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Dependency applications

• Dependencies can be used as less sparse 
alternative to n-grams

• Sometimes helps, sometimes doesn’t

• Dependency relations can be selected for 
semantic relationships

• Today: large-scale applications

• Ad-hoc historical analysis

• Inference rules via dist. sim.

• Movie personas, international relations
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• History of “writing code”?

• Goldberg & Orwant 2013: historical dependencies from google books

• Downloadable!  Counts by year.
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12.4. APPLICATIONS 235

Figure 12.8: Google n-grams results for the bigram write code and the dependency arc write
=> code (and their morphological variants)

we might be interested in knowing when people started talking about writing code, but
we also want write some code, write the code, write all the code, etc. By searching on depen-
dency edges, we can recover this information, as shown in Figure 12.8. This capability has
implications for research in digital humanities, as shown by the analysis of Shakespeare
performed by Muralidharan and Hearst (2013).

A classic application of dependency parsing is relation extraction, which is described
in chapter 18. The goal of relation extraction is to identify entity pairs, such as

hTOLSTOY, WAR AND PEACEi
hMARQUÉZ, 100 YEARS OF SOLITUDEi
hSHAKESPEARE, A MIDSUMMER NIGHT’S DREAMi,

which stand in some relation to each other (in this case, the relation is authorship). Such
entity pairs are often referenced via consistent chains of dependency relations. Therefore,
dependency paths are often a useful feature in supervised systems which learn to detect
new instances of a relation, based on labeled examples of other instances of the same
relation type (Culotta and Sorensen, 2004; Fundel et al., 2007; Mintz et al., 2009).

Cui et al. (2005) show how dependency parsing can improve question answering. For
example, you might ask,

(12.1) What % of the nation’s cheese does Wisconsin produce?

Now suppose your corpus contains this sentence:

(12.2) In Wisconsin, where farmers produce 28% of the nation’s cheese, . . .

The location of Wisconsin in the surface form of this string might make it a poor match for
the query. However, in the dependency graph, there is an edge from produce to Wisconsin

(c) Jacob Eisenstein 2014-2017. Work in progress.

https://books.google.com/ngrams/
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DIRT (Discovering inference rules from text)

• [Lin and Pantel 2001]

• Goal: learn “inference” (paraphrase) rules

• X is author of  Y  =  X wrote Y

• X solved Y  =  X found a solution to Y

• X caused Y  =  Y is triggered by X
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ABSTRACT 
In this paper, we propose an unsupervised method for discovering 
inference rules from text, such as “X is author of Y  X wrote Y”, 
“X solved Y   X found a solution to Y”, and “X caused Y  Y is 
triggered by X”. Inference rules are extremely important in many 
fields such as natural language processing, information retrieval, 
and artificial intelligence in general. Our algorithm is based on an 
extended version of Harris’ Distributional Hypothesis, which 
states that words that occurred in the same contexts tend to be 
similar. Instead of using this hypothesis on words, we apply it to 
paths in the dependency trees of a parsed corpus. 

1. INTRODUCTION 
Text is the most significant repository of human knowledge. 
Many algorithms have been proposed to mine textual data. Most 
of them focus on document clustering [13], identifying 
prototypical documents [20], or finding term associations [14] and 
hyponym relationships [9]. We propose an unsupervised method 
for discovering inference rules, such as “X is author of Y  X 
wrote Y”, “X solved Y  X found a solution to Y”, and “X caused Y 
 Y is triggered by X”. Inference rules are extremely important in 
many fields such as natural language processing, information 
retrieval, and artificial intelligence in general. 

For example, consider the query to an information retrieval 
system: “Who is the author of the 'Star Spangled Banner'?” 
Unless the system recognizes the relationship between “X wrote 
Y” and “X is the author of Y”, it would not necessarily rank the 
sentence 

... Francis Scott Key wrote the “Star Spangled Banner” in 1814. 

higher than the sentence 

…comedian-actress Roseanne Barr sang her famous shrieking 
rendition of the “Star Spangled Banner” before a San Diego 
Padres-Cincinnati Reds game. 

We call “X wrote Y  X is the author of Y” an inference rule. In 
previous work, such relationships have been referred to as 
paraphrases or variants [24]. In this paper, we use the term 

inference rule because we also want to include relationships that 
are not exactly paraphrases, but are nonetheless related and are 
potentially useful to information retrieval systems. For example, 
“X caused Y  Y is blamed on X” is an inference rule even though 
the two phrases do not mean exactly the same thing. 

Traditionally, knowledge bases containing such inference rules 
are created manually. This knowledge engineering task is 
extremely laborious. More importantly, building such a 
knowledge base is inherently difficult since humans are not good 
at generating a complete list of rules. For example, while it is 
quite trivial to come up with the rule “X wrote Y  X is the author 
of Y”, it seems hard to dream up a rule like “X manufactures Y  
X’s Y factory”, which can be used to infer that “Chrétien visited 
Peugot’s newly renovated car factory in the afternoon” contains 
an answer to the query “What does Peugot manufacture?” 

Most previous efforts on knowledge engineering have focused on 
creating tools for helping knowledge engineers transfer their 
knowledge to machines [6]. Our goal is to automatically discover 
such rules. 

In this paper, we present an unsupervised algorithm, DIRT, for 
Discovery of Inference Rules from Text. Our algorithm is a 
generalization of previous algorithms for finding similar words 
[10][15][19]. Algorithms for finding similar words assume the 
Distributional Hypothesis, which states that words that occurred 
in the same contexts tend to have similar meanings [7]. Instead of 
applying the Distributional Hypothesis to words, we apply it to 
paths in dependency trees. Essentially, if two paths tend to link 
the same sets of words, we hypothesize that their meanings are 
similar. Since a path represents a binary relationship, we generate 
an inference rule for each pair of similar paths. 

The remainder of this paper is organized as follows. In the next 
section, we review previous work. In Section 3, we define paths 
in dependency trees and describe their extraction from a parsed 
corpus. Section 4 presents the DIRT system and a comparison of 
our system’s output with manually generated paraphrase 
expressions is shown in Section 5. Finally, we conclude with a 
discussion of future work. 

2. Previous Work 
Most previous work on variant recognition and paraphrase has 
been done in the fields of natural language generation, text 
summarization, and information retrieval. 

The generation community has focused mainly on rule-based text 
transformations in order to meet external constraints such as 
length and readability [11][18][22]. Dras [4] described syntactic 
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• Approach

• Representation: Dependency paths

• Learning: Distributional similarity
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Dependency paths

• Dep path corresponds 
to a lexico-syntactic 
pattern

• Dep path is a chain of 
relation conjunctions, 
leaving further 
modifications unspecified

• Which dep paths to get? 
Heuristics to alleviate 
sparsity (L&P require 
content words, limit path 
length, etc.)
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 slot fillers must be nouns because slots correspond to 
variables in inference rules and we expect the variables to be 
instantiated by entities; 

 any dependency relation that does not connect two content 
words (i.e. nouns, verbs, adjectives or adverbs) is excluded 
from a path. E.g. in Figure 1, the relation between a and 
solution is excluded; 

 the frequency count of an internal relation must exceed a 
threshold; and 

Consider the following sentence: 

mod

They had previously bought bighorn sheep from Comstock.

subj

nn
obj

from

have

 
The paths extracted from this sentence and their meanings are: 

(a) N:subj:VbuyV:from:N 
 X buys something from Y 

(b) N:subj:VbuyV:obj:N 
 X buys Y 

(c) N:subj:VbuyV:obj:NsheepN:nn:N 
 X buys Y sheep 

(d) N:nn:NsheepN:obj:VbuyV:from:N 
 X sheep is bought from Y 

(e) N:obj:VbuyV:from:N 
 X is bought from Y 

An inverse path is also added for each one above. 

4. Discovering Inference Rules from Text 
A path is a binary relation between two entities. In this section, 
we present an algorithm, called DIRT, to automatically discover 
the inference relations between such binary relations. 

4.1 Underlying Assumption 
Most algorithms for computing word similarity from text corpus 
are based on a principle known as the Distributional Hypothesis 
[7]. The idea is that words that tend to occur in the same contexts 
tend to have similar meanings. Previous efforts differ in their 
representation of the context and in their formula for computing 
the similarity between two sets of contexts. Some algorithms use 
the words that occurred in a fixed window of a given word as its 
context while others use the dependency relationships of a given 
word as its context [15]. Consider the words duty and 
responsibility. There are many contexts in which both of these 
words can fit. For example, 

 duty can be modified by adjectives such as additional, 
administrative, assigned, assumed, collective, congressional, 
constitutional, …, so can responsibility; 

 duty can be the object of verbs such as accept, articulate, 
assert, assign, assume, attend to, avoid, become, breach, …, 
so can responsibility. 

Based on these common contexts, one can statistically determine 
that duty and responsibility have similar meanings. 

In the algorithms for finding word similarity, dependency links 
are treated as contexts of words. In contrast, our algorithm for 
finding inference rules treats the words that fill the slots of a path 
as a context for the path. We make an assumption that this is an 
extension to the Distributional Hypothesis: 

Extended Distributional Hypothesis: 

If two paths tend to occur in similar contexts, the 
meanings of the paths tend to be similar. 

For example, Table 2 lists a set of example pairs of words 
connected by the paths N:subj:VfindV:obj:Nsolution 
N:to:N (“X finds a solution to Y”) and N:subj:Vsolve 
V:obj:N (“X solves Y”). As it can be seen from the table, there are 
many overlaps between the corresponding slot fillers of the two 
paths. By the Extended Distributional Hypothesis, we can then 
claim that the two paths have similar meaning. 

4.2 Triples 
To compute the path similarity using the Extended Distributional 
Hypothesis, we need to collect the frequency counts of all paths in 
a corpus and the slot fillers for the paths. For each instance of a 
path p that connects two words w1 and w2, we increase the 
frequency counts of the two triples (p, SlotX, w1) and (p, SlotY, 
w2). We call (SlotX, w1) and (SlotY, w2) features of path p. 
Intuitively, the more features two paths share, the more similar 
they are. 

We use a triple database (a hash table) to accumulate the 
frequency counts of all features of all paths extracted from a 
parsed corpus. An example entry in the triple database for the 
path 

N:subj:VpullV:obj:NbodyN:from:N 
 “X pulls body from Y” 

is shown in Figure 2. The first column of numbers in Figure 2 
represents the frequency counts of a word filling a slot of the path 
and the second column of numbers is the mutual information 

Table 2. Sample slot fillers for two paths extracted from a 
newspaper corpus. 

“X finds a solution to Y” “X solves Y” 

SLOTX SLOTY SLOTX SLOTY 

commission strike committee problem 

committee civil war clout crisis 

committee crisis government problem 

government crisis he mystery 

government problem she problem 

he problem petition woe 

legislator budget deficit researcher mystery 

sheriff dispute sheriff murder 
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Distributional similarity

• “You shall know a word by the company it 
keeps” [Firth, 1957]
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• Simple single-word (lexical semantics) exmaple:
“duty” vs “responsibility”
adj. modification, verbs they’re arguments of?
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Distributional similarity

• “You shall know a word by the company it 
keeps” [Firth, 1957]

7

• Simple single-word (lexical semantics) exmaple:
“duty” vs “responsibility”
adj. modification, verbs they’re arguments of?
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variables in inference rules and we expect the variables to be 
instantiated by entities; 

 any dependency relation that does not connect two content 
words (i.e. nouns, verbs, adjectives or adverbs) is excluded 
from a path. E.g. in Figure 1, the relation between a and 
solution is excluded; 

 the frequency count of an internal relation must exceed a 
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4. Discovering Inference Rules from Text 
A path is a binary relation between two entities. In this section, 
we present an algorithm, called DIRT, to automatically discover 
the inference relations between such binary relations. 
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Most algorithms for computing word similarity from text corpus 
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representation of the context and in their formula for computing 
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assert, assign, assume, attend to, avoid, become, breach, …, 
so can responsibility. 

Based on these common contexts, one can statistically determine 
that duty and responsibility have similar meanings. 

In the algorithms for finding word similarity, dependency links 
are treated as contexts of words. In contrast, our algorithm for 
finding inference rules treats the words that fill the slots of a path 
as a context for the path. We make an assumption that this is an 
extension to the Distributional Hypothesis: 

Extended Distributional Hypothesis: 

If two paths tend to occur in similar contexts, the 
meanings of the paths tend to be similar. 

For example, Table 2 lists a set of example pairs of words 
connected by the paths N:subj:VfindV:obj:Nsolution 
N:to:N (“X finds a solution to Y”) and N:subj:Vsolve 
V:obj:N (“X solves Y”). As it can be seen from the table, there are 
many overlaps between the corresponding slot fillers of the two 
paths. By the Extended Distributional Hypothesis, we can then 
claim that the two paths have similar meaning. 

4.2 Triples 
To compute the path similarity using the Extended Distributional 
Hypothesis, we need to collect the frequency counts of all paths in 
a corpus and the slot fillers for the paths. For each instance of a 
path p that connects two words w1 and w2, we increase the 
frequency counts of the two triples (p, SlotX, w1) and (p, SlotY, 
w2). We call (SlotX, w1) and (SlotY, w2) features of path p. 
Intuitively, the more features two paths share, the more similar 
they are. 

We use a triple database (a hash table) to accumulate the 
frequency counts of all features of all paths extracted from a 
parsed corpus. An example entry in the triple database for the 
path 

N:subj:VpullV:obj:NbodyN:from:N 
 “X pulls body from Y” 

is shown in Figure 2. The first column of numbers in Figure 2 
represents the frequency counts of a word filling a slot of the path 
and the second column of numbers is the mutual information 

Table 2. Sample slot fillers for two paths extracted from a 
newspaper corpus. 

“X finds a solution to Y” “X solves Y” 
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Dist. sim. for dep. paths
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variables in inference rules and we expect the variables to be 
instantiated by entities; 

 any dependency relation that does not connect two content 
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• Similarity between paths: if they tend to have same words in SlotX and same 
words in SlotY

• (This paper uses an averaged PMI score for similarity; most work in this area 
uses cosine similarity)

• Data: “1 GB” news text, 6M paths

between a slot and a slot filler. Mutual information measures the 
strength of the association between a slot and a filler. We explain 
mutual information in detail in Section 4.3. The triple database 
records the fillers of SlotX and SlotY separately. Looking at the 
database, one would be unable to tell which SlotX filler occurred 
with which SlotY filler in the corpus. 

4.3 Similarity between Two Paths 
Once the triple database is created, the similarity between two 
paths can be computed in the same way that the similarity 
between two words is computed in [15]. Essentially, two paths 
have high similarity if there are a large number of common 
features. However, not every feature is equally important. For 
example, the word he is much more frequent than the word 
sheriff. Two paths sharing the feature (SlotX, he) is less indicative 
of their similarity than if they shared the feature (SlotX, sheriff). 
The similarity measure proposed in [15] takes this into account by 
computing the mutual information between a feature and a path. 

We use the notation |p, SlotX, w| to denote the frequency count of 
the triple (p, SlotX, w),  |p, SlotX, *| to denote 

w

wSlotXp ,, , 

and |*, *, *| to denote 
wsp

wsp
,,

,, . 

Following [15], the mutual information between a path slot and its 
filler can be computed by the formula: 

   














wSlotSlotp

SlotwSlotp
wSlotpmi

,*,,*,
,**,,,

log,,  (1) 

The similarity between a pair of slots: slot1 = (p1, s) and slot2 = 
(p2, s), is defined as: 
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 (2) 

where p1 and p2 are paths, s is a slot, T(pi, s) is the set of words 
that fill in the s slot of path pi. 

The similarity between a pair of paths p1 and p2 is defined as the 
geometric average of the similarities of their SlotX and SlotY 
slots: 

      212121 ,,, SlotYSlotYsimSlotXSlotXsimppS   (3) 

where SlotXi and SlotYi are path i’s SlotX and SlotY slots. 

4.4 Finding the Most Similar Paths 
The discovery of inference rules is made by finding the most 
similar paths of a given path. The challenge here is that there are a 
large number of paths in the triple database. The database used in 
our experiments contains over 200,000 distinct paths. Computing 
the similarity between every pair of paths is obviously 
impractical. 

Given a path p, our algorithm for finding the most similar paths of 
p takes three steps: 

(a) Retrieve all the paths that share at least one feature with p 
and call them candidate paths. This can be done efficiently 
by storing for each word the set of slots it fills in. 

(b) For each candidate path c, count the number of features 
shared by c and p. Filter out c if the number of its common 
features with p is less than a fixed percent (we used 1%) of 
the total number of features for p and c. This step 
effectively uses a simpler similarity formula to filter out 
some of the paths since computing mutual information is 
more costly than counting the number of features.  This 
idea has previously been used in Canopy [17]. 

(c) Compute the similarity between p and the candidates that 
passed the filter using equation (2) and output the paths in 
descending order of their similarity to p. 

Table 3 lists the Top-50 most similar paths to “X solves Y” 
generated by DIRT. Most of the paths can be considered as 
paraphrases of the original expression. 

5. Experimental Results 
We performed an evaluation of our algorithm by comparing the 
inference rules it generates with a set of human-generated 
paraphrases of the first six questions in the TREC-8 Question-

X pulls body from Y: 
 SlotX: 
  diver 1 2.45 
  equipment 1 1.65 
  police 2 2.24 
  rescuer 3 4.84 
  resident 1 1.60 
  who 2 1.32 
  worker 1 1.37 
 SlotY: 
  bus 2 3.09 
  coach 1 2.05 
  debris 1 2.36 
  feet 1 1.75 
  hut 1 2.73 
  landslide 1 2.39 
  metal 1 2.09 
  wreckage 3 4.81 

Figure 2. An example entry in the triple database for the path 
“X pulls body from Y”. 

Table 3. The top-20 most similar paths to “X solves Y”. 

Y is solved by X Y is resolved in X 
X resolves Y Y is solved through X 
X finds a solution to Y X rectifies Y 
X tries to solve Y X copes with Y 
X deals with Y X overcomes Y 
Y is resolved by X X eases Y 
X addresses Y X tackles Y 
X seeks a solution to Y X alleviates Y 
X do something about Y X corrects Y 
X solution to Y X is a solution to Y 

 Answering Track, listed in Table 4. TREC (Text REtrievial 
Conference) is a U.S. government sponsored competition on 
information retrieval held annually since 1992. In the Question-
Answering Track, the task for participating systems is to find 
answers to natural-language questions like those in Table 4. 

5.1 Results 
We used Minipar to parse about 1GB of newspaper text (AP 
Newswire, San Jose Mercury, and Wall Street Journal). Using the 
methods discussed in Section 3, we extracted 7 million paths from 
the parse trees (231,000 unique) and stored them in a triple 
database. 

The second column of Table 5 shows the paths that we identified 
from the TREC-8 questions. For some questions, more than one 
path was identified. For others, no path was found. We compare 
the output of our algorithm with a set of manually generated 
paraphrases of the TREC-8 questions made available at ISI2. 

We also extracted paths from the manually generated paraphrases. 
For some paraphrases, an identical path is extracted. For example, 
“What things are manufactured by Peugeot?” and “What products 
are manufactured by Peugeot?” both map to the path “X is 
manufactured by Y”. The number of paths for the manually 
generated paraphrases of TREC-8 questions is shown in the third 
column of Table 5. 

For each of the paths p in the second column of Table 5, we ran 
the DIRT algorithm to compute its Top-40 most similar paths 
using the triple database. We then manually inspected the outputs 
and classified each extracted path as correct or incorrect. A path 
p' is judged correct if a sentence containing p' might contain an 
answer to the question from which p was extracted. Consider 
question Q3 in Table 4 where we have p = “X manufactures Y” 
and we find p' = “X’s Y factory” as one of p’s Top-40 most similar 
paths. Since “Peugeot’s car factory” might be found in some 
corpus, p' is judged correct. Note that not all sentences containing 
p' necessarily contain an answer to Q3 (e.g. “Peugeot’s Sochaux 
factory” gives the location of a Peugeot factory in France). The 
fourth column in Table 5 shows the number of Top-40 most 
similar paths classified as correct and the fifth column gives the 
intersection between columns three and four. Finally, the last 
column in Table 5 gives the percentage of correctly classified 
paths. 
                                                                 
2 Available at http://www.isi.edu/~gerber/Variations2.txt 

5.2 Observations 
There is very little overlap between the automatically generated 
paths and the paraphrases, even though the percentage of correct 
paths in DIRT outputs can be quite high. This suggests that 
finding potentially useful inference rules is very difficult for 
humans as well as machines. Table 6 shows some of the correct 
paths among the Top-40 extracted by our system for two of the 
TREC-8 questions. Many of the variations generated by DIRT 
that are correct paraphrases are missing from the manually 
generated variations. It is difficult for humans to recall a list of 
paraphrases. However, given the output of our system, humans 
can easily identify the correct inference rules. Hence, at the least, 
our system would greatly ease the manual construction of 
inference rules for an information retrieval system. 

The performance of DIRT varies a great deal for different paths. 
Usually, the performance for paths with verb roots is much better 
than for paths with noun roots. A verb phrase typically has more 
than one modifier, whereas nouns usually take a smaller number 
of modifiers. When a word takes less than two modifiers, it will 
not be the root of any path. As a result, paths with noun roots 
occur less often than paths with verb roots, which explains the 
lower performance with respect to paths with noun roots. 

In Table 5, DIRT found no correct inference rules for Q2. This is 
due to the fact that Q2 does not have any entries in the triple 
database. 

6. Conclusion and Future Work 
Better tools are necessary to tap into the vast amount of textual 
data that is growing at an astronomical pace. Knowledge about 
inference relationships in natural language expressions would be 
extremely useful for such tools. To the best of our knowledge, this 
is the first attempt to discover such knowledge automatically from 
a large corpus of text. We introduced the Extended Distributional 
Hypothesis, which states that paths in dependency trees have 
similar meanings if they tend to connect similar sets of words. 
Treating paths as binary relations, our algorithm is able to 
generate inference rules by searching for similar paths. Our 
experimental results show that the Extended Distributional 
Hypothesis can indeed be used to discover very useful inference 

Table 4. First six questions from TREC-8. 

Q# QUESTION 

Q1 Who is the author of the book, “The Iron Lady: A Biography of 

Margaret Thatcher”? 

Q2 What was the monetary value of the Nobel Peace Prize in 1989? 

Q3 What does the Peugeot company manufacture? 

Q4 How much did Mercury spend on advertising in 1993? 

Q5 What is the name of the managing director of Apricot Computer? 

Q6 Why did David Koresh ask the FBI for a word processor? 

 

Table 5. Evaluation of Top-40 most similar paths. 

Q# PATHS MAN. DIRT INT. ACC. 

Q1 X is author of Y 7 21 2 52.5% 

Q2 X is monetary value of Y 6 0 0 N/A 

Q3 X manufactures Y 13 37 4 92.5% 

X spend Y 7 16 2 40.0% Q4 

spend X on Y 8 15 3 37.5% 

Q5 X is managing director of Y 5 14 1 35.0% 

X asks Y 2 23 0 57.5% 

asks X for Y 2 14 0 35.0% 

Q6 

X asks for Y 3 21 3 52.5% 
 

(Manual judgments...)
Thursday, March 23, 17



• Erkan et al.: protein-protein interactions

10

sults. We conclude in Section 6.

3 Sentence Similarity Based on
Dependency Parsing

In order to apply the semi-supervised harmonic
functions and its supervised counterpart kNN, and
the kernel based TSVM and SVMmethods, we need
to define a similarity measure between two sen-
tences. For this purpose, we use the dependency
parse trees of the sentences. Unlike a syntactic parse
(which describes the syntactic constituent structure
of a sentence), the dependency parse of a sentence
captures the semantic predicate-argument relation-
ships among its words. The idea of using depen-
dency parse trees for relation extraction in general
was studied by Bunescu and Mooney (2005a). To
extract the relationship between two entities, they
design a kernel function that uses the shortest path in
the dependency tree between them. The motivation
is based on the observation that the shortest path be-
tween the entities usually captures the necessary in-
formation to identify their relationship. They show
that their approach outperforms the dependency tree
kernel of Culotta and Sorensen (2004), which is
based on the subtree that contains the two entities.
We adapt the idea of Bunescu and Mooney (2005a)
to the task of identifying protein-protein interaction
sentences. We define the similarity between two
sentences based on the paths between two proteins
in the dependency parse trees of the sentences.
In this study we assume that the protein names

have already been annotated and focus instead on
the task of extracting protein-protein interaction sen-
tences for a given protein pair. We parse the sen-
tences with the Stanford Parser1 (de Marneffe et al.,
2006). From the dependency parse trees of each sen-
tence we extract the shortest path between a protein
pair.
For example, Figure 1 shows the dependency tree

we got for the sentence “The results demonstrated
that KaiC interacts rhythmically with KaiA, KaiB,
and SasA.” This example sentence illustrates that
the dependency path between a protein pair captures
the relevant information regarding the relationship
between the proteins better compared to using the
words in the unparsed sentence. Consider the pro-

1http://nlp.stanford.edu/software/lex-parser.shtml

tein pair KaiC and SasA. The words in the sentence
between these proteins are interacts, rhythmically,
with, KaiA, KaiB, and and. Among these words
rhythmically, KaiA, and and KaiB are not directly
related to the interaction relationship between KaiC
and SasA. On the other hand, the words in the depen-
dency path between this protein pair give sufficient
information to identify their relationship.
In this sentence we have four proteins (KaiC,

KaiA, KaiB, and SasA). So there are six pairs of
proteins for which a sentence may or may not be de-
scribing an interaction. The following are the paths
between the six protein pairs. In this example there
is a single path between each protein pair. However,
there may be more than one paths between a pro-
tein pair, if one or both appear multiple times in the
sentence. In such cases, we select the shortest paths
between the protein pairs.

ccomp

prep_with

results interacts

The

KaiA KaiB

rhytmically SasAthat KaiC

demonstrated

nsubj

complm nsubj advmod

conj_and conj_and

det

Figure 1: The dependency tree of the sentence “The
results demonstrated that KaiC interacts rhythmi-
cally with KaiA, KaiB, and SasA.”

1. KaiC - nsubj - interacts - prep with - SasA

2. KaiC - nsubj - interacts - prep with - SasA - conj and -
KaiA

3. KaiC - nsubj - interacts - prep with – SasA - conj and -
KaiB

4. SasA - conj and - KaiA

5. SasA - conj and - KaiB

6. KaiA – conj and – SasA - conj and - KaiB

If a sentence contains n different proteins, there
are

(

n
2

)

different pairs of proteins. We use machine
learning approaches to classify each sentence as an
interaction sentence or not for a protein pair. A sen-
tence may be an interaction sentence for one protein

Thursday, March 23, 17



• Next: movie personas and international 
relations

• Approach

• Representation: Dependency paths

• Learning: Topic models over dep. paths
(Bayesian admixtures)

11
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Learning Latent Personas of Film Characters

David Bamman, Brendan O’Connor and Noah Smith
School of Computer Science
Carnegie Mellon University

Association for 
Computational 
Linguistics, 2013
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THE VILLAIN

“The Plot, then, is the first
principle, and, as it were,
the soul of a tragedy:
Character holds the second
place.”

Poe cs I.VI
Aristotle, BCE
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“Aristotle was mistaken …
Character was a great factor in
Aristotle’s me, and no fine play
ever was or ever will be wri en
without it”

The Art of Drama c Wri ng
Lajos Egri,

Thursday, March 23, 17



PLOT

• Procedural scripts
• Schank and Abelson

, Regneri et al.

• Narra ve chains
• Chambers and

Jurafsky

• Plot structure
• Finlayson ,

Elsner ,
McIntyre and Lapata

, Goyal et al.
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CHARACTER

• Chambers and Jurafsky ( ),
Regneri et al. ( )

• En ty-centric coreference
(Haghighi and Klein )

• Seman c role induc on (Titov
and Klemen ev )
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THE VILLAIN

Text features:

• Does: kill, hunt, severs, chokes
• Has done to him: fights,

defeats, refuses
• Is described as: evil, frustrated,

lord

Thursday, March 23, 17
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DATA

, plot summaries extracted from English-language Wikipedia
• Stanford CoreNLP to tag, parse, extract named en es, resolve

coref
• Linguis c features extracted from the typed dependency tuples:

• Agent = nsubj or agent
• Pa ent = dobj, nsubjpass or iobj
• A ribute = nsubj/appos governors, nsubj, appos, amod, nn

dependents of en ty men ons

Freebase metadata
• Detailed genre ( non-mutually exclusive categories)
• Character/actor alignments

• Gender
• Age at me of movie’s release
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[Luke]1 watches as [Vader]2 kills [Kenobi]3.  
Then [Luke]1 runs away, while soldiers shoot at [him]1.
While saving [Leia]4 [he]1 figures out [...], and [she]4 says [...].

The young [Luke Skywalker]1 is a farmer ...

STEP 1: COREFERENCE
Noun phrases are clustered into entities.

[Luke]1 watches as [Vader]2 kills [Kenobi]3.  

Then [Luke]1 runs away, while soldiers shoot at [him]1.  

While saving [Leia]4 [he]1 figures out ..., and [she]4 wants ....

The young [Luke Skywalker]1 is a farmer ...

attribute attribute

agent-of-verb agent-of-verb patient-of-verb

agent-of-verb

agent-of-verb

patient-of-verb

agent-of-verb

STEP 2: SEMANTIC RELATIONS
Attributes and verb relations are harvested from syntactic dependency parses

patient-of-verb

- Parsing is useful: "kills" 
does not apply to Luke.
- Coreference is useful: 
"shoot" does apply to Luke.

We use Stanford CoreNLP 
for parsing and coreference
(accuracy is imperfect!)

agent-of-verb

NLP Pipeline

Step 2:  dependency path extraction

a class. This work offers a data-driven method for
answering these questions, presenting two proba-
blistic generative models for inferring latent char-
acter types.

This is the first work that attempts to learn ex-
plicit character personas in detail; as such, we
present a new dataset for character type induction
in film and a benchmark testbed for evaluating fu-
ture work.3

2 Data

2.1 Text

Our primary source of data comes from 42,306
movie plot summaries extracted from the
November 2, 2012 dump of English-language
Wikipedia.4 These summaries, which have a
median length of approximately 176 words,5

contain a concise synopsis of the movie’s events,
along with implicit descriptions of the characters
(e.g., “rebel leader Princess Leia,” “evil lord Darth
Vader”). To extract structure from this data, we
use the Stanford CoreNLP library6 to tag and
syntactically parse the text, extract entities, and
resolve coreference within the document. With
this structured representation, we extract linguistic
features for each character, looking at immediate
verb governors and attribute syntactic dependen-
cies to all of the entity’s mention headwords,
extracted from the typed dependency tuples pro-
duced by the parser; we refer to “CCprocessed”
syntactic relations described in de Marneffe and
Manning (2008):

• Agent verbs. Verbs for which the entity is an
agent argument (nsubj or agent).

• Patient verbs. Verbs for which the entity is
the patient, theme or other argument (dobj,
nsubjpass, iobj, or any prepositional argu-
ment prep *).

• Attributes. Adjectives and common noun
words that relate to the mention as adjecti-
val modifiers, noun-noun compounds, appos-
itives, or copulas (nsubj or appos governors,
or nsubj, appos, amod, nn dependents of an
entity mention).

3All datasets and software for replication can be found at
http://www.ark.cs.cmu.edu/personas.

4
http://dumps.wikimedia.org/enwiki/

5More popular movies naturally attract more attention on
Wikipedia and hence more detail: the top 1,000 movies by
box office revenue have a median length of 715 words.

6
http://nlp.stanford.edu/software/

corenlp.shtml

These three roles capture three different ways in
which character personas are revealed: the actions
they take on others, the actions done to them, and
the attributes by which they are described. For ev-
ery character we thus extract a bag of (r, w) tu-
ples, where w is the word lemma and r is one
of {agent verb, patient verb, attribute} as iden-
tified by the above rules.

2.2 Metadata

Our second source of information consists of char-
acter and movie metadata drawn from the Novem-
ber 4, 2012 dump of Freebase.7 At the movie
level, this includes data on the language, country,
release date and detailed genre (365 non-mutually
exclusive categories, including “Epic Western,”
“Revenge,” and “Hip Hop Movies”). Many of the
characters in movies are also associated with the
actors who play them; since many actors also have
detailed biographical information, we can ground
the characters in what we know of those real peo-
ple – including their gender and estimated age at
the time of the movie’s release (the difference be-
tween the release date of the movie and the actor’s
date of birth).

Across all 42,306 movies, entities average 3.4
agent events, 2.0 patient events, and 2.1 attributes.
For all experiments described below, we restrict
our dataset to only those events that are among the
1,000 most frequent overall, and only characters
with at least 3 events. 120,345 characters meet this
criterion; of these, 33,559 can be matched to Free-
base actors with a specified gender, and 29,802 can
be matched to actors with a given date of birth. Of
all actors in the Freebase data whose age is given,
the average age at the time of movie is 37.9 (stan-
dard deviation 14.1); of all actors whose gender
is known, 66.7% are male.8 The age distribution
is strongly bimodal when conditioning on gender:
the average age of a female actress at the time of a
movie’s release is 33.0 (s.d. 13.4), while that of a
male actor is 40.5 (s.d. 13.7).

3 Personas

One way we recognize a character’s latent type
is by observing the stereotypical actions they

7
http://download.freebase.com/

datadumps/

8Whether this extreme 2:1 male/female ratio reflects an
inherent bias in film or a bias in attention on Freebase (or
Wikipedia, on which it draws) is an interesting research ques-
tion in itself.

353

Rule-based semantic relation 
normalization from syntactic deps

Want: for every entity,
bag of (rel, word) pairs

(Unary, not binary, relations)
Step 1:  noun phrase coreference => entities

more recent, open-source rule-based 
postprocessors: PropS, PredPatt
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DIRICHLET PERSONA MODEL

..θ.
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• θ document-persona mixture:
∼ Dir(α)

• p persona: ∼ Cat(θ)

• ψp,r persona-topic mixture: ∼ Dir(νr)

• r observed word type

• z word class: ∼ Cat(ψp,r)

• φz topic-word mixture: ∼ Dir(γ)

• w word token: ∼ Cat(φz)

• W plate: mul ple words

• E plate: mul ple en es

• D plate: mul ple plot summaries

Inference: CGS with slice sampling on
the priors.
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• z word class: ∼ Cat(ψp,r)

• φz topic-word mixture: ∼ Dir(γ)

• w word token: ∼ Cat(φz)

• W plate: mul ple words

• E plate: mul ple en es
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the priors.
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EVALUATION I:
NAMES

Gold clusters: characters with the
same name

• Sequels
• Remakes

Noise: “Street thug”

unique character names used
twice in data; n= , .
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EVALUATION II:
TV TROPES

Gold clusters: manually clustered
characters from

• “The Surfer Dude”
• “Arrogant Kung-Fu Guy”
• “Hardboiled Detec ve”
• “The Klutz”
• “The Valley Girl

character tropes containing
characters
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VARIATION OF INFORMATION
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PURITY
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PURITY IMPROVEMENT
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TOPICS φ

• unite marry woo elope court
• purchase sign sell owe buy
• shoot aim overpower
interrogate kill

• explore inves gate uncover
deduce

• woman friend wife sister
husband

• witch villager kid boy mom
• reply say men on answer
shout

• pop li crawl laugh shake
• sing perform cast produce
dance

• approve die suffer forbid
collapse

• werewolf mother parent killer
father

• decapitate bite impale strangle
stalk

• invade sail travel land explore
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PERSONAS

• dark major henchman warrior
sergeant

• shoot aim overpower
interrogate kill

• Ac on
• Male
• War Film

• Jason Bourne (Bourne
Supremacy)

• Jack Traven (Speed)
• Jean-Claude (Taken)
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PERSONAS

• capture corner transport
imprison trap

• infiltrate deduce leap evade
obtain

• flee escape swim hide manage

• Female
• Ac on
• Adventure

• Ginormica (Monsters vs.
Aliens)

• Aang (The Last Airbender),
• Carly (Transformers)
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PERSONAS

• reply say men on answer
shout

• talk tell reassure assure calm
• flirt reconcile date dance
forgive

• Female
• Comedy
• Romance Film

• Graham (The Holiday)
• Abby Richter (The Ugly Truth)
• Anna Sco (No ng Hill)
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Personas

• http://www.cs.cmu.edu/~ark/personas/

• Unsupervised learning, discovery, and validation

32
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• stopped here 3/23

33
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34

03 - EXPRESS INTENT TO COOPERATE
07 - PROVIDE AID
15 - EXHIBIT MILITARY POSTURE

191 - Impose blockade, restrict movement
not_ allow to_ enter   ;mj 02 aug 2006 
barred travel    
block traffic from   ;ab 17 nov 2005 
block road   ;hux 1/7/98 

Issue:  Hard to maintain and adapt to new domains 

Event classes
(~200)

Dictionary:
Verb patterns per event class

(~15000)

Event data through knowledge engineering
[Schrodt 1994, Leetaru and Schrodt 2013]

Extract events from news text

Thursday, March 23, 17
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Data: twenty years of news articles

[O’Connor, Stewart, and Smith, Proc. of ACL, 2013]Our approach
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Natural Language Processing

Event phrases of 
actor interactions

GBR IRN

Data: twenty years of news articles

[O’Connor, Stewart, and Smith, Proc. of ACL, 2013]Our approach
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Natural Language Processing

Event phrases of 
actor interactions

GBR IRN

Data: twenty years of news articles

[O’Connor, Stewart, and Smith, Proc. of ACL, 2013]Our approach
 

Probabilistic Graphical Model
Purely from textual data, jointly learns both

(1) Event class dictionaries (2) Political dynamics  

arrive in,  visit,  meet with,  travel to,  leave,  
hold with,  meet,  meet in,  fly to,  be in,  arrive 
for talk with,  say in,  arrive with,  head to,  
hold in,  due in,  leave for,  make to,  arrive to,  

accuse,  blame,  say,  break with,  sever with,  
blame on,  warn,  call,  attack,  rule with,  
charge,  say←ccomp come from,  say ←ccomp,  
suspect,  slam,  accuse government ←poss,  

kill in,  have troops in,  die in,  be in,  wound 
in,  have soldier in,  hold in,  kill in attack in,  
remain in,  detain in,  have in,  capture in,  stay 
in,  about ←pobj troops in,  kill,  have troops 

“diplomacy”

“verbal conflict”

“material conflict” 0.
0

0.
4

0.
8

Israeli−Palestinian Diplomacy

A B C D E F

1994 1997 2000 2002 2005 2007

C: U.S. Calls for West Bank 
Withdrawal
D: Deadlines for Wye River Peace 
Accord
E: Negotiations in Mecca
F: Annapolis Conference
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Event Extraction:
Who did what to whom?

36

Source (s):
Recipient (r):

Event phrase (w):

[e.g.  Dowty 1991]
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Match
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Recipient (r):

Event phrase (w):

Extract
event phrase

[e.g.  Dowty 1991]

Thursday, March 23, 17



Event Extraction:
Who did what to whom?

36

GBR IRN
Match

country name list

Source (s):
Recipient (r):

Event phrase (w):

Extract
event phrase

GBR
IRN
<--nsubj-- meet --prep--> with --pobj-->

“X  meets with  Y” Proto-role terminology 
(Dowty 1991):  Agent, Patient

[e.g.  Dowty 1991]
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Event Extraction:
Who did what to whom?

37

GBR IRN
Match

country name list
Extract

event phrase

• Structured linguistic analysis pipeline

• Document classifier

• Part-of-speech tagging

• Syntactic parsing  (rare in text-as-data)  (CoreNLP)

• POS and parse filtering rules

• Factivity, verb paths, and parse quality
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s=ISR, r=PSE s=USA, r=FRA

1 2 1 2

✓s,r,t = ✓s,r,t =
1 2

✓s,r,t =
1 2

✓s,r,t =

agree with,  arrest,  be <-xcomp meet,  carry in,  commit to,  concern over,  consider,  continue in,  fire at target in,  hit,  indict,
meet with,  occupy,  ratchet pressure on,  reject,  release to,  release with,  say <-ccomp be to,  scuffle with,  shell,
start around,  strike,  take control of,  travel <-xcomp meet with,  welcome,  welcome by,  win,  win from,  wound in

�2�1Event class dictionaries

t= Jul 15-21, 2002
say <-ccomp be to
release to
take control of
occupy
wound in
scuffle with
be <-xcomp meet
meet with
meet with
arrest

t= Jul 3-9, 2006
commit to
strike
carry in
continue in
reject
fire at target in
start around
ratchet pressure on
shell
hit 

t= Dec 22-28, 2003
release with
welcome
welcome by
win
agree with
indict
win from
concern over
win
indict 

t= Feb 2-8, 1998
travel <-xcomp meet with
consider
meet with
meet with
meet with 

Contextual event class probabilities
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�2�1Event class dictionaries

t= Jul 15-21, 2002
say <-ccomp be to
release to
take control of
occupy
wound in
scuffle with
be <-xcomp meet
meet with
meet with
arrest

t= Jul 3-9, 2006
commit to
strike
carry in
continue in
reject
fire at target in
start around
ratchet pressure on
shell
hit 

t= Dec 22-28, 2003
release with
welcome
welcome by
win
agree with
indict
win from
concern over
win
indict 

t= Feb 2-8, 1998
travel <-xcomp meet with
consider
meet with
meet with
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Contextual event class probabilities
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Case study

39

meet with,  sign with,  praise,  say with,  
arrive in,  host,  tell,  welcome,  join,  thank,  
meet,  travel to,  criticize,  leave,  take to,  
begin to,  begin with,  summon,  reach 
with,  hold with

0.
0

0.
4

0.
8

Israeli−Palestinian Diplomacy

A B C D E F

1994 1997 2000 2002 2005 2007

C: U.S. Calls for West Bank 
Withdrawal
D: Deadlines for Wye River Peace 
Accord
E: Negotiations in Mecca
F: Annapolis Conference

A: Israel-Jordan Peace 
Treaty
B: Hebron Protocol
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Withdrawal
D: Deadlines for Wye River Peace 
Accord
E: Negotiations in Mecca
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A: Israel-Jordan Peace 
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meet with,  sign with,  praise,  say with,  
arrive in,  host,  tell,  welcome,  join,  thank,  
meet,  travel to,  criticize,  leave,  take to,  
begin to,  begin with,  summon,  reach 
with,  hold with
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0.
0

0.
4

0.
8

Israeli Use of Force Tradeoff

1994 1997 2000 2002 2005 2007

Second Intafada BeginsOslo II Signed

kill, fire at, enter, kill in, attack, raid, strike 
in, move into, pound, bomb

impose on, seal, capture from, seize 
from, arrest, ease closure of, close, 
deport, close with, release

Second Intifada            Oslo II           

Validation of unsupervised models...
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Israeli Use of Force Tradeoff

1994 1997 2000 2002 2005 2007

Second Intafada BeginsOslo II Signed

kill, fire at, enter, kill in, attack, raid, strike 
in, move into, pound, bomb

impose on, seal, capture from, seize 
from, arrest, ease closure of, close, 
deport, close with, release

Correlates to conflict? Semantic coherence?

Second Intifada            Oslo II           

Validation of unsupervised models...
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Evaluations
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Lexicon / 
Ontology 
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44http://web.stanford.edu/~jurafsky/mintz.pdf

Feature type Left window NE1 Middle NE2 Right window
Lexical [] PER [was/VERB born/VERB in/CLOSED] LOC []
Lexical [Astronomer] PER [was/VERB born/VERB in/CLOSED] LOC [,]
Lexical [#PAD#, Astronomer] PER [was/VERB born/VERB in/CLOSED] LOC [, Missouri]

Syntactic [] PER [*
s

was +
pred

born +
mod

in +
pcomp�n

] LOC []
Syntactic [Edwin Hubble +

lex�mod

] PER [*
s

was +
pred

born +
mod

in +
pcomp�n

] LOC []
Syntactic [Astronomer +

lex�mod

] PER [*
s

was +
pred

born +
mod

in +
pcomp�n

] LOC []
Syntactic [] PER [*

s

was +
pred

born +
mod

in +
pcomp�n

] LOC [+
lex�mod

,]
Syntactic [Edwin Hubble +

lex�mod

] PER [*
s

was +
pred

born +
mod

in +
pcomp�n

] LOC [+
lex�mod

,]
Syntactic [Astronomer +

lex�mod

] PER [*
s

was +
pred

born +
mod

in +
pcomp�n

] LOC [+
lex�mod

,]
Syntactic [] PER [*

s

was +
pred

born +
mod

in +
pcomp�n

] LOC [+
inside

Missouri]
Syntactic [Edwin Hubble +

lex�mod

] PER [*
s

was +
pred

born +
mod

in +
pcomp�n

] LOC [+
inside

Missouri]
Syntactic [Astronomer +

lex�mod

] PER [*
s

was +
pred

born +
mod

in +
pcomp�n

] LOC [+
inside

Missouri]

Table 3: Features for ‘Astronomer Edwin Hubble was born in Marshfield, Missouri’.

Astronomer Edwin Hubble was born in Marshfield , Missouri

lex-mod s pred mod pcomp-n lex-mod

inside

Figure 1: Dependency parse with dependency path from ‘Edwin Hubble’ to ‘Marshfield’ highlighted in
boldface.

5.2 Syntactic features

In addition to lexical features we extract a num-
ber of features based on syntax. In order to gener-
ate these features we parse each sentence with the
broad-coverage dependency parser MINIPAR (Lin,
1998).

A dependency parse consists of a set of words
and chunks (e.g. ‘Edwin Hubble’, ‘Missouri’,
‘born’), linked by directional dependencies (e.g.
‘pred’, ‘lex-mod’), as in Figure 1. For each
sentence we extract a dependency path between
each pair of entities. A dependency path con-
sists of a series of dependencies, directions and
words/chunks representing a traversal of the parse.
Part-of-speech tags are not included in the depen-
dency path.

Our syntactic features are similar to those used
in Snow et al. (2005). They consist of the conjunc-
tion of:

• A dependency path between the two entities
• For each entity, one ‘window’ node that is not part of

the dependency path

A window node is a node connected to one of the
two entities and not part of the dependency path.
We generate one conjunctive feature for each pair
of left and right window nodes, as well as features
which omit one or both of them. Thus each syn-
tactic row in Table 3 represents a single syntactic
feature.

5.3 Named entity tag features
Every feature contains, in addition to the content
described above, named entity tags for the two en-
tities. We perform named entity tagging using the
Stanford four-class named entity tagger (Finkel et
al., 2005). The tagger provides each word with a
label from {person, location, organization, miscel-
laneous, none}.

5.4 Feature conjunction
Rather than use each of the above features in the
classifier independently, we use only conjunctive
features. Each feature consists of the conjunc-
tion of several attributes of the sentence, plus the
named entity tags. For two features to match,
all of their conjuncts must match exactly. This
yields low-recall but high-precision features. With
a small amount of data, this approach would be
problematic, since most features would only be
seen once, rendering them useless to the classifier.
Since we use large amounts of data, even complex
features appear multiple times, allowing our high-
precision features to work as intended. Features
for a sample sentence are shown in Table 3.

6 Implementation

6.1 Text
For unstructured text we use the Freebase
Wikipedia Extraction, a dump of the full text of all
Wikipedia articles (not including discussion and
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• Adjective and adverb modifiers in reviews for 
economic analysis

45
http://pages.stern.nyu.edu/~aghose/kdd2007.pdf

http://crowdsourcing-class.org/readings/downloads/nlp/opinion-mining-using-econometrics.pdf
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