Viterbi

CS 585, Fall 2016

Introduction to Natural Language Processing http://people.cs.umass.edu/~brenocon/inlp2016

Brendan O'Connor

College of Information and Computer Sciences
University of Massachusetts Amherst

- Project proposals due tomorrow!
- Today
- HW3 NB
- Viterbi
- Learning: the Perceptron Algorithm
- Next week
- Tues: CRF / Structured Perceptron
- Thurs: In-class project work \& OH
- HW4 released tomorrow:
- Part I due next week
- Part 2 due in two weeks

Viterbi

- (notes \& worksheet)

(Discrim.) Log-linear models

- The form will generalize to multiclass and sequences...
- x : Text Data
- y : Proposed class
- θ : Feature weights (model parameters)
- $f(x, y)$: Feature extractor, produces feature vector

$$
\operatorname{Goodness}(y)=\sum_{i} \theta_{i} f_{i}(x, y) \quad \equiv \begin{aligned}
& \text { dot product notation: }
\end{aligned}
$$

(Discrim.) Log-linear models

- The form will generalize to multiclass and sequences...
- x : Text Data
- y : Proposed class
- θ : Feature weights (model parameters)
- $f(x, y)$: Feature extractor, produces feature vector

$$
\begin{aligned}
& \text { Goot product notation: } \\
& \operatorname{Goodness}(y)=\sum_{i} \theta_{i} f_{i}(x, y) \equiv \theta^{\top} f(x, y) \\
& p(y \mid x)=\frac{1}{Z} e^{G(y)} \Leftrightarrow \log p(y \mid x)=C+G(y)
\end{aligned}
$$

(Discrim.) Log-linear models

- The form will generalize to multiclass and sequences...
- x : Text Data
- y : Proposed class
- θ : Feature weights (model parameters)
- $f(x, y)$: Feature extractor, produces feature vector

$$
\begin{aligned}
& \text { dot product notation: } \\
& \operatorname{Goodness}(y)=\sum_{i} \theta_{i} f_{i}(x, y) \equiv \theta^{\top} f(x, y) \\
& p(y \mid x)=\frac{1}{Z} e^{G(y)} \Leftrightarrow \log p(y \mid x)=C+G(y)
\end{aligned}
$$

Decision rule: $y^{(\text {pred })}=\arg \max _{y^{\prime}} G\left(y^{\prime}, x\right)$

(Discrim.) Log-linear models

- The form will generalize to multiclass and sequences...
- \quad : Text Data
- y : Proposed class
- θ : Feature weights (model parameters)
- $f(x, y)$: Feature extractor, produces feature vector

$$
\begin{aligned}
& \text { Got dotuct notation: } \\
& \operatorname{Goodness}(y)=\sum_{i} \theta_{i} f_{i}(x, y) \equiv \theta^{\top} f(x, y) \\
& p(y \mid x)=\frac{1}{Z} e^{G(y)} \Leftrightarrow \log p(y \mid x)=C+G(y)
\end{aligned}
$$

Decision rule: $y^{(\text {pred })}=\arg \max G\left(y^{\prime}, x\right)$
NB and LogReg can be expressed in this form...

Log-linear notation

$$
G(y, x)=\theta^{\top} f(x, y)
$$

$f(x, y)$ based on these feature templates: key: (class=y AND word=w) value: count of w (or, indicator...)

θ

\{"POS_The": +0.01, "NEG_The":-0.01,
"POS_awesome": +2.2, "NEG_awesome":-2.2, ...\}

$$
\begin{aligned}
& \theta^{\top} f(x, P O S)=\ldots \\
& \theta^{\top} f(x, N E G)=\ldots . .
\end{aligned}
$$

$\mathrm{f}(\mathrm{x}, \mathrm{POS})$
\{"POS_The": 3,
"POS_awesome": 7,
"POS_quizzical": 0,
...\}
$f(x, N E G)$
\{"NEG_The": 3,
"NEG_awesome": 7,
...\}

