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ABSTRACT
A fault-scalable service can be configured to tolerate increas-
ing numbers of faults without significant decreases in per-
formance. The Query/Update (Q/U) protocol is a new tool
that enables construction of fault-scalable Byzantine fault-
tolerant services. The optimistic quorum-based nature of
the Q/U protocol allows it to provide better throughput
and fault-scalability than replicated state machines using
agreement-based protocols. A prototype service built using
the Q/U protocol outperforms the same service built us-
ing a popular replicated state machine implementation at
all system sizes in experiments that permit an optimistic
execution. Moreover, the performance of the Q/U protocol
decreases by only 36% as the number of Byzantine faults tol-
erated increases from one to five, whereas the performance
of the replicated state machine decreases by 83%.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Dis-
tributed Systems; D.4.5 [Operating Systems]: Reliabil-
ity—Fault-tolerance

General Terms
Reliability, Security, Design

Keywords
Fault-scalability, Byzantine fault-tolerance, quorums, ser-
vices, replicated state machines

1. INTRODUCTION
Today’s distributed services face unpredictable network

delays, arbitrary failures induced by increasing software
complexity, and even malicious behavior and attacks from
within compromised components. Like many, we believe it
is important to design for these eventualities. In fact, it
is increasingly important to design for multiple faults and
for graceful degradation in the face of faults. Services are
being designed for a massive scale in open clusters (e.g.,
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like the Farsite project [3]), over the WAN (e.g., like the
OceanStore project [34]), and in administration-free clus-
ters that allow components to fail in place (e.g., like the
Collection of Intelligent Bricks project [31]). In such set-
tings, timing faults (such as those due to network delays and
transient network partitions) and failures of multiple com-
ponents, some of which may be Byzantine in nature (i.e.,
arbitrary or malicious), may arise. Moreover, rates of server
and client crashes in such settings will likely be higher than
in carefully-administered settings.

There is a compelling need for services (e.g., namespace,
key management, metadata, and LDAP) and distributed
data structures (e.g., b-trees, queues, and logs) to be efficient
and fault-tolerant. Various services and data structures that
efficiently tolerate benign failures have been developed (e.g.,
Paxos [21], Boxwood [25], and Chain Replication [38]). In
the context of tolerating Byzantine faults, the focus has been
on building services via replicated state machines using an
agreement-based approach [23, 36]. Examples of such sys-
tems include the BFT system of Castro and Liskov [9] and
the SINTRA system of Cachin and Poritz [8].

We define a fault-scalable service to be one in which perfor-
mance degrades gradually, if at all, as more server faults are
tolerated. Our experience is that Byzantine fault-tolerant
agreement-based approaches are not fault-scalable: their
performance drops rapidly as more faults are tolerated be-
cause of server-to-server broadcast communication and the
requirement that all correct servers process every request.

We have developed the Query/Update (Q/U) protocol as
a fault-scalable alternative to these approaches. The Q/U
protocol is an efficient, optimistic, quorum-based protocol
for building Byzantine fault-tolerant services. Services built
with the Q/U protocol are fault-scalable. The Q/U protocol
provides an operations-based interface that allows services to
be built in a similar manner to replicated state machines [23,
36]. Q/U objects export interfaces comprised of determinis-
tic methods: queries that do not modify objects and updates
that do. Like a replicated state machine, this allows objects
to export narrow interfaces that limit how faulty clients may
modify objects [36]. A client’s update of an object is con-
ditioned on the object version last queried by the client.
An update succeeds only if the object has not been modi-
fied since the client’s last query in which case it is retried.
Moreover, the Q/U protocol supports multi-object updates
that atomically update a set of objects conditioned on their
respective object versions.

The Q/U protocol operates correctly in an asynchronous
model (i.e., no timing assumptions are necessary for safety),
tolerates Byzantine faulty clients, and tolerates Byzantine
faulty servers. Queries and updates in the Q/U protocol are
strictly serializable [6]. In a benign execution (i.e., an ex-
ecution in which components act according to specification
or crash), queries and updates are obstruction-free [14]. The
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“cost” of achieving these properties with the Q/U protocol,
relative to other approaches, is an increase in the number of
required servers: the Q/U protocol requires 5b+1 servers to
tolerate b Byzantine faulty servers, whereas most agreement-
based approaches require 3b+1 servers. Given the observed
performance of the Q/U protocol, we view this as a good
trade-off — the cost of servers continues to decline, while
the cost of service failures does not.

The Q/U protocol achieves its performance and fault-
scalability through novel integration of a number of tech-
niques. Optimism is enabled by the use of non-destructive
updates at versioning servers, which permits operations to
efficiently resolve contention and/or failed updates, e.g., by
querying earlier object versions and completing partial up-
dates. We leverage this versioning together with a logical
timestamping scheme in which each update operation is as-
signed a timestamp that depends both on the contents of
the update and the object state on which it is conditioned.
It is thus impossible for a faulty client to submit different
updates at the same timestamp—the updates intrinsically
have different timestamps—and, so, reaching agreement on
the update at a given timestamp is unnecessary. We com-
bine these techniques with quorums and a strategy for ac-
cessing them using a preferred quorum per object so as to
make server-to-server communication an exceptional case.
Finally, we employ efficient cryptographic techniques. Our
integration of these techniques has enabled, to our knowl-
edge, the first fault-scalable, Byzantine-resilient implemen-
tation for arbitrary services.

We implemented a prototype library for the Q/U pro-
tocol. We used this library to build two services: a
metadata service that exports NFSv3 metadata methods,
and a counter object that exports increment (increment)
and fetch (fetch) methods. Measurements of these pro-
totype services support our claims: the prototype Q/U
services are efficient and fault-scalable. In contrast, the
throughput of BFT [9], a popular agreement-based Byzan-
tine fault-tolerant replicated state machine implementation,
drops sharply as the number of faults tolerated increases.
The prototype Q/U-based counter outperforms a similar
counter object implemented with BFT at all system sizes in
contention-free experiments. More importantly, it is more
fault-scalable. Whereas the performance of the Q/U-based
counter object decreases by 36% as the number of faults tol-
erated is increased from one to five, the performance of the
BFT-based counter object decreases by 83%.

2. EFFICIENCY AND SCALABILITY
In a Byzantine fault-tolerant quorum-based protocol

(e.g., [26, 28, 10, 30, 41, 11]), only quorums (subsets) of
servers process each request and server-to-server communi-
cation is generally avoided. In a Byzantine fault-tolerant
agreement-based protocol (e.g., [7, 33, 18, 9, 8, 20]), on the
other hand, every server processes each request and per-
forms server-to-server broadcast. As such, these approaches
exhibit fundamentally different fault-scalability characteris-
tics.

The expected fault-scalability of quorum- and agreement-
based approaches is illustrated in Figure 1. A protocol that
is fault-scalable provides throughput that degrades gradu-
ally, if at all, as more server faults are tolerated. Because
each server must process every request in an agreement-
based protocol, increasing the number of servers cannot in-
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Figure 1: Illustration of fault-scalability. As the
number of server faults tolerated increases (right
axis, dashed lines), the number of servers required
(x-axis) by quorum- and agreement-based protocols
increases. In theory, throughput (left axis, solid
lines) of quorum-based approaches (e.g., based on
a threshold quorom) is sustained as more faults are
tolerated, whereas agreement-based approaches do
not have this property. In practice, throughput of
prototype Q/U-based services degrades somewhat
as more faults are tolerated.

crease throughput. Indeed, since server-to-server broadcast
is required, the useful work each server can do decreases
as the number of servers increases. As illustrated, though,
agreement-based protocols generally require fewer servers
than quorum-based protocols for a given degree of fault-
tolerance.

With quorum-based protocols, as the number of server
faults tolerated increases, so does the quorum size. As such,
the work required of a client grows as quorum size increases.
Servers do a similar amount of work per operation regardless
of quorum size. However, the Q/U protocol does rely on
some cryptographic techniques (i.e., authenticators which
are discussed in §3) whose costs grow with quorum size.

2.1 Efficiency
Much of the efficiency of the Q/U protocol is due to its

optimism. During failure- and concurrency-free periods,
queries and updates occur in a single phase. To achieve
failure atomicity, most pessimistic protocols employ at least
two phases (e.g., a prepare and a commit phase). The opti-
mistic approach to failure atomicity does not require a pre-
pare phase; however, it does introduce the need for clients
to repair (write-back) inconsistent objects. To achieve con-
currency atomicity, most pessimistic protocols either rely
on a central point of serialization (e.g., a primary) or em-
ploy locks (or leases) to suppress other updates to an object
while the lock-holder queries and updates the object. The
optimistic approach to concurrency atomicity [19] does not
require lock acquisition, but does introduce the possibility
that updates are rejected (and that clients may livelock).

The Q/U protocol relies on versioning servers for its op-
timism. Every update method that a versioning server in-
vokes results in a new object version at that server. Queries
complete in a single phase so long as all of the servers in
the quorum contacted by a client share a common latest ob-
ject version. Updates complete in a single phase so long as
none of the servers in the quorum contacted by a client have
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updated the object since it was queried by the client. To
promote such optimistic execution, clients introduce locality
to their quorum accesses and cache object version informa-
tion. Clients initially send requests to an object’s preferred
quorum and do not issue queries prior to updates for ob-
jects whose version information they cache. Finally, version-
ing servers reduce the cost of protecting against Byzantine
faulty clients, since servers need not agree on client requests
before processing them.

Many prior protocols, both pessimistic and optimistic,
make use of versions and/or logical timestamps. One dif-
ference with prior protocols is that server retention of ob-
ject versions is used to efficiently tolerate Byzantine faulty
clients. Most protocols that tolerate Byzantine faulty clients
rely on digital signatures or server-to-server broadcasts. An-
other difference is that there is no concept of a commit phase
in the Q/U protocol (not even a lazy commit).

2.2 Throughput-scalability
The primary benefit that the Q/U protocol gains from

the quorum-based approach is fault-scalability. Quorum-
based protocols can also exhibit throughput-scalability : ad-
ditional servers, beyond those necessary for providing the de-
sired fault-tolerance, can increase throughput [32, 27]. The
experience of database practitioners suggests that it may
be difficult to take advantage of quorum-based throughput-
scalability though. For example, Jiménez-Peris et al. re-
cently concluded that a write-all read-one approach is better
for a large range of database applications than a quorum-
based approach [16]. But their analysis ignores concurrency
control and is based on two phase commit-based data repli-
cation with fail-stop failures in a synchronous model. The
Q/U protocol provides both concurrency and failure atomic-
ity, provides service replication rather than data replication,
relies on no synchrony assumptions, and relies on few failure
assumptions. As another example, Gray et al. identify that
the use of quorum-based data replication in databases leads
to the scaleup pitfall : the higher the degree of replication,
the higher the rate of deadlocks or reconciliations [12]. But,
databases are not designed to scale up gracefully. The ability
to update multiple objects atomically with the Q/U proto-
col allows services to be decomposed into fine-grained Q/U
objects. Fine-grained objects reduce per-object contention,
making optimistic execution more likely, enabling parallel
execution of updates to distinct objects, and improving over-
all service throughput. If a service can be decomposed into
fine-grained Q/U objects such that the majority of queries
and updates are to individual objects, and the majority of
multi-object updates span a small number of objects, then
the scaleup pitfall can be avoided. Our experience building
a Q/U-NFSv3 metadata service suggests that it is possi-
ble to build a substantial service comprised of fine-grained
objects. For example, most metadata operations access a
single object or two distinct objects. (The only operation
that accesses more than two objects is the rename opera-
tion which accesses up to four objects.) In response to some
criticisms of quorum-based approaches, Wool argues that
quorum-based approaches are well-suited to large scale dis-
tributed systems that tolerate malicious faults [40]. Wool’s
arguments support our rationale for using a quorum-based
approach to build fault-scalable, Byzantine fault-tolerant
services.

Many recent fault-tolerant systems achieve throughput-
scalability by partitioning the services and data structures
they provide (e.g., [24, 13, 3, 34, 25, 38]). By partition-
ing different objects into different server groups, throughput
scales with the addition of servers. However, to partition,
these systems either forego the ability to perform opera-
tions that span objects (e.g., [24, 13, 34, 38]) or make use of
a special protocol/service for “transactions” that span ob-
jects (e.g., [3, 25]). Ensuring the correctness and atomicity
of operations that span partitions is complex and potentially
quite expensive, especially in an asynchronous, Byzantine
fault-tolerant manner. To clarify the problem with parti-
tioning, consider a rename operation that moves files be-
tween directories in a metadata service. If different server
groups are responsible for different directories, an inter-
server group protocol is needed to atomically perform the
rename operation (e.g., as is done in Farsite [3]). Parti-
tioning a service across server groups introduces dependen-
cies among server groups. Such dependencies necessarily re-
duce the reliability of the service, since many distinct server
groups must be available simultaneously.

3. THE QUERY/UPDATE PROTOCOL
In this section, we begin with the system model and an

overview of the Q/U protocol for individual objects. We
discuss constraints on the quorum system needed to ensure
the correctness of the Q/U protocol. We present detailed
pseudo-code and discuss implementation details and design
trade-offs. To make the Q/U protocol’s operation more con-
crete, we describe an example system execution. We de-
scribe the extension of the Q/U protocol for individual ob-
jects to multiple objects. Finally, we discuss the correctness
of the Q/U protocol.

3.1 System model
To ensure correctness under the broadest possible con-

ditions, we make few assumptions about the operating en-
vironment. An asynchronous timing model is used; no as-
sumptions are made about the duration of message transmis-
sion delays or the execution rates of clients and servers (ex-
cept that they are non-zero and finite). Clients and servers
may be Byzantine faulty [22]: they may exhibit arbitrary,
potentially malicious, behavior. Clients and servers are as-
sumed to be computationally bounded so that cryptographic
primitives are effective. Servers have persistent storage that
is durable through a crash and subsequent recovery.

The server failure model is a hybrid failure model [37] that
combines Byzantine failures with crash-recovery failures (as
defined by Aguilera et al. [4]). A server is benign if it is cor-
rect or if it follows its specification except for crashing and
(potentially) recovering; otherwise, the server is malevolent.
Since the Byzantine failure model is a strict generalization
of the crash-recovery failure model, another term — malevo-
lent — is used to categorize those servers that in fact exhibit
out-of-specification, non-crash behavior. A server is faulty
if it crashes and does not recover, crashes and recovers ad
infinitum, or is malevolent.

We extend the definition of a fail prone system given in
Malkhi and Reiter [26] to accommodate this hybrid failure
model. We assume a universe U of servers such that |U | = n.
The system is characterized by two sets: T ⊆ 2U and B ⊆ 2U

(the notation 2set denotes the power set of set). In any
execution, all faulty servers are included in some T ∈ T and
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all malevolent servers are included in some B ∈ B. It follows
from the definitions of faulty and malevolent that B ⊆ T .

The Q/U protocol is a quorum-based protocol. A quo-
rum system Q ⊆ 2U is a non-empty set of subsets of U ,
every pair of which intersect; each Q ∈ Q is called a quo-
rum. Constraints on the quorum system are described in
§3.3. For simplicity, in the pseudo-code (§3.4) and the ex-
ample execution (§3.6) presented in this paper, we focus on
threshold quorums. With a threshold quorum system, a fail
prone system can simply be described by bounds on the to-
tal number of faulty servers: there are no more than t faulty
servers of which no more than b ≤ t are malevolent.

Point-to-point authenticated channels exist among all of
the servers and between all of the clients and servers. An
infrastructure for deploying shared symmetric keys among
pairs of servers is assumed. Finally, channels are assumed
to be unreliable, with the same properties as those used by
Aguilera et al. in the crash-recovery model (i.e., channels
do not create messages, channels may duplicate messages
a finite number of times, and channels may drop messages
a finite number of times) [4]. Such channels can be made
reliable by repeated resends of requests.

3.2 Overview
This section overviews the the Q/U protocol for an indi-

vidual object.

Terminology. Q/U objects are replicated at each of the n

servers in the system. Q/U objects expose an operations-
based interface of deterministic methods. Read-only meth-
ods are called queries, and methods that modify an object’s
state are called updates. Methods exported by Q/U objects
take arguments and return answers. The words “operation”
and “request” are used as follows: clients perform opera-
tions on an object by issuing requests to a quorum (subset)
of servers. A server receives requests; if it accepts a request,
it invokes a method on its local object replica.

Each time a server invokes an update method on its copy
of the object, a new object version results. The server retains
the object version as well as its associated logical timestamp
in a version history called the replica history. Servers return
replica histories to clients in response to requests.

A client stores replica histories returned by servers in its
object history set (OHS), which is an array of replica histo-
ries indexed by server. In an asynchronous system, clients
only receive responses from a subset of servers. As such,
the OHS represents the client’s partial observation of global
system state at some point in time. Timestamps in the
replica histories in the OHS are referred to as candidates.
Candidates are classified to determine which object version
a client method should be invoked on at the servers. Note
that there is a corresponding object version for every candi-
date. Figure 2 illustrates candidates, replica histories, and
the object history set.

Client side. Because of the optimistic nature of the Q/U
protocol, some operations require more client steps to com-
plete than others. In an optimistic execution, a client com-
pletes queries and updates in a single phase of communi-
cation with servers. In a non-optimistic execution, clients
perform additional repair phases that deal with failures and
contention.

The operations-based interface allows clients to send op-
erations and receive answers from the service; this provides
light-weight client-server communication relative to read-
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Figure 2: Example of client and server state.

ing and writing entire objects. To perform an operation,
a client first retrieves the object history set. A client’s op-
eration is said to condition on its object history set (the
conditioned-on OHS). The client places the object history
set, the method to invoke, and the arguments for the method
in a request it sends to servers. By sending the object his-
tory set, the client communicates information to the servers
about global system state.

Both clients and servers classify the conditioned-on OHS
to determine which object version a client operation should
be performed on at the servers. Classification of a candi-
date is based on the subset of server replica histories in the
object history set in which it appears. (For threshold quo-
rums, classification of a candidate is based on its order, the
number of replica histories in the object history set in which
it appears.) If all of the replica histories in the conditioned-
on OHS have the same latest candidate, this candidate is
classified as complete. This is illustrated in Figure 2.

The optimistic nature of the Q/U protocol allows a client
to complete queries, and updates conditioned on a cached
object history set, in a single phase of client-server commu-
nication during failure- and concurrency-free access. Clients
cache object history sets. This allows clients to avoid retriev-
ing an object history set before every update operation. So
long as no other clients update the object, the cached ob-
ject history set remains current. Only the quorum of servers
that accepted the last update operation have the latest ob-
ject version. As such, it is most efficient for these servers to
process the subsequent update operation. To promote local-
ity of access, and thus efficiency, each object has a preferred
quorum at which clients try to access it first. In the case
of server failures, clients may have to access a non-preferred
quorum. Single phase operations are premised on the client’s
cached object history set being current (concurrency-free ac-
cess) and on accessing an object via its preferred quorum
(failure-free access).

Server side. Upon receipt of a request, a server first vali-
dates the integrity of the conditioned-on OHS. Each server
pairs an authenticator with its replica history and clients
include the authenticators in the conditioned-on OHS. Au-
thenticators are lists of HMACs that prevent malevolent
clients and servers from fabricating replica histories for
benign servers. Servers cull replica histories from the
conditioned-on OHS for which they cannot validate the au-
thenticator. Authenticators are necessary because servers
do not directly exchange replica histories with one another;
replica histories are communicated between servers via the
client.

If the conditioned-on OHS passes integrity validation, the
server performs classification. Next, a server validates that
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the conditioned-on OHS is current. The server does this
by comparing the timestamps of candidates in its replica
history with the current timestamp classification identifies
for the conditioned-on OHS. If the server has a higher time-
stamp in its replica history then the current timestamp iden-
tified by classification, the conditioned-on OHS is not cur-
rent. Validating currentness ensures that servers invoke
methods on the latest complete object version, rather than
one of its predecessors.

If all validation passes, a server accepts the request and in-
vokes the requested method. The method is invoked on the
object version corresponding to the latest candidate in the
conditioned-on OHS. If the method is an update, a new ver-
sion of the object results. The timestamp for the resulting
object version is a deterministic function of the conditioned-
on OHS and the operation performed. As such, all servers
that receive the same operation and object history set create
the same object version and construct the same timestamp
for that object version. Timestamps are constructed so that
they always increase in value. The server updates its replica
history with the resulting timestamp and stores the result-
ing object version indexed by that timestamp. The server
sends a response to the client, indicating success, including
the answer to the method, its replica history, and its au-
thenticator. The client updates its object history set with
the returned replica histories and authenticators. Once the
client receives a quorum of responses that return success,
the operation returns successfully.

Tolerating failures. If a server crashes, some quorums
may become unavailable. This may lead to clients probing
additional servers to collect a quorum of responses (prob-
ing is the term used to describe finding a live quorum). To
protect against malevolent components, timestamps contain
the client ID, the operation (method and arguments), and
the conditioned-on OHS. Because the operation is tied to the
timestamp, an operation can only complete successfully if a
client sends the same operation to all servers in a quorum.
This mechanism makes it impossible for malevolent clients
to force object versions at different benign servers with the
same timestamp to differ. The authenticators in the object
history set make it impossible for malevolent components
to forge replica histories of benign servers; in conjunction
with classification rules (see §3.3), this ensures that benign
servers only accept requests conditioned on the latest com-
plete object version.

Concurrency and repair. Only one update of a specific
object version can complete successfully. As such, concur-
rent accesses of an object may fail and result in replica his-
tories at different servers that have a different latest candi-
date. In such a situation, a client must bring the servers
into a consistent state. To do so, a client performs repair.

Repair consists of a sequence of two special operations:
first a barrier is performed, and then a copy is performed.
Barrier candidates have no data associated with them and
so are safe for servers to accept during periods of contention.
Indeed, if contention is indicated by the conditioned-on OHS
sent to a server, the server can only accept a barrier can-
didate. Barrier operations allow clients to safely advance
logical time in the face of contention; barriers prevent oper-
ations with earlier timestamps from completing. Once suf-
ficient servers have accepted barriers, all contending oper-
ations have been suppressed. At this point the client can
perform a copy operation. The copy operation copies the

latest object version prior to the barrier forward in logical
time. Such an object version is either the result of one of
the contending operations that triggered repair or the ob-
ject version these operations conditioned on. In the former
case, none of the contending operations was successful, and
in the latter case, one of the contending operations was suc-
cessful. Once a copy operation successfully completes, then
it is possible for another update or query to be performed.

Classification of the OHS dictates whether or not repair is
necessary and, if so, whether a barrier or copy must be per-
formed. Since both clients and servers base their actions on
the OHS, both perform the action dictated by classification.

In the face of contention, clients may have to repeatedly
perform barrier and copy operations: different clients could
be copying different repairable candidates forward, never
completing the copy operation. Client backoff is relied upon
to promote progress when there is such contention. Since
servers always return their latest replica history to the client,
the client can, after updating its object history set, observe
the effect of its operation.

Non-preferred quorum access. To be efficient, clients
normally access an object via the object’s preferred quorum.
If a client accesses a non-preferred quorum, some servers
that receive requests may not have the conditioned-on object
version. In such a scenario, the server must object sync
to retrieve the conditioned-on object version. The sync-
server requests the needed object data from host-servers.
The replica histories in the conditioned-on OHS provides
the sync server with information about which other servers
are host-servers. Responses from at least b + 1 host-servers
are required for the sync-server to validate that the data it
receives is correct.

3.3 Classification and constraints
In an asynchronous system with failures, clients can only

wait for a subset of servers to reply. As such, object history
sets are a partial observation of the global system state.
Based on these partial observations, the latest candidate is
classified as complete, repairable, or incomplete. With per-
fect global information, it would be possible to directly ob-
serve whether or not the latest candidate is established. An
established candidate is one that is accepted at all of the
benign servers in some quorum. Constraints on the quorum
system, in conjunction with classification rules, ensure that
established candidates are classified as repairable or com-
plete. In turn, this ensures that updates are invoked on the
latest object version.

Repairing a candidate, i.e., performing a barrier and then
copying the candidate, is a fundamental aspect of the Q/U
protocol. To allow us to state the classification rules and
quorum intersection properties regarding repair in the Q/U
protocol, we define repairable sets. Each quorum Q ∈ Q
defines a set of repairable sets R(Q) ⊆ 2Q.

Given a set of server responses S that share the same
candidate, the classification rules for that candidate are as
follows:

classify(S) =



















complete if ∃Q ∈ Q : Q ⊆ S,

repairable if (∀Q ∈ Q : Q 6⊆ S)∧
(∃Q ∈ Q, R ∈ R(Q) :
R ⊆ S),

incomplete otherwise.

(1)
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Constraints on the quorum system that we require are as
follows:

∀Q ∈ Q, ∀T ∈ T : Q ∪ T ⊆ U ; (2)

∀Qi, Qj ∈ Q, ∀B ∈ B, ∃R ∈ R(Qi) : R ⊆ Qi ∩ Qj \ B; (3)

∀Qi, Qj ∈ Q, ∀B ∈ B, ∀R ∈ R(Qj) : Qi ∩ R 6⊆ B. (4)

Constraint (2) ensures that operations at a quorum may
complete in an asynchronous system. Constraint (3) ensures
that some repairable set of an established candidate is con-
tained in every other quorum. This constraint ensures that
an established candidate is always classified as repairable
or complete. For example, if a candidate is established at
quorum Qi, then a subsequent quorum access to Qj is guar-
anteed to observe a repairable set R of Qi despite any malev-
olent servers.

A candidate that, in some execution, could be classified
as repairable is a potential candidate. Specifically, a poten-
tial candidate is one that is accepted at all of the benign
servers in some repairable set. Constraint (4) ensures that
an established candidate intersects a potential candidate at
at least one benign servers. This constraint ensures that at
most one of any concurrent updates in the Q/U protocol es-
tablishes a candidate and that, if a candidate is established,
no other concurrent updates yield a potential candidate.

The logic that dictates which type of operation (method,
barrier, or copy) must be performed is intimately connected
with the classification rules and with the quorum system
constraints. The constraints allow for multiple potential
candidates. As such, there could be multiple distinct po-
tential candidates conditioned on the same object version.
However, if there are any potential candidates, constraint (4)
precludes there from being any established candidates. Since
none of these potential candidates can ever be established,
the Q/U protocol requires barriers to safely make progress.
Since barriers do not modify object state, they can be ac-
cepted at servers if the latest candidate is classified as in-
complete or repairable. Once a barrier is established, it is
safe to copy the latest object version forward (whether it
is a potential candidate or an established candidate). And,
if the copy establishes a candidate, then the corresponding
object version can be conditioned on.

Classification and threshold quorums. Many quorum
constructions can be used in conjunction with the Q/U pro-
tocol (e.g., those in [26, 28]). We have implemented thresh-
old (majority) quorum constructions and recursive threshold
quorum constructions from [28]. However, since the focus of
this paper is on fault-scalability, we focus on the smallest
possible threshold quorum construction for a given server
fault model.

For the remainder of this paper, we consider a threshold
quorum system in which all quorums Q ∈ Q are of size q,
all repairable sets R ∈ R(Q) are of size r, all faulty server
sets T ∈ T are of size t, all malevolent server sets B ∈ B
are of size b, and the universe of servers is of size n. In
such a system, (2) implies that q + t ≤ n, (3) implies that
2q−b−n ≥ r, and (4) implies that q+r−n > b. Rearranging
these inequalities allows us to identify the threshold quorum
system of minimal size given some t and b:

n = 3t + 2b + 1;

q = 2t + 2b + 1;

r = t + b + 1.

As such, if b = t, then n = 5b + 1, q = 4b + 1, and r =
2b + 1. For example, if b = 1, then n = 6, q = 5, and
r = 3. If b = 4, then n = 21, q = 17, and r = 9. For such
a threshold quorum system, classification is based on the
order of the candidate. The order is simply the number of
servers that reply with the candidate. (This is illustrated in
Figure 2.) The classification rules (1) for threshold quorums
are as follows:

classify(Order) =







complete if q ≤ Order ,

repairable if r ≤ Order < q,

incomplete otherwise.
(5)

3.4 Q/U protocol pseudo-code
Pseudo-code for the Q/U protocol for a single object is

given in Figure 3. To simplify the pseudo-code, it is writ-
ten especially for threshold quorums. The symbols used in
the pseudo-code are summarized in the caption. Structures,
enumerations and types used in the pseudo-code are given
on lines 100–107. The definition of a Candidate includes
the conditioned-on timestamp LTCO, even though it can be
generated from LT .OHS . It is included because it clearly in-
dicates the conditioned-on object version. The equality (=)
and less than (<) operators are well-defined for timestamps;
less than is based on comparing Time, BarrierFlag (with
false < true), ClientID , Operation (lexigraphic compari-
son), and then OHS (lexigraphic comparison).

Clients initialize their object history set to a well-known
value (line 200). Two example methods for a simple counter
object are given in the pseudo-code: a query c fetch and
an update c increment. The implementation of these two
functions are similar, the only difference being the definition
of the operation in each function (lines 300 and 400). First,
requests based on the operation are issued to a quorum of
servers (line 301). The OHS passed to c quorum rpc is
the clients cached OHS. If this OHS is not current, servers
reject the operation and return their latest replica history, in
an effort to make the client’s OHS current. If the operation
is accepted at the quorum of servers (line 302), the function
returns. Otherwise, the client goes into a repair and retry
cycle until the operation is accepted at a quorum of servers
(lines 302–306).

The details of the function c quorum rpc are elided;
it issues requests to the preferred quorum of servers and,
if necessary, probes additional servers until a quorum of
responses is received. Because of the crash-recovery fail-
ure model and unreliable channels, c quorum rpc repeat-
edly sends requests until a quorum of responses is received.
Server responses include a status (success or failure), an an-
swer, and a replica history (see lines 1008, 1021, and 1030
of s request). From the quorum of responses, those that
indicate success are counted to determine the order of the
candidate. The answer corresponding to the candidate is
also identified, and the object history set is updated with
the returned replica histories.

If an operation does not successfully complete, then repair
is performed. Repair involves performing barrier and copy
operations until classification identifies a complete object
version that can be conditioned on. The function c repair
performs repair. To promote progress, backoff is called
(line 502, pseudo-code not shown). Note that an operation
that does not complete because its conditioned-on OHS is
not current may not need to perform repair: after a client
updates its OHS with server responses, classification may
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structures, types, & enumerations:

100: Class ∈ {query, update} /∗ Enumeration. ∗/
101: Type ∈ {method, copy, barrier} /∗ Enumeration. ∗/
102: Operation ≡ 〈Method, Class, Argument〉
103: LT ≡ 〈Time, BarrierFlag, ClientID, Operation, OHS〉
104: Candidate ≡ 〈LT , LTCO〉 /∗ Pair of timestamps. ∗/
105: RH ≡ {Candidate} /∗ Ordered set of candidates. ∗/
106: α ≡ HMAC[U ] /∗ Array indexed by server. ∗/
107: OHS ≡ 〈RH , α〉[U ] /∗ Array indexed by server. ∗/

c initialize() : /∗ Client initialization. ∗/

200: ∀s ∈ U, OHS [s].RH := 〈0, 0〉, OHS [s].α := ⊥

c increment(Argument): /∗ Example update operation. ∗/

300: Operation := 〈increment, update, Argument〉
301: 〈Answer , Order , OHS〉 := c quorum rpc(Operation, OHS)
302: while (Order < q) do

303: /∗ Repair and retry update until candidate established. ∗/
304: c repair(OHS)
305: 〈Answer , Order , OHS〉 := c quorum rpc(Operation, OHS)
306: end while

307: return (〈Answer〉)

c fetch(): /∗ Example query operation. ∗/

400: Operation := 〈fetch, query,⊥〉
401: 〈Answer , Order , OHS〉 := c quorum rpc(Operation, OHS)
402: while (Order < q) do

403: c repair(OHS)
404: 〈Answer , Order , OHS〉 := c quorum rpc(Operation, OHS)
405: end while

406: return (〈Answer〉)

c repair(OHS): /∗ Deal with failures and contention. ∗/

500: 〈Type,⊥,⊥〉 := classify(OHS)
501: while (Type 6= method) do

502: backoff() /∗ Backoff to avoid livelock. ∗/
503: /∗ Perform a barrier or copy (depends on OHS). ∗/
504: 〈⊥,⊥, OHS〉 := c quorum rpc(⊥, OHS)
505: 〈Type,⊥,⊥〉 := classify(OHS)
506: end while

507: return

c quorum rpc(Operation, OHS) : /∗ Quorum RPC. ∗/

600: /∗ Eliding details of sending to/probing for a quorum. ∗/
601: /∗ Get quorum of s request(Operation, OHS) responses. ∗/
602: /∗ For each response, update OHS [s] based on s.RH . ∗/
603: /∗ Answer and Order come from successful responses. ∗/
604: return (〈Answer , Order , OHS〉)

classify(OHS): /∗ Classify candidate in object history set. ∗/

700: /∗ Determine latest object version and barrier version. ∗/
701: ObjCand := latest candidate(OHS , false)
702: BarCand := latest candidate(OHS , true)
703: LT lat := latest time(OHS)
704: /∗ Determine which type of operation to perform. ∗/
705: Type := barrier /∗ Default operation. ∗/
706: /∗ If an established barrier is latest, perform copy. ∗/
707: if (LT lat = BarCand.LT) ∧ (order(BarCand, OHS) ≥ q)
708: then Type := copy

709: /∗ If an established object is latest, perform method. ∗/
710: if (LT lat = ObjCand.LT) ∧ (order(ObjCand, OHS) ≥ q)
711: then Type := method

712: return (〈Type, ObjCand, BarCand〉)

order(Candidate, OHS) : /∗ Determine order of candidate. ∗/

800: return (|{s ∈ U : Candidate ∈ OHS [s].RH}|)

s initialize() : /∗ Initialize server s. ∗/

900: s.RH := {〈0, 0〉}
901: ∀s′ ∈ U, s.α[s′] := hmac(s, s′, s.RH )

s request(Operation, OHS) : /∗ Handle request at server s. ∗/

1000: Answer := ⊥ /∗ Initialize answer to return. ∗/
1001: ∀s′ ∈ U, if (hmac(s, s′, OHS [s′].RH ) 6= OHS [s′].α[s])
1002: then OHS [s′].RH := {〈0, 0〉} /∗ Cull invalid RH s. ∗/
1003: /∗ Setup candidate based on Operation and OHS . ∗/
1004: 〈Type, 〈LT , LTCO〉, LTcurrent〉 := s setup(Operation, OHS)
1005: /∗ Eliding details of receiving same request multiple times. ∗/
1006: /∗ Determine if OHS is current (return if not). ∗/
1007: if (latest time(s.RH ) > LT current)
1008: then reply(s, fail,⊥, s.〈RH , α〉)
1009: /∗ Retrieve conditioned-on object version. ∗/
1010: if (Type ∈ {method, copy}) then

1011: Object := retrieve(LTCO)
1012: /∗ Object sync if object version not stored locally. ∗/
1013: if ((Object = ⊥) ∧ (LTCO > 0))
1014: then Object := object sync(LTCO)
1015: end if

1016: /∗ Perform operation on conditioned-on object version. ∗/
1017: if (Type = method) then

1018: 〈Object, Answer〉 := /∗ Invoke method. ∗/
1019: Operation.Method(Object, Operation.Argument)
1020: if (Operation.Class = query)
1021: then reply(s, success, Answer , s.〈RH , α〉)
1022: end if

1023: /∗ Update server state to include new object version. ∗/
1024: atomic

1025: s.RH := s.RH ∪ {〈LT , LTCO〉}
1026: ∀s′ ∈ U, s.α[s′] := hmac(s, s′, s.RH )
1027: store(LT , Object)
1028: /∗ Could prune replica history. ∗/
1029: end atomic

1030: reply(s, success, Answer , s.〈RH , α〉)

s setup(Operation, OHS) : /∗ Setup candidate. ∗/

1100: 〈Type, ObjCand, BarCand〉 := classify(OHS)
1101: LTCO = ObjCand.LT
1102: LT .Time := latest time(OHS).Time + 1
1103: LT .ClientID := ClientID
1104: LT .OHS := OHS
1105: if (Type = method) then

1106: LT .BarrierFlag := false

1107: LT .Operation := Operation
1108: LTcurrent := ObjCand.LT /∗ (= LTCO) cf. line 1101 ∗/
1109: else if (Type = barrier) then

1110: LT .BarrierFlag := true

1111: LT .Operation := ⊥
1112: LTcurrent := LT
1113: else

1114: LT .BarrierFlag := false /∗ Type = copy ∗/
1115: LT .Operation := LTCO.Operation
1116: LTcurrent := BarCand.LT
1117: end if

1118: return (Type, 〈LT , LTCO〉, LTcurrent〉)

latest candidate(OHS , BarrierFlag)

1200: /∗ Set of all repairable/complete objects (barriers). ∗/
1201: CandidateSet := {Candidate : (order(Candidate, OHS) ≥ r)
1202: ∧(Candidate.LT .BarrierFlag = BarrierFlag)}
1203: /∗ Repairable/complete Candidate with max timestamp. ∗/
1204: Candidate := (Candidate : (Candidate ∈ CandidateSet)
1205: ∧(Candidate.LT = max(CandidateSet.LT)))
1206: return (Candidate)

Figure 3: Query/Update pseudo-code. Client functions are prefixed with c and server functions with s . The
following symbols are used in the pseudo-code: s (server), U (the universe of servers), OHS (object history
set), RH (replica history), α (authenticator), LT (timestamp), LTCO (conditioned-on timestamp), 0 (initial
logical time), ⊥ (null value), q (the threshold for classifying a candidate complete), and r (the threshold for
classifying a candidate repairable).

indicate that the client perform a method. This happens
if a client’s cached OHS is out of date and the object is
accessed contention-free. Classification of the OHS dictates
whether a barrier or a copy is performed. In both cases, the
client issues a c quorum rpc with the OHS. Once a copy

successfully completes, a method is allowed to be performed
and repair returns.

The function classify classifies an object history set: it
identifies what type of operation (method, barrier, or copy)
must be performed and the timestamps of the latest object
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and barrier versions. Clients and servers both call classify:
a client calls it to determine the action dictated by its cached
OHS and a server calls it to determine the action dictated
by the conditioned-on OHS sent from a client. The function
latest candidate determines the latest candidate that is
classified as either repairable or complete in the conditioned-
on OHS is latest. It is called to identify the latest object
version (line 701) and latest barrier version (line 702). The
function latest time (pseudo-code not shown) is called to
determine the latest timestamp in the conditioned-on OHS.
If the latest timestamp in the conditioned-on OHS is greater
than the timestamps of the latest object and barrier ver-
sions, then the latest candidate is incomplete and a bar-
rier must be performed (line 705). If the latest timestamp
matches either the latest object or barrier version, but it is
not classified as complete, then a barrier is performed. If the
latest candidate is a complete barrier version, then a copy
is performed (line 708). If the latest candidate is a com-
plete object version, then a query or update is performed,
conditioned on it (line 711).

Server initialization illustrates how authenticators are con-
structed via the hmac function (line 901). Each entry in an
authenticator is an HMAC (keyed hash) over the server’s
replica history [5]. The two servers passed into hmac iden-
tify the shared key for taking the HMAC.

The function s request processes requests at a server.
First, the server validates the integrity of the conditioned-on
OHS. Any replica histories with invalid authenticators are
set to null. Next, the server calls s setup to setup the can-
didate. It calls classify (line 1100) and sets various parts of
the logical timestamp accordingly. In performing classifica-
tion on the OHS, the server determines whether to perform
a barrier, a copy, or a method operation. Given the setup
candidate, the server determines if the object history set is
current. If it is, the server attempts to fetch (via retrieve
on line 1011) the conditioned-on object version from its local
store. If it is not stored locally, the conditioned-on object
version is retrieved from other servers (via object sync,
pseudo-code not shown, on line 1014). For queries and up-
dates, the server invokes a method on the conditioned-on
object version. If the method invoked is a query, then the
server returns immediately, because the server state is not
modified. If the method invoked is an update, then a new
object version results. For update methods and for copy
methods, the server adds the new candidate to its replica
history, updates its authenticator, and locally stores (via
store) the new object version indexed by timestamp. These
three actions (lines 1025–1027) are performed atomically to
be correct in the crash-recovery failure model. Finally, the
server returns the answer and its updated replica history
and authenticator.

3.5 Implementation details
This section discusses interesting aspects of system design,

as well as implementation details and optimizations omitted
from the pseudo-code.

Cached object history set. Clients cache object history
sets of objects they access. After a client’s first access, the
client performs operations without first requesting replica
histories. If the cached object history set is current, then
the operation completes in a single phase. If not, then a
server rejects the operation and returns its current replica

history so that the client can make its object history set
more current.

Optimistic query execution. If a client has not accessed
an object recently (or ever), its cached OHS may not be
current. It is still possible for a query to complete in a
single phase. Servers, noting that the conditioned-on OHS
is not current, invoke the query method on the latest object
version they store. The server, in its response, indicates that
the OHS is not current, but also includes the answer for the
query invoked on the latest object version and its replica
history. After the client has received a quorum of server
responses, it performs classification on its object history set.
Classification allows the client to determine if the query was
invoked on the latest complete object version; if so the client
returns the answer.

This optimization requires additional code in the function
s request, if the condition on line 1007 is true. To opti-
mistically execute the query, the server retrieves the latest
object version in its replica history and invokes the query
on that object version (as is done on lines 1018 and 1019).

Quorum access strategy and probing. In traditional
quorum-based protocols, clients access quorums randomly to
minimize per-server load. In contrast, in the Q/U protocol,
clients access an object’s preferred quorum. Clients initially
send requests to the preferred quorum. If responses from the
preferred quorum are not received in a timely fashion, the
client sends requests to additional servers. Accessing a non-
preferred quorum requires that the client probe to collect a
quorum of server responses. Servers contacted that are not
in the preferred quorum will likely need to object sync.

In our system, all objects have an ID associated with
them. In the current implementation, a deterministic func-
tion is used to map an object’s ID to its preferred quorum.
A simple policy of assigning preferred quorums based on the
object ID modulo n is employed. Assuming objects are uni-
formly loaded (and object IDs are uniformly distributed),
this approach uniformly loads servers.

The probing strategy implemented in the prototype is pa-
rameterized by the object ID and the set of servers which
have not yet responded. Such a probing strategy maintains
locality of quorum access if servers crash and disperses load
among non-crashed servers.

Quorum-based techniques are often advocated for their
ability to disperse load among servers and their throughput-
scalability (e.g., [32, 40, 27]). Preferred quorums, because
of the locality of access they induce, do not share in these
properties if all operations are performed on a set of objects
with a common preferred quorum. To address such a con-
cern, the mapping between objects and preferred quorums
could be made dynamic. This would allow traditional load
balancing techniques to be employed that “migrate” loaded
objects to distinct preferred quorums over time.

Inline repair. Repair requires that a barrier and copy oper-
ation be performed. Inline repair does not require a barrier
or a copy; it repairs a candidate “in place” at its timestamp
by completing the operation that yielded the candidate. In-
line repair operations can thus complete in a single round
trip. Inline repair is only possible if there is no contention for
the object. Any timestamp in the object history set greater
than that of the repairable candidate indicates contention.
A server processes an inline repair request in the same man-
ner as it would have processed the original update for the
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candidate (from the original client performing the update).
Inline repair can also be performed on barrier candidates.
Inline repair is useful in the face of server failures that lead
to non-preferred quorum accesses. The first time an object
is accessed after a server in its preferred quorum has failed,
the client can likely perform inline repair at a non-preferred
quorum.

Handling repeated requests at the server. A server
may receive the same request multiple times. Two differ-
ent situations lead to repeated requests. The crash-recovery
failure model requires clients to repeatedly send requests to
ensure a response is received. As such, servers may receive
the same request from the same client multiple times. Ad-
ditionally, inline repair may lead to different clients (each
performing inline repair of the same candidate) sending the
same request to the server. Regardless of how many times a
server receives a requests, it must only invoke the method on
the object once. Moreover, the server should respond to a
repeated request in a similar manner each time. As such, it
is necessary for the server to store the answer to update op-
erations with the corresponding object version. This allows
a server to reply with the same answer each time it receives
a repeated request. Before checking if the conditioned-on
OHS is current, the server checks to determine if a candi-
date is already in its replica history with the timestamp it
setup (cf. line 1005). If so, the server retrieves the corre-
sponding answer and returns immediately.

Retry and backoff policies. Update-update concurrency
among clients leads to contention for an object. Clients must
backoff to avoid livelock. A random exponential backoff pol-
icy is implemented (cf. [10]).

Update-query concurrency does not necessarily lead to
contention. A query concurrent to a single update may ob-
serve a repairable or incomplete candidate. In the case of
the former, the client performs an inline repair operation;
such an operation does not contend with the update it is re-
pairing (since servers can accept the same request multiple
times). In the case of the latter, additional client logic is
required, but it is possible to invoke a query on the latest
established candidate, in spite of there being later incom-
plete candidates. On the client-side, after a query opera-
tion is deemed to have failed, additional classification is per-
formed. If classification identifies that all of the candidates
with timestamps later then the latest established candidate
are incomplete, then the answer from invoking the query
on the established candidate is returned. This situation can
arise if an update and query are performed concurrently. Be-
cause of inline repair and this optimization, an object that is
updated by a single client and queried by many other clients
does not ever require barriers, copies, or backoff.

Object syncing. To perform an object sync, a server uses
the conditioned-on object history set to identify b+1 servers
from which to solicit the object state. Like accessing a pre-
ferred quorum, if b+1 responses are not forthcoming (or do
not all match) additional servers are probed.

It is possible to trade-off network bandwidth for server
computation: only a single correct server need send the
entire object version state and other servers can send a
collision-resistant hash of the object version state. A dif-
ferent approach is to include the hash of the object state
in the timestamp. This requires servers to take the hash
of each object version they create. However, it allows for

servers to contact a single other server to complete object
syncing or for the object state to be communicated via the
client.

Authenticators. Authenticators consist of n HMACs, one
for each server in the system. Authenticators are taken over
the hash of a replica history, rather than over the entire
replica history. The use of n HMACs in the authenticator,
rather than a digital signature, is based on the scale of sys-
tems currently being evaluated. The size and computation
cost of digital signatures do not grow with n. As such, if
n were large enough, the computation and network costs
of employing digital signatures would be less than that of
HMACs.

Compact timestamps. The timestamps in the pseudo-
code are quite large, since they include the operation and
the object history set. In the implementation, a single hash
over the operation and the object history set replaces these
elements of logical timestamps. The operation and object
history set are necessary to uniquely place a specific opera-
tion at a single unique point in logical time. Replacing these
elements with a collision resistant hash serves this purpose
and improves space-efficiency.

Compact replica histories. Servers need only return the
portion of their replica histories with timestamps greater
than the conditioned-on timestamp of the most recent up-
date accepted by the server. As such, a server prunes its
replica history based on the conditioned-on timestamp after
it accepts an update request. (Although pruning pseudo-
code is not shown, pruning would occur on line 1028.) In the
common case, the replica history contains two candidates:
one for the latest object version and one for the conditioned-
on object version. Failures and concurrency may lead to
additional barrier and incomplete candidates in the replica
history.

Object versions corresponding to candidates pruned from
a server’s replica history could be deleted. Doing so would
reclaim storage space on servers. However, deleting past ob-
ject versions could make it impossible for a server to respond
to slow repeated requests from clients and slow object sync
requests from other servers. As such, there is a practical
trade-off between reclaiming storage space on servers and
ensuring that clients do not need to abort operations.

Malevolent components. As presented, the pseudo-code
for the Q/U protocol ensures safety, but not progress, in
the face of malevolent components. Malevolent components
can affect the ability of correct clients to make progress.
However, the Q/U protocol can be modified to ensure that
isolated correct clients can make progress.

Malevolent clients may not follow the specified backoff
policy. For contended objects, this is a form of denial-of-
service attack. However, additional server-side code could
rate limit clients.

Malevolent clients may issue updates only to subsets of a
quorum. This results in latent work in the system, requiring
correct clients to perform repair. Techniques such as lazy
verification [1], in which the correctness of client operations
is verified in the background and in which limits are placed
on the amount of unverified work a client may inject in the
system, can bound the impact that such malevolent clients
have on performance.

A malevolent server can return an invalid authenticator to
a client. Note that a client cannot validate any HMACs in
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an authenticator and each server can only validate a single
HMAC in an authenticator. On line 1002, servers cull replica
histories with invalid authenticators from the conditioned-
on OHS. Servers return the list of replica histories (i.e., the
list of invalid authenticators) culled from the conditioned-on
OHS to the client. A server cannot tell whether a malevolent
client or server corrupted the authenticator. A malevolent
server can also return lists of valid authenticators to the
client, indicating they are invalid. If a malevolent server
corrupts more than b HMACs in its authenticator, then a
client can conclude, from the responses of other servers, that
the server is malevolent and exclude it from the set of servers
it contacts. If a malevolent server corrupts fewer than b

HMACs in its authenticator, then a client can conclude only
that some servers in the quorum contacted are malevolent.
This is sufficient for the client to solicit more responses from
additional servers and make progress.

A malevolent server can reject a client update for not be-
ing current by forging a candidate with a higher timestamp
in its replica history. Due to the constraints on the quorum
system and the classification rules, malevolent servers can-
not forge a potential or established candidate: any forged
candidate is classifiable as incomplete. As such, the client
must perform repair (i.e., a barrier then a copy). Consider
a client acting in isolation. (Recall that contending clients
can lead to justifiably rejected updates.) If an isolated client
has its update accepted at all benign servers in a quorum,
it by definition establishes a candidate (even though the
client may not be able to classify the candidate as com-
plete). Given that a server rejected its update, the client
initiates repair with a barrier operation. Malevolent servers
can only reject the isolated client’s barrier operation by forg-
ing a barrier candidate with a higher timestamp. Any other
action by the malevolent server is detectable as incorrect by
the client. The Q/U protocol, as described in the pseudo-
code, allows a malevolent server to keep generating barriers
with higher timestamps. To prevent malevolent servers from
undetectably repeatedly forging barrier candidates, classifi-
cation is changed so that any barrier candidate not classified
as complete is inline repaired. This bounds the number of
barriers that can be accepted before a copy must be accepted
to be the number of possible distinct incomplete candidates
in the system (i.e., n). With such a modification, to re-
main undetected, a malevolent server must either accept the
copied candidate or not respond to the client; either action
allows the client to make progress. Since only potential can-
didates can be copied forward and potential candidates must
intersect established candidates, malevolent servers cannot
undetectably forge a copied candidate (given an established
candidate prior to the barriers).

In summary, with the modifications outlined here, the
Q/U protocol can ensure that isolated clients make progress
in spite of malevolent components.

Pseudo-code and quorums. Extended pseudo-code is
available in a companion technical report [2]. The extended
pseudo-code includes optimistic query execution, additional
client-side classification for queries to reduce query-update
contention, inline repair of value candidates and barrier can-
didates, handling repeated requests at the server, pruning
replica histories, deleting obsolete object versions, and ob-
ject syncing.

The pseudo-code is tailored for threshold quorums to sim-
plify its presentation. For general quorums that meet the

constraints given in §3.3, changes to the pseudo-code are
localized. The functions c quorum rpc and order must
change to handle general quorums rather than threshold
quorums. Any tests of whether a candidate is repairable
or complete must also change to handle general quorums
(e.g., lines 302, 402, 707, 710, and 1201).

3.6 Example Q/U protocol execution
An example execution of the Q/U protocol is given in

Table 1. The caption explains the structure of, and nota-
tion used in, the table. The example is for an object that
exports two methods: get (a query) and set (an update).
The object can take on four distinct values (♣,♦,♥,♠) and
is initialized to ♥. The server configuration is based on the
smallest quorum system for b = 1. Clients perform opti-
mistic queries for the get method; the conditioned-on OHS
sent with the set method is not shown in the table. The
sequence of client operations is divided into four sequences
of interest by horizontal double lines. For illustrative pur-
poses, clients X and Z interact with the object’s preferred
quorum (the first five servers) and Y with a non-preferred
quorum (the last five servers).

The first sequence demonstrates failure- and concurrency-
free execution: client X performs a get and set that each
complete in a single phase. Client Y performs a get in
the second sequence that requires repair. Since there is no
contention, Y performs inline repair. Server s5 performs
object syncing to process the inline repair request.

In the third sequence, concurrent updates by X and Y are
attempted. Contention prevents either update from com-
pleting successfully. At server s4, the set from Y arrives
before the set from X. As such, it returns its replica his-
tory {〈3, 1〉, 〈1,0〉} with fail. The candidate 〈3, 1〉 in this
replica history dictates that the timestamp of the barrier be
4b. For illustrative purposes, Y backs off. Client X subse-
quently completes barrier and copy operations.

In the fourth sequence, X crashes during a set oper-
ation and yields a potential candidate. The remaining
clients Y and Z perform concurrent get operations at
different quorums; this illustrates how a potential candi-
date can be classified as either repairable or incomplete.
Y and Z concurrently attempt a barrier and inline re-
pair respectively. In this example, Y establishes a bar-
rier before Z’s inline repair requests arrive at servers s3

and s4. Client Z aborts its inline repair operation. Sub-
sequently, Y completes a copy operation and establishes a
candidate 〈8, 5〉 that copies forward the established candi-
date 〈5, 2〉. Notice that the replica histories returned by
the servers in response to the get requests are pruned.
For example, server s0 returns {〈6, 5〉, 〈5, 2〉}, rather than
{〈6, 5〉, 〈5, 2〉, 〈4b, 2〉, 〈2, 1〉, 〈1,0〉, 〈0,0〉}, because the object
history set sent by X with set operation 〈6, 5〉 proved that
〈5, 2〉 was established.

3.7 Multi-object updates
We promote the decomposition of services into objects

to promote concurrent non-contending accesses. The Q/U
protocol allows some updates to span multiple objects. A
multi-object update atomically updates a set of objects. To
perform such an update, a client includes a conditioned-
on OHS for each object being updated. The set of objects
and each object’s corresponding conditioned-on OHS, are
referred to as the multi-object history set (multi-OHS). Each
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Operation s0 s1 s2 s3 s4 s5 Result

Initial system 〈0, 0〉,♥ 〈0, 0〉,♥ 〈0, 0〉,♥ 〈0, 0〉,♥ 〈0, 0〉,♥ 〈0, 0〉,♥

X completes get() {0},♥ {0},♥ {0},♥ {0},♥ {0},♥ 〈0, 0〉 complete, return ♥
X completes set(♣) 〈1,0〉,♣ 〈1,0〉,♣ 〈1,0〉,♣ 〈1,0〉,♣ 〈1,0〉,♣ 〈1,0〉 established

Y begins get()... {1,0},♣ {1,0},♣ {1,0},♣ {1,0},♣ {0},♥ 〈1,0〉 repairable
...Y performs inline {1,0},♣ 〈1,0〉 complete, return ♣

X attempts set(♦)... 〈2, 1〉,♦ 〈2, 1〉,♦ 〈2, 1〉,♦ 〈2, 1〉,♦ fail 〈2, 1〉 potential
Y attempts set(♥) fail fail fail 〈3, 1〉,♥ 〈3, 1〉,♥ Y backs off
...X completes barrier 〈4b, 2〉,⊥ 〈4b, 2〉,⊥ 〈4b, 2〉,⊥ 〈4b, 2〉,⊥ 〈4b, 2〉,⊥ 〈4b, 2〉 established
...X completes copy 〈5, 2〉,♦ 〈5, 2〉,♦ 〈5, 2〉,♦ 〈5, 2〉,♦ 〈5, 2〉,♦ 〈5, 2〉 established

X crashes in set(♠) 〈6, 5〉,♠ 〈6, 5〉,♠ 〈6, 5〉,♠ 〈6, 5〉 potential
Y begins get()... {6, 5},♠ {6, 5},♠ {5, 4b, 2, 1},♦ {5, 4b, 2, 1},♦ {3, 1},♥ 〈6, 5〉 inc., 〈5, 2〉 rep.
Z begins get()... {6, 5},♠ {6, 5},♠ {6, 5},♠ {5, 4b, 2, 1},♦ {5, 4b, 2, 1},♦ 〈6, 5〉 repairable
...Y completes barrier 〈7b, 5〉,⊥ 〈7b, 5〉,⊥ 〈7b, 5〉,⊥ 〈7b, 5〉,⊥ 〈7b, 5〉,⊥ 〈7b, 5〉 established
...Z attempts inline fail fail Z backs off
...Y completes copy 〈8, 5〉,♦ 〈8, 5〉,♦ 〈8, 5〉,♦ 〈8, 5〉,♦ 〈8, 5〉,♦ 〈8, 5〉 est., return ♦

Table 1: Example Q/U protocol execution. Operations performed by three clients (X, Y , and Z) are listed in
the left column. The middle columns list candidates stored by and replies (replica histories or status codes)
returned by six benign servers (s0, ..., s5). The right column lists if updates yield an established or potential
candidate (assuming all servers are benign) and the results of classification for queries. Time “flows” from
the top row to the bottom row. Candidates are denoted 〈LT ,LTCO〉. Only LT .Time with “b” appended for
barriers is shown for timestamps (i.e., client ID, operation, and object history set are not shown). Replica
histories are denoted {LT 3,LT 2, ...}. Only the candidate’s LT , not the LTCO, is listed in the replica history.

server locks its local version of each object in the multi-
OHS and validates that each conditioned-on OHS is current.
The local locks are acquired in object ID order to avoid the
possibility of local deadlocks. Assuming validation passes for
all of the objects in the multi-OHS, the server accepts the
update for all the objects in the multi-OHS simultaneously.

So long as a candidate is classified as complete or incom-
plete, no additional logic is required. However, to repair
multi-object updates, clients must determine which objects
are in the multi-OHS. As such, the multi-OHS is included
in the timestamp. Note that all objects updated by a multi-
object update have the same multi-OHS in their timestamp.

To illustrate multi-object repair, consider a multi-object
update that updates two objects, oa and ob. The multi-
object update results in a candidate for each object, ca and
cb respectively. Now, consider a client that queries oa and
classifies ca as repairable. To repair ca, the client must fetch
a current object history for ob because ob is in the multi-OHS
of ca. If ca is in fact established, then cb is also established
and there could exist a subsequent established candidate
at ob that conditions on cb. If ca is not established, then
cb also is not established and subsequent operations at ob

may preclude cb from ever being established (e.g., a barrier
and a copy that establishes another candidate at ob with
a higher timestamp than cb). The former requires that ca

be reclassified as complete. The latter requires that ca be
reclassified as incomplete.

Such reclassification of a repairable candidate, based on
the objects in its multi-OHS, is called classification by de-
duction. If the repairable candidate lists other objects in its
multi-OHS, then classification by deduction must be per-
formed. If classification by deduction does not result in re-
classification, then repair is performed. Repair, like in the
case of individual objects, consists of a barrier and copy
operation. The multi-OHS for multi-object barriers and
multi-object copies have the same set of objects in them as

the multi-OHS of the repairable candidate. Because multi-
object operations are atomic, classification by deduction
cannot yield conflicting reclassifications: either all of the ob-
jects in the multi-OHS are classified as repairable, some are
classified complete (implying that all are complete), or some
are classified incomplete (implying that all are incomplete).

Multi-object updates may span objects with different pre-
ferred quorums. The preferred quorum for one of the objects
involved is selected for the multi-object update. In our im-
plementation, we use the preferred quorum of the highest
object ID in the multi-OHS. As such, some servers will likely
have to object sync for some of the objects. Moreover, some
of the candidates a multi-object write establishes may be
outside of their preferred quorums. If there is no contention,
such candidates are repairable at their preferred quorum via
inline repair.

3.8 Correctness
This section discusses, at a high level, the safety and live-

ness properties of the Q/U protocol. In the companion tech-
nical report [2], the safety and liveness of the Q/U protocol
is discussed in more detail, extended pseudo-code is pro-
vided, and a proof sketch of safety is given for a variant of
the Q/U protocol, the Read/Conditional-Write protocol.

In the Q/U protocol, operations completed by correct
clients are strictly serializable [6]. Operations occur atomi-
cally, including those that span multiple objects, and appear
to occur at some point in time between when the operation
begins and some client observes its effect. If the Q/U proto-
col is used only to implement individual objects, then correct
clients’ operations that complete are linearizable [15].

To understand how the Q/U protocol ensures strict serial-
izability, consider the conditioned-on chain: the set of object
versions that are found by traversing back in logical time
from the latest established candidate via the conditioned-
on timestamp. Every established object version is in the
conditioned-on chain and the chain goes back to the ini-
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tial candidate 〈0, 0〉. The conditioned-on chain induces a
total order on update operations that establish candidates,
which ensures that all operations are strictly serializable.
The conditioned-on chain for the example system execution
in Table 1 is 〈8, 5〉 → 〈5, 2〉 → 〈2, 1〉 → 〈1,0〉 → 〈0, 0〉.

Given the crash-recovery server fault model for benign
servers, progress cannot be made unless sufficient servers are
up. This means that services implemented with the Q/U
protocol are not available during network partitions, but
become available and are correct once the network merges.

The liveness property of the Q/U protocol is fairly weak:
it is possible for clients to make progress (complete opera-
tions). Under contention, operations (queries or updates)
may abort so it is possible for clients to experience livelock.
In a benign execution — an execution without malevolent
clients or servers — the Q/U protocol is obstruction-free [14]:
an isolated client can complete queries and updates in a fi-
nite number of steps. The extensions sketched in §3.5 also
allow an isolated client to complete queries and updates in
a finite number of steps in an execution with malevolent
servers.

4. EVALUATION
This section evaluates the Q/U protocol as implemented

in our prototype library. First, it compares the fault-
scalability of a counter implemented with the Q/U protocol
and one implemented with the publicly available1 Byzantine
fault-tolerant, agreement-based BFT library [9]. Second, it
quantifies the costs associated with the authenticator mech-
anism and with non-optimal object accesses in the Q/U pro-
tocol. Third, it discusses the design and performance of an
NFSv3 metadata service built with the Q/U protocol.

4.1 Experimental setup
The Q/U protocol prototype is implemented in C/C++

and runs on both Linux and Mac OS X. Client-server com-
munication is implemented via RPCs over TCP/IP sockets.
MD5 cryptographic hashes are employed [35]; the authors
recognize that the MD5 hash is showing its age [39], however
its use facilitates comparisons with other published results
for BFT. All experiments are performed on a rack of 76 Intel
Pentium 4 2.80 GHz computers, each with 1 GB of memory,
and an Intel PRO/1000 NIC. The computers are connected
via an HP ProCurve Switch 4140gl with a specified internal
maximum bandwidth of 18.3 Gbps (or 35.7 mpps). The com-
puters run Linux kernel 2.6.11.5 (Debian 1:3.3.4-3). Exper-
iments are run for 30 seconds and measurements are taken
during the middle 10 seconds; experiments are run 5 times
and the mean is reported. The standard deviation for all
results reported for the Q/U prototype is less than 3% of
the mean (except, as noted, for the contention experiment).
The working sets of objects for all experiments fit in mem-
ory, and no experiments incur any disk accesses.

4.2 Fault-scalability
We built a prototype counter object with the Q/U pro-

tocol and with the BFT library. The increment method,
an update (read-write operation in BFT terminology), in-
crements the counter and returns its new value. The fetch
method, a query, simply returns the current value of the
counter. A counter object, although it seems simple, re-

1http://www.pmg.lcs.mit.edu/bft/#sw
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Figure 4: Fault-scalability.

quires the semantics these two protocols provide to correctly
increment the current value. Moreover, the simplicity of the
object allows us to focus on measuring the inherent network
and computation costs of these Byzantine fault-tolerant pro-
tocols.

We measure the throughput (in requests per second) of
counter objects as the number of malevolent servers tol-
erated increases. Since both the Q/U protocol and BFT
implement efficient, optimistic queries (read-only in BFT
terminology), we focus on the cost of updates. These exper-
iments are failure-free. For the Q/U-based counter, clients
access counter objects via their preferred quorum and in
isolation (each client accesses a different set of counter ob-
jects). We ran a single instance of the BFT-based counter
so that there is a single primary replica that can make effec-
tive use of batching (an optimization discussed below). As
such, this experiment compares best case performance for
both protocols.

Figure 4 shows the fault-scalability of the Q/U-based and
BFT-based counters. The throughput of increment oper-
ations per second, as the number of server faults tolerated
increases from b = 0 to b = 5, is plotted. No data point is
shown for the BFT-based counter at b = 0, a single server
that tolerates no failures, because we had difficulties initial-
izing the BFT library in this configuration. The increase in
throughput from b = 0 to b = 1 for the Q/U-based counter is
due to quorum throughput-scalability: at b = 1, each server
processes only five out of every six update requests.

The data points shown in Figure 4 correspond to the peak
throughput observed. To determine the peak throughput,
we ran experiments with one physical client, then three
physical clients, and so on, until we ran with thirty-three
physical clients. Two client processes ran on each physi-
cal client; in all cases, this was sufficient to load both the
Q/U-based and BFT-based counters. The throughput plot-
ted for each value of b corresponds to that for the number
of clients that exhibited the best throughput averaged over
five runs. The BFT-based counter is less well-behaved un-
der load than the Q/U-based counter: for each value of b,
the performance of the BFT-based counter depends signifi-
cantly on load. Throughput increases as load is added until
peak throughput is achieved, then additional load reduces
the observed throughput dramatically. For the Q/U-based
counter, in contrast, peak throughput is maintained as ad-
ditional load is applied. Due to the behavior of BFT un-
der load, we report the peak throughput rather than the
throughput observed for some static number of clients.
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The Q/U-based counter provides higher throughput than
the BFT-based counter in all cases. Both counters provide
similar throughput when tolerating one or two faults. How-
ever, because of its fault-scalability, the Q/U-based counter,
provides significantly better throughput than the BFT-based
counter as the number of faults tolerated increases. When
compared to the BFT-based counter, the Q/U-based counter
provides 1990 more requests per second at b = 1 and 12400
more requests per second at b = 5. As b is increased from 1
to 5, the performance of the Q/U counter object degrades
by 36%, whereas the performance of the BFT-based counter
object degrades by 83%.

In BFT, server-to-server broadcast communication is re-
quired to reach agreement on each batch of requests. In
batching requests, BFT amortizes the cost of generating and
validating authenticators over several requests. For low val-
ues of b, batching is quite effective (fifteen or more requests
per batch). As the number of faults tolerated increases,
batching becomes less effective (just a few requests per batch
at b = 5). Moreover, the cost of constructing and validat-
ing authenticators grows as the number of faults tolerated
increases. The cost of authenticators grows slower for BFT
than for the Q/U protocol, since BFT requires fewer servers
to tolerate a given number of faults (as is illustrated in Fig-
ure 1, 3b + 1 rather than 5b + 1 servers).

BFT uses multicast to reduce the cost of server-to-server
broadcast communication. However, multicast only reduces
the number of messages servers must send, not how many
they must receive (and authenticate). Since BFT employs
multicast, all communication is based on UDP. We believe
that the backoff and retry policies BFT uses with UDP mul-
ticast are not well-suited to high-throughput services.

4.3 Fault-scalability details
Authenticators and fault-scalability. Figure 1 in §2 il-
lustrates the analytic expected throughput for the threshold
quorums employed in the Q/U protocol prototype: 5b+1

4b+1
×

the throughput provided by a single server. Our measure-
ments for the Q/U-counter object in Figure 4 do not match
that expectation. Throughput of the Q/U-counter declines
(slowly) as the number of faults tolerated increases beyond
one. The decline is due to the cost of authenticators.

As the number of faults tolerated increases, authenticators
require more server computation to construct and validate,
as well as more server bandwidth to send and receive. At
b = 1, it takes 5.6 µs to construct or validate an authentica-
tor, whereas at b = 5, it takes 17 µs. In Figure 5, we show
the fault-scalability of the Q/U protocol for two hypotheti-
cal settings: one in which authenticators are not used at all
(the “No α” line) and one in which HMACs require no com-
putation to construct or validate (the “0-compute α” line).
Compare these results with the “Q/U” line (the line also
shown in Figure 4). The results for No α demonstrate the
best fault-scalability that the Q/U protocol can achieve on
our experimental infrastructure. Dedicated cryptographic
processors or additional processing cores could someday re-
alize the 0-compute α results. If the server computation
required to construct and validate authenticators could be
offloaded, the Q/U protocol would exhibit near ideal fault-
scalability.

Cached object history sets. Figure 5 also shows the cost
of accessing objects for which a client has a stale OHS or
none at all. The difference between the “Q/U” and “Un-
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Figure 5: Details of Q/U protocol fault-scalability.

cached OHS” lines is the additional round trip required to
retrieve a current OHS. Even if the OHS must be read be-
fore performing an update, the Q/U protocol exhibits fault-
scalability. For a given service implemented with the Q/U
protocol, the usage pattern of objects will dictate whether
most updates are based on a current cached OHS or not.

Non-preferred quorums. Accessing an object at a non-
preferred quorum requires some servers to object sync. To
quantify the benefit that preferred quorums provide, we im-
plemented a random quorum access policy against which
to compare. We measured the average response time for a
single client process performing increment operations on
a single counter object. For the case of b = 1 with n = 6,
the response time using the preferred quorum access pol-
icy is 402 µs. Using the random quorum access policy, the
average client response time is 598 µs. Because of the small
quorum system size, the random policy issues updates to the
quorum with the latest object version one in six times. For
the other five in six, it takes a server 235 µs to perform an
object sync. In the prototype implementation, to perform
such an object sync if b = 1, a server retrieves the desired
object version from two (b + 1) other servers.

We also measured the peak throughput provided as the
number of faults tolerated increases. The Random Quorum
line in Figure 5 shows the results. Comparing the Ran-
dom Quorum and Q/U lines, it is clear that the locality of
access afforded by the preferred quorum access policy pro-
vides much efficiency to the Q/U protocol. As the num-
ber of faults tolerated increases, the cost of object syncing,
given a random quorum access policy, increases for two rea-
sons. First, the average number of servers that object sync
increases. Second, the number of servers that must be con-
tacted to object sync increases.

Contention. Clients accessing an object concurrently may
lead to contention in the Q/U protocol. We ran a series of
experiments to measure the impact of contention on client
response time. In each of these experiments, b = 1 and
five clients perform operations. In all cases, one client per-
forms increment update operations to a shared counter ob-
ject. In one set of experiments the other four clients perform
fetch operations, and in another set, the other four clients
also perform increment operations. Clients retrieve cur-
rent replica histories before performing an increment op-
eration; this emulates many distinct clients without a cached
OHS contending for the counter object. Within a set of ex-
periments, the number of contending clients that perform
operations on the shared counter is varied from zero to four.
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Contending clients
0 1 2 3 4

fetch Isolated 320 331 329 326 -
Contending - 348 336 339 361

increment Isolated 693 709 700 692 -
Contending - 1210 2690 4930 11400

Table 2: Average response time in µs.

The number of isolated clients that perform operations on
unshared counters is four minus the number of contending
clients. Five clients are used in each experiment so that the
load on servers is kept reasonably constant. The results of
these experiments are reported in Table 2.

The fetch results demonstrate the effectiveness of the
inline repair and optimistic query execution optimizations:
queries do not generate contention with a single concurrent
update. The results of the increment experiments show
the impact of the backoff policy on response time. Our
backoff policy starts with a 1000 µs backoff period and it
doubles this period after each failed retry. As contention
increases, the amount clients backoff, on average, increases.
Not shown in Table 2, is that as update contention increases,
the variance in per client response time also increases. For
example, the standard deviation in client response time is
268 µs with one contending increment client and 4130 µs
with four contending increment clients.

4.4 Q/U-NFSv3 metadata service
To explore a more complete service, we built a metadata

service with the Q/U protocol. The Q/U-NFSv3 meta-
data service exports all namespace/directory operations of
NFSv3. Two types of Q/U objects are implemented: direc-
tory objects and attribute objects. Attribute objects contain
the per-file information expected by NFS clients. Directory
attributes are stored in the directory object itself rather than
in a separate attribute object, since they are needed by al-
most all exported methods on directories. Directory objects
store the names of files and other directories. For each file
in a directory, the directory object lists the object ID of
the attribute object for the file. The metadata service is in-
tended to only service namespace operations; this model of a
metadata service separate from bulk storage is increasingly
popular (e.g., both Farsite [3] and Pond/OceanStore [34] use
this approach).

Table 3 lists the average response times for the operations
that the Q/U-NFSv3 metadata service exports. These re-
sults are for a configuration of servers that tolerates a single
malevolent server (i.e., b = 1 and n = 6). The operation
type (query or update) and the types of objects accessed
are listed in the table. The cost of a single-object query,
relative to a single-object update, is illustrated by the dif-
ference in cost between getattr and setattr. The cost of
a multi-object update, relative to a single object update,
is illustrated by the difference in cost between create and
setattr. Multi-object updates, such as create operations,
may span objects with different preferred quorums. For the
create operation, the multi-object update is sent to the
preferred quorum of the directory object. As such, the first
access of the created attribute object incurs the cost of an
inline repair (if it does not share the directory object’s pre-
ferred quorum).

Operation Type Objects Response
time (µs)

getattr query attribute 570
lookup query directory 586
readlink query directory 563
readdir query directory 586
setattr update attribute 624
create update attr. & dir. 718
link update attr. & dir. 690
unlink update attr. & dir. 686
rename update 2 attr. & 2 dir. 780

Table 3: Q/U-NFSv3 metadata service operations.

Faults tolerated (b) 0 1 2 3 4 5
Transactions/second 129 114 102 93 84 76

Table 4: Q/U-NFSv3 PostMark benchmark.

Table 4 lists results of running the metadata-intensive
PostMark benchmark [17] on a single client for different
fault-tolerances (from b = 0 to b = 5). PostMark is con-
figured for 5000 files and 20000 transactions. Since Q/U-
NFSv3 only services namespace operations, file contents are
stored locally at the client (i.e., the read and append phases
of PostMark transactions are serviced locally). The decrease
from b = 0 to b = 1 occurs because PostMark is single-
threaded. As such, Q/U-NFSv3 incurs the cost of contact-
ing more servers (and of larger authenticators) but does not
benefit from quorum throughput-scalability. As with the
counter object micro-benchmarks however, performance de-
creases gradually as the number of malevolent servers toler-
ated increases.

5. RELATED WORK
Much related work is discussed in the course of this paper.

This section reviews other Byzantine fault-tolerant protocols
that achieve comparable semantics to the Q/U protocol. As
such, we do not focus on the extensive prior work imple-
menting Byzantine fault-tolerant read/write registers.

Efficient cryptography. Castro and Liskov, in BFT [9],
pioneered the use of lists of HMACs appended to messages
as authenticators to implement a replicated state machine.
This approach to integrity protection is often achieved via
more expensive asymmetric cryptography (i.e., digital sig-
natures). As mentioned in §3.5, the merit of using lists of
HMACs for authenticators rather than digital signatures is
based on the size of system being evaluated.

Byzantine faulty clients. In agreement-based protocols,
servers reach agreement on the request sent by a client. Such
protocols rely on clients either digitally signing requests or
broadcasting their requests to all servers. Previous quorum-
based protocols either require an echo phase to ensure that
clients prepare the same update at each server in a quorum
(e.g., [28]) or require all servers in a quorum to broadcast
messages to all other servers (e.g., [30]). The Q/U pro-
tocol relies on servers retaining object versions ordered by
timestamps that include (the hash of) operations and object
history sets to protect against Byzantine faulty clients.

Agreement-based protocols. There is a long tradition of
improving the efficiency of agreement-based protocols (e.g.,
[7, 33, 18, 9, 8, 20]). Cachin and Poritz, in the SINTRA
project, use a randomized protocol to reach agreement that
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can be used to build services for WAN environments [8]. The
BFT protocol of Castro and Liskov [9] provides comparable
semantics and guarantees to the Q/U protocol and is quite
responsive (more so than SINTRA). Services implemented
with BFT and with the Q/U protocol rely on synchrony
to guarantee progress (bounded message delay and backoff
respectively), whereas those implemented with SINTRA do
not. The public availability, responsiveness, and similar-
ity in guarantees is our rationale for comparing the BFT
prototype to the Q/U prototype. Many optimizations make
BFT responsive: there is a fast path for read-only operations
(like optimistic query execution); BFT reaches agreement on
batches of requests to amortize the cost of agreement; and
checkpoints, which require digital signatures, are further
amortized over multiple batches of requests. Amortizing
the cost of digital signatures and agreement over batches of
messages was also by Reiter in Rampart [33] and Kihlstrom
et al. in SecureRing [18]. Kursawe proposed an optimistic
approach that requires one fewer phase of server-to-server
broadcast communication, relative to other agreement-based
protocols, during failure-free periods [20]. The recent FaB
Paxos protocol of Martin and Alvisi also requires one fewer
phase of communication, relative to other agreement-based
protocols, during stable periods in which correct processes
agree upon which correct process is currently the leader (sta-
ble periods are more general than failure-free periods) [29].

Quorum-based protocols. Byzantine quorum systems
were introduced by Malkhi and Reiter [26], and several pro-
tocols have been proposed to use them for implementing
arbitrary Byzantine-resilient services (e.g., [28, 10, 11]). To
our knowledge, all such protocols are “pessimistic”, utilizing
multiple phases per update in the common case, and have
designs substantially different than that of the Q/U proto-
col. Our work is the first to demonstrate, in empirical evalu-
ations, a quorum-based protocol for implementing arbitrary
Byzantine-resilient services that is competitive with modern
implementations of state machine replication at small sys-
tem sizes, and convincingly outperforms them as the system
scales.

6. CONCLUSIONS
The Q/U protocol supports the implementation of arbi-

trary deterministic services that tolerate the Byzantine fail-
ures of clients and servers. The Q/U protocol achieves effi-
ciency by a novel integration of techniques including version-
ing, quorums, optimism, and efficient use of cryptography.
Measurements for a prototype service built using our proto-
col shows significantly better fault-scalability (performance
as the number of faults tolerated increases) in comparison
to the same service built using a popular replicated state
machine implementation. In fact, in contention-free exper-
iments, its performance is better at every number of faults
tolerated: it provides 8% greater throughput when tolerat-
ing one Byzantine faulty server, and over four times greater
throughput when tolerating five Byzantine faulty servers.
Our experience using the Q/U protocol to build and ex-
periment with a Byzantine fault-tolerant NFSv3 metadata
service confirms that it is useful for creating substantial ser-
vices.
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