the plastic surgery hy-
pothesis, which searches these lines in contrast to approaches that

focus solely on changes. As Figure 5 shows, the core varies from
negligible to dominant at 97% in the case of Hive.

3.2 Methodology
We used git to clone and query the histories of the projects in our

corpus and extracted the related JIRA information (Section 3.1) into
a database. For each project in our corpus, we issued git reset
-hard <commit> to retrieve a specific version. This command sets
the current branch head to <commit> modifying index and working
tree to match those of <commit>. To retrieve a specific change,
we issued git diff on a commit and its parent and extracted the
commit lines, i.e., the lines to be grafted. We used the JGit API3 to
automate both tasks.

To realize the snipping function, we wrote a lexer that snips a
file into a multiset of code lines, then, from each line, removes the
comments and semantically meaningless content, such as whites-
pace and syntactic delimiters, to normalize the lines. We ran this
lexer over each search space, then loaded the resulting multiset into
a hash table, whose key is normalized source line (to speed up the
search for grafts) and the value is a pair that stores the source line c
and its multiplicity. To compute graftability from Definition 2.1 of
a commit, we looked up each normalized commit line in the hash
table of the commit’s parent and divided the number of hits by the
number of lines (snippets) in the commit.

4. RESULTS AND DISCUSSION
To open, we validate the plastic surgery hypothesis, the core

result of this paper, both its well-known, first claim, the existence of
grafts, as well as its heretofore neglected, second claim about that a
change’s parent is a rich search space for grafts. We then consider
features of grafts with the aim of discovering correlations that might
help us better decide which software engineering task would benefit
most from being augmented with searching an existing codebase.
We turn to the question of graft contiguity; that is, for a swath of
adjacent lines in the host, can we find an equal sized contiguous
donor? If we can, it means we can reconstruct the human-generated
patches we are studying more easily, with promising implications
for automated construction. We close by considering the distribution
of grafts in the donor search space.

4.1 Plastic Surgery Hypothesis
For convenience, we reproduce our central hypothesis:

Research Question 1 [The Plastic Surgery Hypothesis]:
Changes to a codebase contain snippets that already exist in the
codebase at the time of the change, and these snippets can be
efficiently found and exploited.

Above, by “changes”, we mean all commits made, and, by “code-
base”, we mean the search spaces we defined in Section 2: a com-
3http://www.eclipse.org/jgit/.

310

http://www.eclipse.org/jgit/
http://www.eclipse.org/jgit/

Project Camel CXF Derby Felix HadoopC Hbase Hive Lucene OpenEJB OpenJPA Qpid Wicket Average
Core 26% 85% 45% <0.5% <0.5% <0.5% 97% 16% <0.5% 83% <0.5% <0.5% 30%

Figure 5: The size of each project’s core. The core consists of those lines that are unchanged from the first version to the last in the
studied portion of a project’s version history.

0

500

1000

1500

2000

2500

0.00 0.25 0.50 0.75 1.00
Graftability

co
un
t

Figure 6: The number of the commits that are x% graftable.

mit’s parent Vi, its ancestral lines not in its parent as(∆i) (Equation 3
in Section 2), and the latest versions in our corpus of the other
projects. This question explores the limits, or, conversely, the poten-
tial, of automatic programming: “How many changes are constituted
of snippets that already exist in the code base, or its history, at the
time when the commit is applied?”

To answer this question, we analyzed the “graftability” of 15,723
commits coming from a corpus of 12 software projects (Section 3.1).
For the commit ∆i, we model its graftability as shown in Defini-
tion 2.1 in Section 2. Nongraftability, or novelty, is 1−graftability.
The results immediately prompt us to wonder “How many commits
are fully graftable and how many are entirely novel?”

Figure 6 shows the distribution of graftability over the 15,723
commits. We can observe that a large fraction of the commits (42%)
are more than 50% graftable. More notably, 10% of the commits
can be completely reconstructed from grafts. This result aligns
with that of Martínez et al., who found that 3–17% of the change
in their dataset could be entirely reconstructed [25]. Only 16%
of our commits are utterly novel. This data thus clearly suggests
confirmation of the first, “snippets that already exist” component
of the Plastic Surgery Hypothesis.

This finding relates to Gabel and Su, who found very few unique
(non-recurring) snippets even of considerable length, in a large
(400,000,000 line) corpus of code; however, the mere existence
of recurring snippets within this formidably large corpus offers
scant hope of feasible graftability [11]. We, however, compute the
graftability of commits, not arbitrary snippets of the codebase. Gabel
and Su’s was a scientific finding, unconcerned with the feasibility
of searching for grafts.

The “efficiently found” part of the Plastic Surgery Hypothesis is
about where to efficiently search; it states the parent’s entire code-
base (and perhaps just the file where the commit applies, Section 4.5)
of the commit, is the best place to search both in terms of richness
and cost, in terms of the likelihood of finding a graft in a set of
lines in the donor search space. Should we just search the parents
and ancestors of the commit to be grafted? Or should we search
other projects in the same language? To this end, we address the
following research questions:

• RQ1a: How do parents fare as possible sources of grafts,
when compared to nonparental ancestors and other projects?
• RQ1b: How do parents fare as efficient sources of grafts, when

compared to nonparental ancestors and other projects?

Figure 7a and Figure 7b show the boxplots of the graftability and
density values obtained over the 15,723 commits, when varying the
search space from the 3 considered sources: a) commit’s parent,
b) its ancestral lines not those found in its parent, and c) the latest
version of other projects, as defined in Section 2.

Figure 7a bears upon the existence of grafts in the three locations.
Graftability from parent is much higher than graftability from the
nonparental ancestors and than graftability from other projects. This
is not that surprising, and at least partially reflects differences in vo-
cabulary (variable names, type names, method names, etc.) between
projects. Similar inter-project differences were reported in statistical
models of code [16]. Code bases tend to monotonically grow in
size, so most lines survive from their first introduction to the parent
of a given commit. Thus, the nonparental ancestors search space
consists of deleted lines. A consequence of the fact that we do not
find many changes in the nonparental ancestral lines is that there are
not many “regretted deletions”: deletions that are later re-added.

Figure 7b bears upon the efficiency of finding grafts in different
search spaces, in terms of the the density measure defined in Defi-
nition 2.2. We ignore the density figure for non-parental ancestors
because (as Figure 7a indicates) they tend to be of low value in
graftability. We can observe that density of parent is higher than
density from other projects.

Since the boxplots showed no evidence that our samples come
from normally distributed populations, we used the Wilcoxon signed-
rank test to check for statistical significance. In particular, we tested
the following null hypotheses:

• H0a: There is no significant difference between the graftabil-
ity from parent and the graftability from nonparental ances-
tors.
• H0b: There is no significant difference between the graftabil-

ity from parent and the graftability from other projects.
• H0c: There is no significant difference between the density in

parent and the density from nonparental ancestors.

We set the confidence limit, α, at 0.05 and applied Benjamini-
Hochberg [6] correction since multiple hypotheses were tested. To
assess whether the effect size is worthy of interest we employed
a non-parametric effect size measure, namely the Vargha and De-
laney’s A12 statistic [37]. According to Vargha and Delaney [37] a
small, medium, and a large difference between two populations is
indicated by A12 over 0.56, 0.64, and 0.71, respectively.

The results revealed that there was significant statistical difference
(p < 0.001) between the graftability from parent and nonparental
ancestors in favor of the parent codebase with high effect size (A12 =
0.84). The Wilcoxon Test also revealed that there was statistical
difference between the graftability achieved between parent and
other projects codebases in favor of parent with high effect size
(p < 0.001, A12 = 0.80). The Wilcoxon Test between the density of
the commit’s parent and those of other projects revealed significant
statistical difference (p < 0.001) in favor of the commit’s parent

311

Parent Nonparental Ancestors OtherProjects

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Graftability of a commit (over 15,723 commits).

Parent OtherProjects

1
2

5
10

20
50

10
0

20
0

(b) Density (log scale) of the search spaces (over 15,723 commits).

Figure 7: Graftability of a commit (a) and cost to search for its grafts (b) as the search space changes from the commit’s parent, its
ancestors (excluding its parent), and other projects.

with high effect size (A12 = 1). We therefore reject the hypotheses
that the search spaces are indistinguishable and affirm the Plastic
Surgery Hypothesis.

4.2 Graftability by Commit Size
Next, we consider the fact that commits vary considerably in size.

Some are quite small; in fact, about half of all bug fixes are under
10 lines of code. Some commits contain as many as 10,000 lines
of code. The question naturally arises, “Is automatic patching only
likely to succeed on small patches?” One part of this is the existence
question: “Do grafts exists only for small patches?”. This motivates
our second research question:

Research Question 2: How does graftability vary with commit
size?

Figure 8 shows the relationship existing between commit grafta-
bility and commit size. The plot is a binhex plot, which is essentially
a two-dimensional histogram. The x-axis is the size of the commit,
and the y-axis is the graftability value for commits of that size. Each
hexagon is a “bin” which counts the number of (size, graftability)
value pairs that occur within the Euclidean range bounded by that
hexagram. The color of the hexagram reflects the count of those
pairs that fall within a given bin, lighter colors reflecting a larger
count. The figure has some interesting patterns for low values of
commit size, which arise from discrete fractions with small denom-
inators and their complements (e.g., 7

10 , 3
10). But these are just a

distraction. The main trend visible in this plot is the absence of
one; surprisingly, there appears to be no relationship between grafta-
bility and commit size — one might rather expect, that as commit
size increases, there are more snippets to search for, and thus we
might have more difficulty in finding them — thus leading to lower
graftability. No such trend is visible.

To confirm this rather strange phenomenon, we estimated a linear
regression model, to judge the effect of commit size on graftability.
This can be seen as Model 1, in Figure 10. The response variable
was graftability, and the predictor variable used in Model 1 was
the commit size, log-scaled. The coefficient is very significant
(p < 0.001), indicating very low probability of observing the data if
the true regression coefficient were zero; in other words, we would
be very unlikely observe the data if graftability of a commit had
no linear dependence on log(CommitSize). This might seem rather
surprising, given that no such dependence is visible in Figure 8. The
resolution to this puzzle is clear from the values of R2 and sample

0.00

0.25

0.50

0.75

1.00

10 1000

Size of Commit (LOC, logscale)

G
ra

ft
a

b
ili

ty
 f

ro
m

 P
a

re
n

t

300

600

900

count

Figure 8: Does commit graftability vary with commits size?

size on the bottom rows of Model 1: just 4% of the variance in
graftability is explained by commit size! In other words, varying
the commit size has an extremely weak effect on the variance in
graftability; however, even this weak explanatory power is divined
as statistically significant by the linear regression, thanks to the large
number of samples (15,723). We conclude that commit size has a
negligible effect on the variance in graftability.

4.3 Graftability by Commit Type
Commits are made for different reasons. As noted in Section 3,

the commits in our JIRA data are tagged as one of Bug, Improvement,
New Feature, Task, or Custom Issue. It seems reasonable to wonder
whether different types of categories have different graftability. If
there were a strong difference, this could tell us which software
engineering tasks are most likely to benefit from techniques that
rely on the plastic surgery hypothesis. For instance, it seems likely
that a New Feature commit would be less graftable than one tagged
Bug, since bugs often appear in multiple locations and may have

312

0.00

0.25

0.50

0.75

1.00

Bug Improvement New Feature Task Custom Issue

G
ra

ft
a

b
ili

ty

●
●●

●●

●

●

●
●●●
●●●●

●

●

●

●

●●

10

1000

Bug Improvement New Feature Task Custom Issue

C
o

m
m

it
S

iz
e

 (
L

o
g

 S
c
a

le
)

Figure 9: Graftability obtained for five kinds of commits.

already been fixed in some, but not all of those locations. The prior
fixes would then be grafts available for fixing the bug of the missed
locations. Compare this to New Feature, where, especially if New
Feature is complex, seems more likely to contain novel lines that do
not already exist in the system. This leads to the next question.

Research Question 3: Do different kinds of commits exhibit
same graftability?

To answer this question, we compared the graftabilty of different
types of changes in our dataset (Bug, Improvement, New Feature,
Task, Custom Issue). Figure 9 shows the boxplot (upper plot) of
the graftability obtained for the five commit types. The lower plot
shows the commit sizes for the different kinds. The lower plot is log-
scaled on the y-axis. It is noteworthy that the lower plot shows some
differences in the sizes of different types, despite the log-scaling;
differences are less visible in the upper plot. To confirm the visual
impression that commit types do not affect graftability, we added the
type of commit as a factor variable to the regression model discussed
earlier, yielding Model 2 in Figure 10.

In this model, the effect of each kind of commit (as a factor) is
compared to graftability of the Bug commit type, to check if such
comparisons have any added explanatory power beyond that pro-
vided by commit size, and also to see what that effect might be. In
the combined model, variance inflation was well within acceptable
limits. This finding echoes that for commit size. While Improvement
and Task commit types are statistically significantly less graftable
than the Bug commit type, the actual explained effect is very small.
The R2 value essentially remains numerically essentially unchanged.
If we consider the commit type by itself as an explanatory factor
variable, we can only explain about 0.001 of the variance in grafta-
bility (model is omitted). The high significance of this very small
effect reported by the regression modeling exercise is simply a result
of the large number of samples. Thus, we come to the rather unex-
pected conclusion that a commit’s type has no significant, practical
impact on finding a graft for that commit.

Model 1 Model 2
Intercept 0.29??? 0.30???

(0.00) (0.00)
Commit Size (log scale) 0.07??? 0.08???

(0.00) (0.00)
Improvement vs. Bug -0.04???

(0.01)
New Feature vs. Bug 0.02

(0.01)
Task vs. Bug -0.03???

(0.01)
Custom Issue vs. Bug 0.00

(0.01)
R2 0.04 0.04
Adj. R2 0.04 0.04
Number of observations 15,723 15,723
???p < 0.001

Figure 10: Size has little effect on graftability, as demonstrated
by two regression models with graftability as response: al-
though both models find commit size to be strongly statisti-
cally significant with p< 0.001, and the standard errors (shown
within parentheses) are all small, R2 shows that these models ac-
count for only 4% of the variance in graftability.

4.4 Graft Contiguity
Once a technique has found grafts, it must arrange and order them

to transplant them into a host change. Composing grafts, at line
granularity, to (re)construct a change even when that change is 100%
graftabilty faces a combinatorial explosion of all the permutations
of that graft. Novel, nongraftable lines exacerbate the problem.
This graft composition search space would be more manageable
if grafts were bigger. Intuitively, code decomposes into semantic
units that are sometimes bigger than the granularity at which one is
searching for grafts. If we could find these units, we could use them
to constrain the change (re)construction search space. Thus, we ask
how often can we find contiguous grafts of size greater than a single
line, in both the host and the donor.

When trying to constitute a commit using snippets that already
exist in the code, a natural intuition is that larger chunks will make
constituting such a commit easier. At the extremes, searching in-
dividual lines in the code that make up a commit would certainly
be harder than serendipitously finding all the lines in a commit,
altogether in one area of code. We now attempt to formalize this
intuition. For this, we refer the reader back to Figure 6. Consider
the snippet sequence S1 . . .S8. This sequence constitutes the commit.
In this, we show how the snippet sequence S2–S3 is contiguous, in
both the donor and in the change host we seek to reconstitute. If this
were a common occurrence, the heuristic of search of attempting
to constitute commits in groups of lines would be quite effective.
When contiguous host snippets are constituted from single or very
few donor snippets, the search for donor snippets is simplified and
accelerated. This leads the following question:

Research Question 4: To what extent are grafts contiguous?

A commit, in its role as the target host, determines the maximum
size of the contiguous region. Contiguous regions of grafts in the
donor larger than the largest contiguous region of snippet in the host
must necessarily be broken up when transplanted.

313

Host Donor

2
5

10
20

50

Figure 11: How big are contiguous grafts? The figure reports
the size (log scale) of both host and donor snippets.

It is very convenient when a contiguous graft in the donor matches
a contiguous site in the host: the more often this occurs, the more
likely we are to be able to “bite off” larger chunks of code from the
donor and shoehorn them to reconstitute substantial pieces of the
commit, so we ask

RQ4a: How often do contiguous regions in the donor match con-
tiguous regions in the host? How big are they?

We found 21,726 host snippets and 24,346 donor snippets both
consisting of two or more consecutive graftable lines. So we can
positively answer the question: continuous graftable regions often
appear in both hosts and donors. Figure 11 shows the size of both
host and donor snippets. We can observe that the average size of
a host snippet (i.e., 4.5 lines) is about twice the one of a donor
snippet (i.e., 2.5 lines), this indicates that not all the snippets can
be entirely grafted from a single donor and explains the fact that
the donor snippets are more than the host snippets. However, in
particular, when these continuous regions are exactly matched in
size, we can simply pluck them out of the donor and paste them into
the host: essentially these are little pieces of “micro-clones” that are
reproduced in commits.

RQ4b: What is the distribution of host and donor snippets of the
same size?

Examining the number of contiguous snippets in both host and
donor that have the same size, we found that a host snippet can be
grafted from a single donor (i.e., fully matched snippets) in 12,827
cases (53%), while, in the remaining cases more than one donor
is needed. Figure 12 shows the number of fully matched snippets
grouped by size. We can observe that the majority (72%) of these
snippets (9,259) has size 2, while the 16% has size 3, and only
0.6% has size 4, then, as we can observe from the figure, the trend
dramatically decreases.

RQ4c: Counting contiguous grafts in the donor as a single site, how
many distinct donor sites do we need in order to cover a transplant
point in the host?

Since 47% of the donor’s snippets does not fully match a host’s
snippet we are interested in how many donors are needed on average
to graft a given host snippet and how difficult is to look for these
donors (see next section). We found that 2 donors are needed on
average to graft a given host snippet.

The above results revealed that continuous graftable regions often
appear in both hosts and donors. More than a half of host snippets
can be grafted from a single donor. In the remaining cases, two
donors are needed on average to graft a given host snippet.

2500

5000

7500

10000

0 20 40 60
Fragment Size

sq
rt(
co
un
t)

Figure 12: How many host and donor snippets have the same
size? The figure shows the number (square root scale) of those
host and donor snippets having the same size.

4.5 Graft Clustering
An important factor in the computational feasibility of automatic

commit synthesis is the search space size. If one had to search
for suitable donors all the time, over the entire possible space of
donors (e.g., the entire previous version of the project) it would be
much less efficient than if one could just search near the locus of
the commit, such as in the same file, the same directory, etc. This
motivates the next question

Research Question 5: Are the snippets needed to graft a host
snippet in the same file?

Fortunately, we find that 30% of the donor snippets can be found
in the same donor file and 9% in the same package. This is an
encouraging result, suggesting that donor snippets are often found
in the same file, not requiring more extensive search.

4.6 Threats to Validity
This section discusses the validity of our study based on three

types of threats: construct, internal, and external validity. Construct
validity asks whether the measures taken and used in an experiment
actually measure phenomenon under study. Internal validity con-
cerns the soundness of the methodology employed to construct the
experiment, while external validity concerns the bias of choice of
experimental subjects.

Section 3.1 describes how we automatically computed our mea-
sures. To mitigate the threat of an implementation error, we applied
unit testing and one of the authors manually verified the accuracy
of the measurements of 30 commits selected uniformly. To ad-
dress internal validity, we carefully verified that our data met all
required assumptions before applying statistical tests and the regres-
sion model. Moreover, our 100% graftability results are low relative
to the standard finding of 5–30% redundancy in the clone literature.
This is probably due to our choice of considering exact matches
over whitespace normalized, but otherwise untouched and notably
unobstructed source lines. We adopted this choice because abstrac-
tion reduces the semantic content of lines, such as that contained
in identifiers, which must then be restored. Thus, we choose exact
matching because of our belief that these lines would be strictly
more useful for techniques relying on the plastic surgery hypothesis.

314

Relaxed notions of matching are a distinct and interesting avenue of
research that has witnessed positive results [33]. As for the exter-
nal validity, the projects in our corpus are all open source Apache
projects. Although they differ in domain and size (Section 3.1), we
cannot claim that our findings generalize to other software systems.
However, we have formally stated the problem (Section 2) and de-
scribed our methodology (Section 3.2) to facilitate the replication
of our study.

5. RELATED WORK
It has been known for some time that the production code contains

software clones [3, 4, 8, 18]. These can be verbatim cut-and-paste
copies of code (so-called Type 1 clones) or might arise from a more
elaborate cut-modify-and-paste process (so-called Type 2 and Type
3 clones [8]). The presence of code clones has led to much work
on techniques for investigating and evaluating this form of apparent
redundancy [5, 38].

More recently, authors have sought to measure the degree of
redundancy in code and the commits applied to it. Gabel and Su [11]
sought to answer the question “How unique (and how repetitive) is
source code?” in an analysis of approximately 420M SLoC from
6,000 open-source software projects. They observed significant
syntactic redundancy at levels of granularity from 6–40 tokens. For
example, at the level of granularity with 6 tokens, the projects were
between 50% and 100% redundant. This suggests that code contains
a great deal of “redundancy” that could potentially be exploited
by code improvement techniques. However, Gabel and Su did not
consider code commits, nor the cost of finding redundancy.

Nguyen et al. sought to answer the question “How often do devel-
opers make the same changes (commits) they have made before?”,
studying 1.8M revisions to 2,841 open-source projects [28]. They
defined a “repeated change” to be an AST extracted from a change
that matches an AST from a previous change in some project’s
history, including the same project. Over ASTs, they found that
changes are frequently repeated, with the median 1-line change
having a 72% chance of having been performed elsewhere. The
repetitiveness dropped exponentially as the granularity (number of
lines) increased: For 6-line and greater granularity, it was typically
below 10%. This “commit redundancy” meant that future changes
could be recommended with over 30% accuracy.

Martínez et al. [25] also recently studied commit-redundancy, fo-
cusing their attention on commits they term “temporally redundant”,
or, in our terminology, 100% graftable changes. 100% graftable
lines are interesting because they are, in principle, entirely recon-
structible. Our measure of graftability in Definition 2.1 additionally
measures the degree to which a commit is graftable. Like Nguyen
et al. [28] and Gabel and Su [11], they find a perhaps surprisingly
high degree of redundancy in the code they studied.

Our work has two primary methodological differences to this
previous work on commit redundancy [25, 28]: we consider the cost
of finding a graft, which the previous work does not, and we are
concerned with code-commit graftability rather than just ‘commit-
commit’ redundancy, a special case of graftability. That is, we
consider the full code space in assessing graftability, whereas pre-
vious work focussed on commits alone. In terms of our formalism,
both Nguyen et al. and Martínez et al. search the set of changes
or deltas; in contrast, we focus on versions, and therefore search
the lines in V0∩Vn; the project’s ‘core’ lines, which can dominate
a version history, accounting up to 97% of the lines in the final
version, as we show in Section 3.1. If we had a full commit history

starting, ab initio, with the empty system, then we could assume
that ‘commit-commit’ and ‘code-commit’ approaches would study
largely the same information. However, since version histories typi-
cally do not go back this far, that assumption is invalid; the current
version of a system is not merely the product of the sequence of
commits for which information is available.

Assessing the degree of code-commit graftability has implica-
tions for work on program improvement, an area that is witnessing
a significant upsurge in interest. Program improvement seeks to
automate improving an existing code base with relatively small mod-
ifications. Examples include repairing the code base [17, 24, 39, 41],
enhancing its properties [22,23,30,34,42,43], or even migrating it to
other systems [21, 33]. All these program improvement approaches
share the foundational assumption that many software systems con-
tain the seeds of their own improvement. They are united by the
way they search for, extract and recombine fragments of code to
create desired new functionalities and behaviors. In order to as-
sess the potential of this search space, we need to study not just
commit-commit redundancy, but also code-commit graftability. By
assessing code-commit graftability, we seek to shed light on the
degree to which a commit made by a human could have been found
by a machine and the cost of so-doing. Our results on the degree
and cost of graftability or within-system code commits are relevant
to program improvement work that searches for modifications in
existing system [1, 22, 23, 30, 42], or which finds patches from else-
where in the system [24, 41]. Our results on graftability between
systems are relevant to program improvement work that searches for
transplants from one system to another [15, 32]. Overall, our results
provide further evidence to support claims that it is promising to
mine human commits for patterns, templates, and code fragments
that can be reused to improve systems. This is a technique to which
other authors have recently turned for automated program improve-
ment [20, 39] and for semi-automated improvement as decision
support to software engineers [26, 35], with promising results.

6. CONTRIBUTIONS
In this paper, we validated the plastic surgery hypothesis with a

large scale experiment over 15,723 commits from 12 Java projects.
Our core finding is that the parent (rather than non-parental ances-
tors, or other projects) of a commit is by far the most fecund source
of grafts. We also find encouraging evidence that many commits
are graftable: they can be reconstituted. We also find that grafts
are often contiguous, which suggests heuristics that attempt to graft
commits out of multiple contiguous lines. Finally, we find that
fully 30% of the elements of commits can be found within the same
file. These are encouraging results for automatic program repair
techniques that exploit the plastic surgery hypothesis.

It is also true that there are fragments of commits that are not
graftable. The complement of graftability measures the novelty of
changes. As future work, we intend to explore if the feature set of
novel changes is more predictable than we have found grafts to be,
again with the aim of identifying which sorts of changes are most
likely to profit from the plastic surgery hypothesis.

7. ACKNOWLEDGEMENTS
The research is part funded by the Engineering and Physical Sci-

ences Research Council CREST Platform Grant (EP/G060525), the
Dynamic Adaptive Automated Software Engineering (DAASE) pro-
gramme grant (EP/J017515), and the National Science Foundation
under Grants No. CCF-1247280 and CCF-1446683

315

8. REFERENCES

[1] Andrea Arcuri, David Robert White, John A. Clark, and
Xin Yao. Multi-objective improvement of software using co-
evolution and smart seeding. In 7th International Conference
on Simulated Evolution and Learning (SEAL 2008), pages
61–70, Melbourne, Australia, December 2008. Springer.

[2] Andrea Arcuri and Xin Yao. A novel co-evolutionary approach
to automatic software bug fixing. In Proceedings of the IEEE
Congress on Evolutionary Computation (CEC’08), pages 162–
168, Hongkong, China, June 2008.

[3] Brenda S Baker. A program for identifying duplicated code. In
Computer Science and Statistics 24: Proceedings of the 24th
Symposium on the Interface, pages 49–49, 1993.

[4] Ira D. Baxter, Andrew Yahin, Leonardo Mendonça de Moura,
Marcelo Sant’Anna, and Lorraine Bier. Clone detection using
abstract syntax trees. In International Conference on Software
Maintenance (ICSE’98), pages 368–377, 1998.

[5] Stefan Bellon, Rainer Koschke, Giuliano Antoniol, Jens
Krinke, and Ettore Merlo. Comparison and evaluation of clone
detection tools. IEEE Transactions on Software Engineering,
33(9):577–591, 2007.

[6] Yoav Benjamini and Yosef Hochberg. Controlling the False
Discovery Rate: A Practical and Powerful Approach to Multi-
ple Testing. Journal of the Royal Statistical Society. Series B
(Methodological), 57(1):289–300, 1995.

[7] Yuriy Brun, Earl Barr, Ming Xiao, Claire Le Goues, and
Prem Devanbu. Evolution vs. intelligent design in program
patching. Technical Report https://escholarship.org/
uc/item/3z8926ks, UC Davis: College of Engineering,
2013.

[8] S Carter, R. Frank, and D.S.W. Tansley. Clone detection in
telecommunications software systems: A neural net approach.
In Proc. Int. Workshop on Application of Neural Networks to
Telecommunications, pages 273–287, 1993.

[9] Satish Chandra, Emina Torlak, Shaon Barman, and Rastislav
Bodik. Angelic debugging. In Proceedings of the 33rd Interna-
tional Conference on Software Engineering, ICSE ’11, pages
121–130, Honolulu, HI, USA, 2011. ACM.

[10] Marios Fokaefs, Nikolaos Tsantalis, Eleni Stroulia, and
Alexander Chatzigeorgiou. Identification and application of
extract class refactorings in object-oriented systems. Journal
of Systems and Software, 85(10):2241 – 2260, 2012.

[11] Mark Gabel and Zhendong Su. A study of the uniqueness
of source code. In Proceedings of the eighteenth ACM SIG-
SOFT international symposium on Foundations of software
engineering, FSE ’10, pages 147–156. ACM, 2010.

[12] Ah-Rim Han and Doo-Hwan Bae. Dynamic profiling-based
approach to identifying cost-effective refactorings. Information
and Software Technology, 55(6):966 – 985, 2013.

[13] Mark Harman. Automated patching techniques: The fix is in:
Technical perspective. Communications of the ACM, 53(5):108,
2010.

[14] Mark Harman, William B. Langdon, Yue Jia, David Robert
White, Andrea Arcuri, and John A. Clark. The GISMOE
challenge: Constructing the pareto program surface using ge-
netic programming to find better programs (keynote paper). In
27th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE 2012), pages 1–14, Essen, Germany,
September 2012.

[15] Mark Harman, William B. Langdon, and Westley Weimer.
Genetic programming for reverse engineering (keynote paper).

In Rocco Oliveto and Romain Robbes, editors, 20th Working
Conference on Reverse Engineering (WCRE 2013), Koblenz,
Germany, 14-17 October 2013. IEEE.

[16] Abram Hindle, Earl T Barr, Zhendong Su, Mark Gabel, and
Premkumar Devanbu. On the naturalness of software. In Soft-
ware Engineering (ICSE), 2012 34th International Conference
on, pages 837–847. IEEE, 2012.

[17] Guoliang Jin, Wei Zhang, Dongdong Deng, Ben Liblit, and
Shan Lu. Automated concurrency-bug fixing. In Proceedings
of the 10th USENIX Conference on Operating Systems Design
and Implementation, OSDI’12, pages 221–236, 2012.

[18] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue.
CCFinder: A multi-linguistic token-based code clone detec-
tion system for large scale source code. IEEE Transactions on
Software Engineering, 28(6):654–670, 2002.

[19] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun
Kim. Automatic patch generation learned from human-written
patches. In 35th International Conference on Software Engi-
neering (ICSE’13), pages 802–811. IEEE / ACM, 2013.

[20] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun
Kim. Automatic patch generation learned from human-written
patches. In Proceedings of the 2013 International Conference
on Software Engineering, ICSE ’13, pages 802–811, 2013.

[21] William B. Langdon and Mark Harman. Evolving a CUDA
kernel from an nVidia template. In IEEE Congress on Evolu-
tionary Computation, pages 1–8. IEEE, 2010.

[22] William B. Langdon and Mark Harman. Genetically improved
CUDA C++ software. In 17th European Conference on Ge-
netic Programming (EuroGP), Granada, Spain, April 2014. To
Appear.

[23] William B. Langdon and Mark Harman. Optimising existing
software with genetic programming. IEEE Transactions on
Evolutionary Computation, 2014. To appear.

[24] Claire Le Goues, Stephanie Forrest, and Westley Weimer. Cur-
rent challenges in automatic software repair. Software Quality
Journal, 21(3):421–443, 2013.

[25] Matias Martinez, Westley Weimer, and Martin Monperrus. Do
the fix ingredients already exist? An empirical inquiry into
the redundancy assumptions of program repair approaches. In
Companion Proceedings of the 36th International Conference
on Software Engineering, ICSE Companion 2014, pages 492–
495, New York, NY, USA, 2014. ACM.

[26] Na Meng, Miryung Kim, and Kathryn S. McKinley. LASE:
locating and applying systematic edits by learning from exam-
ples. In Proceedings of the 2013 International Conference on
Software Engineering, ICSE ’13, pages 502–511, 2013.

[27] Eugene W. Myers. An O(ND) difference algorithm and its
variations. Algorithmica, 1:251–266, 1986.

[28] Hoan Anh Nguyen, Anh Tuan Nguyen, Tung Thanh Nguyen,
T.N. Nguyen, and H. Rajan. A study of repetitiveness of code
changes in software evolution. In Automated Software Engi-
neering (ASE), 2013 IEEE/ACM 28th International Confer-
ence on, pages 180–190, Nov 2013.

[29] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury,
and Satish Chandra. SemFix: Program repair via semantic anal-
ysis. In Proceedings of the 2013 International Conference on
Software Engineering, ICSE ’13, pages 772–781, San Fran-
cisco, CA, USA, 2013. IEEE Press.

[30] Michael Orlov and Moshe Sipper. Flight of the FINCH through
the java wilderness. IEEE Transactions Evolutionary Compu-
tation, 15(2):166–182, 2011.

[31] Jeff H. Perkins, Sunghun Kim, Sam Larsen, Saman Amaras-

316

https://escholarship.org/uc/item/3z8926ks
https://escholarship.org/uc/item/3z8926ks

inghe, Jonathan Bachrach, Michael Carbin, Carlos Pacheco,
Frank Sherwood, Stelios Sidiroglou, Greg Sullivan, Weng-Fai
Wong, Yoav Zibin, Michael D. Ernst, and Martin Rinard. Auto-
matically patching errors in deployed software. In Proceedings
of the 22nd ACM Symposium on Operating Systems Principles,
pages 87–102, Big Sky, MT, USA, October 12–14, 2009.

[32] Justyna Petke, Mark Harman, William B. Langdon, and West-
ley Weimer. Using genetic improvement & code transplants to
specialise a C++ program to a problem class. In 17th European
Conference on Genetic Programming (EuroGP), Granada,
Spain, April 2014. To Appear.

[33] Baishakhi Ray and Miryung Kim. A case study of cross-system
porting in forked projects. In Proceedings of the ACM SIG-
SOFT 20th International Symposium on the Foundations of
Software Engineering, FSE ’12, pages 53:1–53:11, New York,
NY, USA, 2012. ACM.

[34] Pitchaya Sitthi-amorn, Nicholas Modly, Westley Weimer, and
Jason Lawrence. Genetic programming for shader simplifica-
tion. ACM Trans. Graph, 30(6):152:1–152:11, 2011.

[35] Sooel Son, Kathryn S. Mckinley, and Vitaly Shmatikov. Fix
me up: Repairing access-control bugs in web applications. In
In Network and Distributed System Security Symposium, 2013.

[36] Nikolaos Tsantalis and Alexander Chatzigeorgiou. Identifica-
tion of move method refactoring opportunities. IEEE Trans.
Softw. Eng., 35(3):347–367, May 2009.

[37] András Vargha and Harold D. Delaney. A critique and im-
provement of the CL common language effect size statistics of
McGraw and Wong. Journal of Educational and Behavioral

Statistics, 25(2):101–132, 2000.
[38] Tiantian Wang, Mark Harman, Yue Jia, and Jens Krinke.

Searching for better configurations: a rigorous approach to
clone evaluation. In European Software Engineering Confer-
ence and the ACM SIGSOFT Symposium on the Foundations
of Software Engineering, ESEC/FSE’13, pages 455–465, Saint
Petersburg, Russian Federation, August 2013. ACM.

[39] Yi Wei, Yu Pei, Carlo A. Furia, Lucas Serpa Silva, Stefan
Buchholz, Bertrand Meyer, and Andreas Zeller. Automated
fixing of programs with contracts. In Proceedings of the 19th
International Symposium on Software Testing and Analysis,
pages 61–72, 2010.

[40] Westley Weimer. Patches as better bug reports. In Generative
Programming and Component Engineering, pages 181–190,
2006.

[41] Westley Weimer, Thanh Vu Nguyen, Claire Le Goues, and
Stephanie Forrest. Automatically finding patches using genetic
programming. In International Conference on Software Engi-
neering (ICSE), pages 364–374, Vancouver, Canada, 2009.

[42] David Robert White, Andrea Arcuri, and John A. Clark. Evo-
lutionary improvement of programs. IEEE Transactions on
Evolutionary Computation, 15(4):515–538, 2011.

[43] David Robert White, John Clark, Jeremy Jacob, and Simon
Poulding. Searching for resource-efficient programs: Low-
power pseudorandom number generators. In 2008 Genetic and
Evolutionary Computation Conference (GECCO 2008), pages
1775–1782, Atlanta, USA, July 2008. ACM Press.

317

	1 Introduction
	2 Problem Formulation
	3 Experimental Design
	3.1 Corpus
	3.2 Methodology

	4 Results and Discussion
	4.1 Plastic Surgery Hypothesis
	4.2 Graftability by Commit Size
	4.3 Graftability by Commit Type
	4.4 Graft Contiguity
	4.5 Graft Clustering
	4.6 Threats to Validity

	5 Related Work
	6 Contributions
	7 Acknowledgements
	8 References

