Homework 4, Part B: Structured perceptron

CS 585, UMass Ambherst, Fall 2016

Overview

Due Friday, Oct 28.
Get starter code/data from the course website’s schedule page. You should submit a zipped
directory named hw4b_YOUR-USERNAME that contains:

e your vit.py and structperc.py files
e writeup

Please don’t include data in the zip file. Our course’s collaboration policy is specified on the
website.

1 Perceptron and Averaged Training

[10 total points]

We will be using the following definition of the perceptron (which applies to the multiclass
or structured version of the perceptron). The training set is a bunch of input-output pairs (x;, y;).
(For classification, y; is a label, but for tagging, y; is a sequence). The training algorithm is as
follows:

e For T iterations, iterate through each (z;, y;) pair in the dataset, and for each,

- Predict y* := argmax, 07 f(zi,y)
- If y; # y*: then update 0 := 99 4 g

where 7 is a fixed step size (e.g. 7 = 1) and g is the “gradient” vector, meaning a vector that will
get added into 6 for the update, specifically

SN—— S——
feats of true output feats of predicted output

Both in theory and in practice, the predictive accuracy of a model trained by the structured
perceptron will be better if we use the average value of 6 over the course of training, rather than
the final value of . This is because § wanders around and doesnt converge (typically), because it
overfits to whatever data it saw most recently. After seeing ¢ training examples, define the averaged
parameter vector as

t
=1
0 = ; Z O @)

t'=1

where 6, is the weight vector after ¢’ updates. (We are counting ¢ by the number of training
examples, not passes through the data. So if you had 1000 examples and made 10 passes through
the data in order, the final time you see the final example is ¢ = 10000.) For training, you still use
the current § parameter for predictions. But at the very end, you return the 6, not 6, as your final
model parameters to use on test data.

Directly implementing Equation 1 would be really slow. So here’s a better algorithm. This is
the same as in Hal Daume’s CIML chapter on perceptrons, but adapted for the structured case (as
opposed to Daume’s algorithm, which assumes binary output). Define g; to be the update vector
g as described earlier. The perceptron update can be written

0r =01 +rg
Thus the averaged perceptron algorithm is, using a new “weightsums” vector .S,
e Initializet = 1,6y = 0,5, =0
e For each example i (iterating multiples times through dataset),

— Predict y* = argmax, 07 f(z;, ')
- Let g; = f(z,vi) — f(zi,9%)

- Update 0 = 6,1 + rg;

- Update S; = S;—1 + (t —)rg:
—t:=t4+1

e Calculate § based on S

In an actual implementation, you don’t keep old versions of S or 6 around ... above we're using
the ¢ subscripts above just to make the mathematical analysis clearer.
Our proposed algorithm computes 0; as

= 1
O =0 — 25t ()

For the following problems, feel free to set r = 1 just to simplify them.

Question 1.1. [1 points] What is the computational advantage of computing § using Equation 2
instead of directly implementing Equation 17?

Now we’ll show this works, at least for early iterations.

Question 1.2. [1 points] What are 0y, 02, 03, and ,? Please derive them from the Equation 1
definition, and state them in terms of ¢1, g2, g3, and/or g4.

Question 1.3. [4 points] What are S, S2, S3, and S4? Please state them in terms of g1, g2, g3,
and/or g4.

Question 1.4. [4 points] Show that Equation 2 correctly computes 05 and 0.

Question 1.5. [OPTIONAL: 2 Extra Credit points] Use proof by induction to show that this algo-
rithm correctly computes 6, for any ¢.

2 Classifier Perceptron

[15 total points]

The Twitter account, @realDonaldTrump, often shows two types of tweets: those written by
Donald Trump, and those written by Trump’s political staff.

A programmer decides to use the perceptron algorithm (without averaging) to automatically
place Donald Trump’s tweets into one of two categories: those written by the candidate and those
written by his political staff. (They want to build a Twitter bot that automatically classifies tweets
in the future).

The programmer creates a dataset of labeled tweets based on human guesses about authorship.
They try to use that dataset to train a perceptron classifier using the code below. But there is a bug,
so the classifier does not seem to be working properly. Find the bug, specify what is wrong and
explain what would happen if the programmer runs the code without fixing the bug. (Sidenote:
see http://varianceexplained.org/r/trump-tweets/ for more on this.)

Code on next page:

http://varianceexplained.org/r/trump-tweets/

import random

def train_perceptron(labeled_tweets):

i

train a perceptron to distinguish between candidate tweets and staff tweets

labeled_tweets is a list of tuples, each of the form:
(”candidate”, ”"The media is going crazy. They totally distort
so many things on purpose. Crimea, nuclear, ”the baby
and so much more. Very dishonest!”)
(”staff”, “Thank you Windham, New Hampshire! #TrumpPencel6 #MAGA”)

11

weights = defaultdict(float)
t=20
stepsize = .5

iters = 10000
for pass_iteration in range(iters):
print “Training iteration %d” % pass_iteration
random. shuffle (labeled_tweets)
for goldlabel, tweet in labeled_tweets:
t +=1
get_features is not shown.
It returns a dict representing the nonzero entries of a feature vector.
candidate_feat_.vec = get_features(tweet, ”candidate”)
staff _feat_.vec = get_features(tweet, ”staff”)

predict if a tweet is a ”staff” or ”“candidate” tweet
predlabel = predict(tweet, weights, candidate_feat_vec, staff_feat_vec)

if predlabel == ”candidate”
predfeats = candidate_feat_vec
else:
predfeats = staff_feat_vec
if goldlabel == ”candidate”
goldfeats = candidate_feat_vec
else:

goldfeats = staff_feat_vec

diffs = defaultdict(float)
diffs .update(goldfeats)
for k in predfeats:

diffs [k] += predfeats[k]

for feat.name, feat_value in diffs.iteritems ():
weights[feat_.name] += stepsize * feat_value

3 Structured Perceptron with Viterbi

[40 total points]

In this problem, you will implement a part-of-speech tagger for Twitter, using the structured
perceptron algorithm. Your system will be not too far off from state of the art performance, coding
it all up yourself from scratch!

The dataset comes from http://www.ark.cs.cmu.edu/TweetNLP/ and is described in

http://www.ark.cs.cmu.edu/TweetNLP/

the papers listed there (Gimpel et al. 2011 and Owoputi et al. 2013). The Gimpel article describes
the tagset; the annotation guidelines on that webpage describe it futher.

Your structured perceptron will use your Viterbi implementation from HW 4(A) as a subrou-
tine. If that’s buggy, this will cause many problems here—your perceptron will have really weird
behavior. (This happened to us when designing your assignment!) If you have problems, try
using the greedy decoding algorithm, which we provide in the starter code. Make sure to note
which decoding algorithm you're using in your writeup.

The starter code is structperc.py and it assumes the two data files oct27.train and oct27.dev are
in the same directory. (For simplicity we're just going to use this “dev” set as our test set.)

Question 3.1. [2 points] First let’s do a little data analysis to establish the “most common tag”
baseline accuracy. Using a small script or ipython notebook, load up the dev dataset (oct27.dev)
using the function structperc.read_tagging file (from import structperc). (Make sure to include a copy
of this code or notebook in your submisssion.) Calculate the following: What is the most common
tag, and what would your accuracy be if you predicted it for all tags?

The structured perceptron algorithm works very similarly as the classification version you did in
the previous question, except the prediction function uses Viterbi (from HW 4(A)) as a subroutine,
which has to call feature extraction functions for local emissions and transition factors. There also
has to be a large overall feature extraction function for an entire structure at once.! The following
parts will build up these pieces. First, we will focus on inference, not learning.

Question 3.2. [2 points] We provide a barebones version of local_emission_features, which calculates
the local features for a particular tag at a token position. You can run this function all by itself.
Make up an example sentence, and call this function with it, giving it a particular index and
candidate tag. In your write up, show the code for the function call you made and the function’s
return value, and explain what the features mean (just a sentence or two).

Question 3.3. [2 points] Implement features_for_seq(), which extracts the full feature vector f(z,y),
where x is a sentence and y is an entire tagging sequence for that sentence. This will add up the
feature vectors from each local emissions features for every position, as well as transition features
for every position (there are N — 1 of them, of course). Show the output on a very short example
sentence and example proposed tagging, that’s only 2 or 3 words long.

To define f(z,y) a little more precisely: If f(B)(t, z,) means the local emissions feature vector
at position ¢ (i.e. the local_emission_features function), and f () (y;_1, s, y) is the transition feature
function for positions (t—1,) (which just returns a feature vector where everything is zero, except
a single element is 1), then the full sequence feature vector will be the vector-sum of all those

feature vectors:
T

T
f(fL', y) = Z f(B)(t7 €, y) + Z f(A)(ytfla yt)
t t=2

You implemented f(5) above. You probably don’t need to bother implementing f(4) as a stan-
dalone function. You will have to decide on a particular convention to encode the name of a tran-
sition feature. For example, one way to do it is with string concatenation like this, "t rans_%s_%s"
$ (prevtag, curtag),where prevtag and curtag are strings. Or you could use a python tuple
of strings, which works since tuples have the ability to be keys in a python dictionary.

In other words: the emissions and transition features will all be in the same vector, just as keys
in the dictionary that represents the feature vector. The transition features are going to be the count

'If we were clever with function or OO abstractions it’s actually possible to share code for this... but in practice that's
too hard, so please just make a new implementation in structperc.py.

of how many times a particular transition (tag bigram) happened. The emissions features are go-
ing to be the vector-sum of all the local emission features, as calculated from local_emission_features.

Question 3.4. [4 points] Look at the starter code for calc_factor_scores, which calculates the A and
B score functions that are going to be passed in to your Viterbi implementation from 4(A), in order
to do a prediction. The only function it will need to call is local_emission_features. It should NOT
call features_for_seq. Why not?

Question 3.5. [6 points] Implement calc_factor_scores. Make up a simple example (2 or 3 words
long), with a simple model with at least some nonzero features (you might want to use a default-
dict(float), so you don’t have to fill up a dict with dummy values for all possible transitions), and
show your call to this function and the output.

Question 3.6. [4 points] Implement predict_seq(), which predicts the tags for an input sentence,
given a model. It will have to calculate the factor scores, then call Viterbi from HW 4(A) as a
subroutine, then return the best sequence prediction. If your Viterbi implementation does not
seem to be working, use the implementation of the greedy decoding algorithm that we provide (it
uses the same inputs as vit.viterbi()).

OK, you're done with the inference part. Time to put it all together into the parameter learning
algorithm and see it go.

Question 3.7. [14 points] Implement train(), which does structured perceptron training with the
averaged perceptron algorithm. You should train on oct27.train, and evaluate on oct27.dev. You
will want to first get it working without averaging, then add averaging to it. Run it for 10 itera-
tions, and print the devset accuracy at each training iteration. Note that we provide evaluation
code, which assumes predict_seq() and everything it depends on is working properly.

For us, here’s the performance we get at the first and last iterations, using the features in the
starter code (just the bias term and the current word feature, without case normalization).

Training iteration 0
DEV RAW EVAL: 2556/4823
DEV AVG EVAL: 2986/4823

0.5300 accuracy
0.6191 accuracy

Training iteration 9

DEV RAW EVAL: 3232/4823 0.6701 accuracy

DEV AVG EVAL: 3341/4823 = 0.6927 accuracy

Learned weights for 24361 features from 1000 examples

Question 3.8. [6 points] Print out a report of the accuracy rate for each tag in the development
set. We provided a function to do this (fancy_eval). Look at the two sentences in the dev data, and
in your writeup show and compare the gold-standard tags versus your model’s predictions for
them. Consult the tagset description to understand what’s going on. What types of things does
your tagger get right and wrong?

To look at the examples, you may find it convenient to use show_predictions (or write up the
equivalent manually). For example, after 1 iteration of training, we get this output from the first
sentence in the devset. (After investigating TV shows that were popular in 2011 when the tweet
was authored, we actually think some of the gold-standard tags in this example might be wrong.)

word gold pred

@ciaranyree
it

was

on

football
wives

**xx Error

Z 2" O ®
> < O ®

zZ

14

one

of

the
players
and

his
wife
own

» < Z O & = O o~

smash **xx Error

>

Z U< 2 U 2 U™

burger *%*% Error

To do this part, you may find it useful to either use ipython notebook, or else to save your
model’s weights with pickle.dumps (or json.dumps) and have a short analysis script that loads the
model and devdata to do the reports. If you have to re-train each time you tweak your analysis
code, it can be annoying.

Question 3.9. [OPTIONAL: 4 Extra Credit points] Improve the features of your tagger to improve
accuracy on the development set. This will only require changes to local_emission_features. Imple-
ment at least 4 new types of features. Report your tagger’s accuracy with these improvements.
Please make a table that reports accuracy from adding different features. The first row should be
the basic system, and the last row should be the fanciest system. Rows in between should report
different combinations of features. One simple way to do this is, if you have 4 different feature
types, to run 4 experiments where in each one, you add only one feature type to the basic system.
For example:

System Acc
basic 0.6927
basic plus first new feature .number..
basic plus second new feature | .number..
basic plus third new feature .number..
basic plus fourth new feature | .number..

Hint: if you make features about the first character of a word, that helps a lot for the “#”
(hashtag) and “@” (at-mention) tags. The URL tag is easy to get too with a similar form of character
affix analysis. Character affixes help lots of other tags too. Also, if you have a feature that looks
at the word at position ¢, you can make new versions of it that look to the left or right of the ¢
position in question: for example, “word_to_left=the”.

	Perceptron and Averaged Training
	Classifier Perceptron
	Structured Perceptron with Viterbi

