
DieHard: Probabilistic Memory Safety for Unsafe Languages

Emery D. Berger
Dept. of Computer Science

University of Massachusetts Amherst
Amherst, MA 01003

emery@cs.umass.edu

Benjamin G. Zorn
Microsoft Research
One Microsoft Way

Redmond, WA 98052
zorn@microsoft.com

Abstract
Applications written in unsafe languages like C and C++ are vul-
nerable to memory errors such as buffer overflows, dangling point-
ers, and reads of uninitialized data. Such errors can lead to pro-
gram crashes, security vulnerabilities, and unpredictable behavior.
We present DieHard, a runtime system that tolerates these errors
while probabilistically maintaining soundness. DieHard uses ran-
domization and replication to achieveprobabilistic memory safety
by approximating an infinite-sized heap. DieHard’s memory man-
ager randomizes the location of objects in a heap that is at least
twice as large as required. This algorithm prevents heap corruption
and provides a probabilistic guarantee of avoiding memory errors.
For additional safety, DieHard can operate in a replicated mode
where multiple replicas of the same application are run simulta-
neously. By initializing each replica with a different random seed
and requiring agreement on output, the replicated version of Die-
Hard increases the likelihood of correct execution because errors
are unlikely to have the same effect across all replicas. We present
analytical and experimental results that show DieHard’s resilience
to a wide range of memory errors, including a heap-based buffer
overflow in an actual application.

Categories and Subject DescriptorsD.3.3 [Programming Lan-
guages]: Dynamic storage management; D.2.0 [Software Engi-
neering]: Protection mechanisms; G.3 [Probability and Statis-
tics]: Probabilistic algorithms

General Terms Algorithms, Languages, Reliability

Keywords DieHard, probabilistic memory safety, randomization,
replication, dynamic memory allocation

1. Introduction
While the use of safe languages is growing, many software ap-
plications are still written in C and C++, two unsafe languages.
These languages let programmers maximize performance but are
error-prone. Memory management errors, which dominate recent
security vulnerabilities reported by CERT [39], are especially per-
nicious. These errors fall into the following categories:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’06 June 11–14, 2006, Ottawa, Ontario, Canada.
Copyright c© 2006 ACM 1-59593-320-4/06/0006. . . $5.00.

Dangling pointers: If the program mistakenly frees a live object,
the allocator may overwrite its contents with a new object or
heap metadata.

Buffer overflows: Out-of-bound writes can corrupt the contents of
live objects on the heap.

Heap metadata overwrites: If heap metadata is stored near heap
objects, an out-of-bound write can corrupt it.

Uninitialized reads: Reading values from newly-allocated or un-
allocated memory leads to undefined behavior.

Invalid frees: Passing illegal addresses tofree can corrupt the
heap or lead to undefined behavior.

Double frees: Repeated calls tofree of objects that have already
been freed cause freelist-based allocators to fail.

Tools like Purify [18] and Valgrind [28, 35] allow programmers to
pinpoint the exact location of these memory errors (at the cost of a
2-25X performance penalty), but only reveal those bugs found dur-
ing testing. Deployed programs thus remain vulnerable to crashes
or attack. Conservative garbage collectors can, at the cost of in-
creased runtime and additional memory [12, 20], disable calls to
free and eliminate three of the above errors (invalid frees, double
frees, and dangling pointers). Assuming source code is available, a
programmer can also compile the code with a safe C compiler that
inserts dynamic checks for the remaining errors, further increasing
running time [1, 3, 27, 41, 42]. As soon as an error is detected, the
inserted code aborts the program.

While this fail-stop approach is safe, aborting a computation is
often undesirable — users are rarely happy to see their programs
suddenly stop. Some systems instead sacrifice soundness in order
to prolong execution in the face of memory errors [30, 32]. For
example, failure-oblivious computing builds on a safe C compiler
but drops illegal writes and manufactures values for invalid reads.
Unfortunately, these systems provide no assurance to programmers
that their programs are executing correctly.

This paper makes the following contributions:

1. It introduces the notion ofprobabilistic memory safety, a
probabilistic guarantee of avoiding memory errors.

2. It presentsDieHard, a runtime system that provides probabilis-
tic memory safety. We show analytically and empirically that
DieHard eliminates or avoids all of the memory errors described
above with high probability.

2. Overview
DieHard provides two modes of operation: astand-alonemode
that replaces the default memory manager, and areplicated mode
that runs several replicas simultaneously. Both rely on a novel

randomized memory managerthat allows the computation of the
exact probabilities of detecting or avoiding memory errors.

The DieHard memory manager places objects randomly across
a heap whose size is a multiple of the maximum required (Figure1
shows an example heap layout). The resulting spacing between ob-
jects makes it likely that buffer overflows end up overwriting only
empty space. Randomized allocation also makes it unlikely that a
newly-freed object will soon be overwritten by a subsequent allo-
cation, thus avoiding dangling pointer errors. It also improves app-
lication robustness by segregating all heap metadata from the heap
(avoiding most heap metadata overwrites) and ignoring attempts to
free already-freed or invalid objects. Despite its degradation of
spatial locality, we show that the DieHard memory manager’s im-
pact on performance is small for many applications (average 8%
across the SPECint2000 benchmark suite), and actuallyimproves
the performance of some applications when running on Windows
XP.

While the stand-alone version of DieHard provides substantial
protection against memory errors, the replicated version both in-
creases the protection and detects errors caused by illegal reads. In
this mode of operation, DieHard executes multiple replicas of the
same program simultaneously, each with different seeds to their
respective randomized allocators. Errors like buffer overflows are
thus likely to overwrite different areas of memory in the different
replicas. DieHard intercepts output from all of the various replicas
and compares the contents of each before transmitting any output.
With high probability, whenever any two programs agree on their
output, they executed safely. In other words, in any agreeing repli-
cas, any buffer overflows only overwrote dead data, and dangling
pointers were never overwritten. If an application’s output depends
on uninitialized data, these data will be different across the replicas,
and thus DieHard will detect them.

Since replacing the heap with DieHard significantly improves
reliability, we believe that it is suitable for broad deployment, es-
pecially in scenarios where increased reliability is worth the space
cost. For example, a buggy version of the Squid web caching server
crashes on ill-formed inputs when linked with both the default
GNU libc allocator and the Boehm-Demers-Weiser garbage collec-
tor, but runs correctly with DieHard. Using additional replicas can
further increase reliability. While additional replicas would natu-
rally increase execution time on uniprocessor platforms, we believe
that the natural setting for using replication is on systems with mul-
tiple processors. It has proven difficult to rewrite applications to
take advantage of multiple CPUs in order to make them run faster.
DieHard can instead use the multiple cores on newer processors to
make legacy programs more reliable.

H = max heap size, class i

L = max live size ≤ H/2 F = free = H-L

object size = 2i+1object size = 2i

2 3 1 …

1 3 2 …

replica 1

replica 2

Figure 1. DieHard’s heap layout. The heap is divided into separate
regions, within which objects are laid out randomly. Notice the
different layouts across replicas.

2.1 Outline

The rest of this paper is organized as follows. Section3 formal-
izes the notions of probabilistic memory safety and infinite-heap
semantics, which probabilistic memory safety approximates. Sec-
tion 4 then presents DieHard’s fast, randomized memory allocator
that forms the heart of the stand-alone and replicated versions. Sec-
tion 5 describes DieHard’s replicated variant. Section6 presents
analytical results for both versions, and Section7 provides empiri-
cal results, measuring overhead and demonstrating DieHard’s abil-
ity to avoid memory errors. Sections8 discusses related work, and
Section9 concludes with a discussion of future directions.

3. Probabilistic Memory Safety
For the purposes of this paper, we define a program as beingfully
memory safe if it satisifies the following criteria: it never reads
uninitialized memory, performs no illegal operations on the heap
(no invalid/double frees), and does not access freed memory (no
dangling pointer errors).

By aborting a computation that might violate one of these con-
ditions, a safe C compiler provides full memory safety. However,
we would ideally like an execution environment that would allow
such programs to continue to execute correctly (soundly) in the face
of these errors.

We can define such an idealized, but unrealizable, runtime sys-
tem. We call this runtime system aninfinite-heap memory man-
ager, and say that it providesinfinite-heap semantics. In such a
system, the heap area is infinitely large, so there is no risk of heap
exhaustion. Objects are never deallocated, and all objects are al-
located infinitely far apart from each other (that is, they can be
thought of asboundless memory blocks[31]).

From the standpoint of a correct C execution, a program that
does not deliberately seek to exhaust the heap cannot tell whether
it is running with an ordinary heap implementation or an infinite
heap. However, infinite-heap semantics allows programs to execute
safely that would be rejected by a safe C compiler. Because every
object is infinitely far from every other object, heap buffer over-
flows are benign — they never overwrite live data. The problems
of heap corruption and dangling pointers also vanish because frees
are ignored and allocated objects are never overwritten. However,
uninitialized reads to the heap remain undefined. Unlike Java, the
contents of newly-allocated C and C++ objects are not necessarily
defined.1

3.1 Approximating infinite heaps

While an infinite-heap memory manager is unimplementable, we
can probabilistically approximate its behavior. We replace the in-
finite heap with one that isM times larger than the maximum re-
quired to obtain anM-approximation to infinite-heap semantics. By
placing objects uniformly at random across the heap, we get a min-
imum expected separation ofE[minimum separation] = M−1 ob-
jects, making overflows smaller thanM−1 objects benign. Finally,
by randomizing the choice of freed objects to reclaim, recently-
freed objects are highly unlikely to be overwritten.

3.2 Detecting uninitialized reads

This memory manager approximates most aspects of infinite-heap
semantics asM approaches infinity. However, it does not quite cap-
ture infinite-heap semantics, because it does not detect uninitialized
reads. In order to detect these, we require that the infinite heap and
every allocated object be filled with random values. We can then
detect uninitialized reads by simultaneously executing at least two
replicaswith different randomized allocators and comparing their

1 ISO C++ Standard 5.3.4, paragraph 14A.

outputs. An uninitialized read will return different results across the
replicas, and if this read affects the computation, the outputs of the
replicas will differ.

4. Randomized Memory Management
This section describes the randomized memory management algo-
rithm that approximates the infinite heap semantics given above.
We first describe the algorithm’s initialization phase, and then
describe the allocation and deallocation algorithms. For pur-
poses of exposition, we refer to these asDieHardMalloc and
DieHardFree , but in the actual implementation, these are sim-
ply calledmalloc andfree . We use interposition to replace the
calls in the target application; see Section5.1for details.

4.1 Initialization

The initialization step first obtains free memory from the system
usingmmap. The heap size is a parameter to the allocator, corre-
sponding to theM factor described above. For the replicated ver-
sion only, DieHard then uses its random number generator to fill
the heap with random values. Each replica’s random number gen-
erator is seeded with a true random number. For example, the Linux
version reads from/dev/urandom , a source of true randomness.
The random number generator is an inlined version of Marsaglia’s
multiply-with-carry random number generation algorithm, which
is a fast, high-quality source of pseudo-random numbers [26].

The heap is logically partitioned into twelve regions, one for
each power-of-two size class from 8 bytes to 16 kilobytes. Each
region is allowed to become at most 1/M full. DieHard allocates
larger objects directly usingmmapand places guard pages without
read or write access on either end of these regions. Object requests
are rounded up to the nearest power of two. Using powers of two
significantly speeds allocation by allowing expensive division and
modulus operations to be replaced with bit-shifting. This organi-
zation also allows DieHard to efficiently prevent heap overflows
caused by unsafe library functions likestrcpy , as we describe in
Section4.4.

Separate regions are crucial to making the allocation algorithm
practical. If instead objects were randomly spread across the en-
tire heap area, significant fragmentation would be a certainty, be-
cause small objects would be scattered across all of the pages. Re-
stricting each size class to its own region eliminates this external
fragmentation. We discuss DieHard’s memory efficiency further in
Section4.5.

Another vital aspect of the algorithm is its complete separation
of heap metadata from heap objects. Many allocators, including
the Lea allocator that forms the basis of the GNU libc allocator,
store heap metadata in areas immediately adjacent to allocated ob-
jects (“boundary tags”). A buffer overflow of just one byte past an
allocated space can corrupt the heap, leading to program crashes,
unpredictable behavior, or security vulnerabilities [23]. Other allo-
cators place such metadata at the beginning of a page, reducing but
not eliminating the likelihood of corruption. Keeping all of the heap
metadata separate from the heap protects it from buffer overflows.

The heap metadata includes a bitmap for each heap region,
where one bit always stands for one object. All bits are initially
zero, indicating that every object is free. Additionally, DieHard
tracks the number of objects allocated to each region (inUse); this
number is used to ensure that the number of objects does not exceed
the threshold factor of 1/M in the partition.

4.2 Object Allocation

When an application requests memory fromDieHardMalloc ,
the allocator first checks to see whether the request is for a large
object (larger than 16K); if so, it usesallocateLargeObject

1 void DieHardInitHeap (int MaxHeapSize) {
2 // Initialize the random number generator
3 // with a truly random number.
4 rng.setSeed (realRandomSource);
5 // Clear counters and allocation bitmaps
6 // for each size class.
7 for (c = 0; c < NumClasses; c++) {
8 inUse[c] = 0;
9 isAllocated[c].clear();

10 }
11 // Get the heap memory.
12 heap = mmap (NULL, MaxHeapSize);
13 // REPLICATED: fill with random values
14 for (i = 0; i < MaxHeapSize; i += 4)
15 ((long *) heap)[i] = rng.next();
16 }

1 void * DieHardMalloc (size_t sz) {
2 if (sz > MaxObjectSize)
3 return allocateLargeObject(sz);
4 c = sizeClass (sz);
5 if (inUse[c] == PartitionSize / (M * sz))
6 // At threshold: no more memory.
7 return NULL;
8 // Probe for a free slot.
9 do {

10 index = rng.next() % bitmap size;
11 if (!isAllocated[c][index]) {
12 // Found one.
13 // Pick pointer corresponding to slot.
14 ptr = PartitionStart + index * sz;
15 // Mark it allocated.
16 inUse[c]++;
17 isAllocated[c][index] = true ;
18 // REPLICATED: fill with random values.
19 for (i = 0; i < getSize(c); i += 4)
20 ((long *) ptr)[i] = rng.next();
21 return ptr;
22 }
23 } while (true);
24 }

1 void DieHardFree (void * ptr) {
2 if (ptr is not in the heap area)
3 freeLargeObject(ptr);
4 c = partition ptr is in;
5 index = slot corresponding to ptr;
6 // Free only if currently allocated;
7 if (offset correct &&
8 isAllocated[c][index]) {
9 // Mark it free.

10 inUse[c]--;
11 isAllocated[c][index] = false ;
12 } // else, ignore
13 }

Figure 2. Pseudocode for DieHard heap initialization, object allo-
cation and deallocation routines.

to satisfy the request, which usesmmapand stores the address
in a table for validity checking byDieHardFree . Otherwise, it
converts the size request into a size class (dlog2e of the request,

minus 3). As long as the corresponding region is not already full, it
then looks for space.

Allocation then proceeds much like probing into a hash table.
The allocator picks a random number and checks to see if the slot in
the appropriate partition is available. The fact that the heap can only
become 1/M full bounds the expected time to search for an unused
slot to 1

1−(1/M) . For example, forM = 2, the expected number of
probes is two.

After finding an available slot, the allocator marks the object
as allocated, increments the allocated count, and, for the replicated
version, fills the object with randomized values. DieHard relies on
this randomization to detect uninitialized reads, as we describe in
Section5.

4.3 Object Deallocation

To defend against erroneous programs,DieHardFree takes sev-
eral steps to ensure that any object given to it is in fact valid.
First, it checks to see if the address to be freed is inside the
heap area, indicating it may be a large object. Because all large
objects aremmaped on demand, they lie outside of the main
heap. The functionfreeLargeObject checks the table to en-
sure that this object was indeed returned by a previous call to
allocateLargeObject . If so, it munmaps the object; oth-
erwise, it ignores the request.

If the address is inside the small-object heap, DieHard checks
it for validity to prevent double and invalid frees. First, the offset
of the address from the start of its region (for the given size class)
must be a multiple of the object size. Second, the object must be
currently marked as allocated. If both of these conditions hold,
DieHard finally resets the bit corresponding to the object location
in the bitmap and decrements the count of allocated objects for this
region.

4.4 Limiting Heap Buffer Overflows

While randomizing the heap provides probabilistic protection
against heap buffer overflows (see Section6.1), DieHard’s heap
layout makes it efficient to prevent overflows caused by unsafe
library functions likestrcpy . DieHard replaces these unsafe li-
brary functions with variants that do not write beyond the allocated
area of heap objects. Each function first checks if the destination
pointer lies within the heap (two comparisons). If so, it finds the
start of the object by bitmasking the pointer with its size (com-
puted with a bitshift) minus one. DieHard then computes the avail-
able space from the pointer to the end of the object (two subtrac-
tions). With this value limiting the maximum number of bytes to
be copied, DieHard preventsstrcpy from causing heap buffer
overflows.

In addition to replacingstrcpy , DieHard also replaces its
“safe” counterpart,strncpy . This function requires a length ar-
gument that limits the number of bytes copied into the destina-
tion buffer. The standard C library contains a number of these
checked library functions in an attempt to reduce the risk of
buffer overflows. However, checked functions are little safer than
their unchecked counterparts, since programmers can inadvertently
specify an incorrect length. As withstrcpy , the DieHard version
of strncpy checks the actual available space in the destination
object and uses that value as the upper bound.

4.5 Discussion

The design of DieHard’s allocation algorithm departs significantly
from previous memory allocators. In particular, it makes no effort
to improve locality and can increase space consumption.

Locality

Many allocators attempt to increase spatial locality by placing ob-
jects that are allocated at the same time near each other in mem-
ory [11, 14, 25, 40]. DieHard’s random allocation algorithm instead
makes it likely that such objects will be distant. This spreading out
of objects has little impact on L1 locality because typical heap ob-
jects are near or larger than the L1 cache line size (32 bytes on
the x86). However, randomized allocation leads to a large number
of TLB misses in one application (see Section7.2.1), and leads to
higher resident set sizes because it can induce poor page-level lo-
cality. To maintain performance, the in-use portions of the DieHard
heap should fit into physical RAM.

Space Consumption

DieHard’s memory management policies tend to consume more
memory than conventional memory allocators. This increase in
memory is caused by two factors: rounding up objects to the next
power of two, and requiring that the heap beM times larger than
necessary.

The rounding up of objects to the next power of two can, in the
worst-case, increase memory consumption by up to a factor of two.
Wilson et al. present empirical results suggesting that this policy
can lead to significant fragmentation [40]. Nonetheless, such an
allocator is used in real systems, FreeBSD’s PHKmalloc [24], and
is both time and space-efficient in practice [14].

Any increase in memory consumption caused by rounding is
balanced by two DieHard features that reduce memory consump-
tion. First, unlike most conventional allocators including the GNU
libc allocator, DieHard’s allocator has no per-object headers. These
headers typically consume eight bytes, but DieHard’s per-object
overhead is just one bit in the allocation bitmap. Second, while
coarse size classes can increase internal fragmentation, DieHard’s
use of segregated regions completely eliminates external frag-
mentation. The Lea allocator’s external fragmentation plus per-
object overhead increases memory consumption by approximately
20% [14].

A more serious concern is the requirement of a factor ofM ad-
ditional space for each of the twelve size classes, and the use of
replicas. In the worst case, a program using DieHard could request
objects of just one size and so require up to 12M more memory
than needed. We could reduce this overhead using profile informa-
tion to reserve onlyM times the maximum needed for each size
class. However, Robson showed that this factor (a logarithm of the
ratio of the largest size to the smallest) is the worst case forall
memory allocators [34]. Approaches like conservative garbage col-
lection can impose an additional space overhead of 3X-5X over
malloc /free [20, 44]. Finally, memory that is reserved by Die-
Hard but not used does not consume any virtual memory; the ac-
tual implementation of DieHard lazily initializes heap partitions.
Nonetheless, DieHard’s approach reduces the available address
space, which may make it unsuitable for applications with large
heap footprints running on 32-bit systems. We expect the problem
of reduced address space will become less of an issue as 64-bit
processors become commonplace. We also believe that DieHard’s
space-reliability tradeoff will be acceptable for many purposes, es-
pecially long-running applications with modest-sized heaps.

5. Replication
While replacing an application’s allocator with DieHard reduces
the likelihood of memory errors, this stand-alone approach cannot
detect uninitialized reads. To catch these errors, and to further in-
crease the likelihood of correct execution, we have built a version of
DieHard (currently for UNIX platforms only) that executes several

replicas simultaneously. Figure3 depicts the architecture, instanti-
ated with three replicas.

Thediehard command takes three arguments: the path to the
replicated variant of the DieHard memory allocator (a dynamically-
loadable library), the number of replicas to create, and the applica-
tion name.

5.1 Replicas and Input

DieHard spawns each replica in a separate process, each with
the LD PRELOAD environment variable pointing to the DieHard
memory management librarylibdiehard.so . This library in-
terpositionredirects all calls tomalloc andfree in the applica-
tion to DieHard’s memory manager. Because the memory manager
picks a different random number generation seed on every invoca-
tion, all replicas execute with different sequences of random num-
bers.

DieHard uses both pipes and shared memory to communicate
with the replicas. Each replica receives its standard input from Die-
Hard via a pipe. Each replica then writes its standard output into a
memory-mapped region shared between DieHard and the replica.
After all I/O redirection is established, each replica begins exe-
cution, receiving copies of standard input from the main DieHard
process.

While the stand-alone version of DieHard works for any pro-
gram, the replicated DieHard architecture is intended for programs
whose output is inherently non-deterministic. The current imple-
mentation is targeted at standard UNIX-style commands that read
from standard input and write to standard output. Also, while we
intend to support programs that modify the filesystem or perform
network I/O, these are not supported by the current version of the
replicated system. We leave the use of DieHard replication with
interactive applications as future work.

5.2 Voting

DieHard manages output from the replicas by periodically synchro-
nizing at barriers. Whenever all currently-live replicas terminate or
fill their output buffers (currently 4K each, the unit of transfer of
a pipe), thevoter compares the contents of each replica’s output
buffer. If all agree, then the contents of one of the buffers are sent
to standard output, and execution proceeds as normal.

However, if not all of the buffers agree, it means that at least one
of the replicas has an error. The voter then chooses an output buffer
agreed upon by at least two replicas and sends that to standard out.
Two replicas suffice, because the odds are slim that two randomized
replicas with memory errors would return the same result.

replica3seedbroadcast vote

input output

replica1seed

replica2seed

execute
randomized

replicas

Figure 3. The replicated DieHard architecture. Input is broad-
cast to multiple replicas, each equipped with a different, fully-
randomized memory manager. Output is only committed when at
least two replicas agree on the result.

Any non-agreeing replicas have either exited abnormally before
filling their output buffers, or produced different output. Whenever
a replica crashes, DieHard receives a signal and decrements the
number of currently-live replicas. A replica that has generated
anomalous output is no longer useful since it has entered into
an undefined state. Our current implementation kills such failed
replicas and decreases the currently-live replica count. To further
improve availability, we could replace failed replicas with a copy
of one of the “good” replicas with its random number generation
seed set to a different value.

5.3 Discussion

Executing applications simultaneously on the same system while
both providing reasonable performance and preserving application
semantics is a challenge. We address these issues here.

In order to make correct replicas output-equivalent to the ex-
tent possible, we intercept certain system calls that could produce
different results. In particular, we redirect functions that access the
date and system clock so that all replicas return the same value.

While it may appear that voting on all output might be expen-
sive, it is amortized because this processing occurs in 4K chunks.
More importantly, voting is only triggered by I/O, which is already
expensive, and does not interfere with computation.

A disadvantage of the barrier synchronization employed here is
that an erroneous replica could theoretically enter an infinite loop,
which would cause the entire program to hang because barrier syn-
chronization would never occur. There are two approaches that one
can take: use a timer to kill replicas that take too long to arrive at
the barrier, or ignore the problem, as we currently do. Establishing
an appropriate waiting time would solve the problem of consensus
in the presence of Byzantine failures, which is undecidable [15].

6. Analysis
While DieHard is immune to heap corruption caused by double
frees, invalid frees, and heap metadata overwrites caused by over-
flow, its immunity to other memory errors is probabilistic. In this
section, we quantify the probabilistic memory safety provided by
both the stand-alone and replicated versions of DieHard. We derive
equations that provide lower bounds on the likelihood of avoiding
buffer overflow and dangling pointer errors, and detecting unini-
tialized reads. We assume that the heap metadata, which is placed
randomly in memory and protected on either side by guard pages,
is not corrupted.

We use the following notation throughout the analyses. Recall
thatM denotes the heap expansion factor that determines how large
the heap is relative to the maximum application live object size.
We usek for the number of replicas,H the maximum heap size,
L the maximum live size (L ≤ H/M), andF the remaining free
space (H−L). Figure1 depicts these variables graphically. When
analyzing buffer overflows, we useO to stand for the number of
objects’ worth of bytes overflowed (e.g., a 9-byte overflow could
overwriteO = 2 8-byte objects). For dangling pointer errors, we
useA to denote the number of allocations that have taken place
after a premature call tofree .

We make a simplifying and conservative assumption in these
analyses that all object requests are for a specific size class. This
approach is conservative because the separation of different size
classes improves the odds of avoiding memory errors. We also
assume that there is either one replica or at least three, since the
voter cannot decide which of two disagreeing replicas is the correct
one.

Note that the analyses below quantify the probability of avoid-
ing a single error of a given type. One can calculate the probabil-
ity of avoiding multiple errors by multiplying the probabilities of
avoiding each error, although this computation depends on an as-

Probability of Avoiding Buffer Overflow

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 3 4 5 6

Replicas

Pr
o

b
ab

ili
ty

1/8 full 1/4 full 1/2 full

(a) Probability of masking single-object buffer overflows for varying
replicas and degrees of heap fullness.

Probability of Avoiding Dangling Pointer Error

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

8 16 32 64 128 256

Object size (bytes)

Pr
o

b
ab

ili
ty

100 allocs 1000 allocs 10,000 allocs

(b) Probability of masking dangling pointer errorsusing the stand-alone
version of DieHardin its default configuration, for varying object sizes
and intervening allocations.

Figure 4. Probabilities of avoiding buffer overflows and dangling pointer errors.

sumption of independence that may not hold. Also, these results
only hold for objects smaller than 16K in size, because larger ob-
jects are managed separately as described in Section4.1.

6.1 Masking Buffer Overflows

In this section, we derive the probability of masking buffer over-
flows. While buffer overflows are generally writes just beyond an
allocated object, for our analysis, we model a buffer overflow as
a write to any location in the heap. If a buffer overflow does not
overwrite any live data in at least one replica’s heap, we say that
the buffer overflow has been successfullymasked. The following
formula gives the probability of successfully masking a buffer over-
flow.

Theorem 1. Let OverflowedObjects be the number of live objects
overwritten by a buffer overflow. Then for k6= 2, the probability of
masking a buffer overflow is

P(OverflowedObjects = 0) = 1−
[
1−

(F
H

)O
]k

.

Proof. The odds ofO objects overwriting at least one live object are
1 minus the odds of them overwriting no live objects, or 1− (F

H)O.
Masking the buffer overflow requires that at least one of thek
replicas not overwrite any live objects, which is the same as 1 minus
all of them overwriting at least one live object = 1− (1− (F

H)O)k.

Probabilistic memory safety provides good protection against
modest buffer overflows. Whenever the heap is large relative to the
maximum amount of live memory, the likelihood of masking an
error increases. For example, when the heap is no more than 1/8
full, DieHard in stand-alone mode provides an 87.5% chance of
masking a single-object overflow, while three replicas avoids such
errors with greater than 99% probability. Figure4(a) shows the
probability of protecting against overflows for different numbers
of replicas and degrees of heap fullness.

6.2 Masking Dangling Pointers

A dangling pointer error occurs when an object is freed prematurely
and its contents are overwritten by another object. Suppose that the
object should have been freedA allocations later than it was; that

is, the call tofree should have happened at some point after the
next A calls to malloc but before theA+ 1th call. Avoiding a
dangling pointer error is thus the likelihood that some replica has
not overwritten the object’s contents afterA allocations:

Theorem 2. Let Overwrites be the number of times that a partic-
ular freed object of size S gets overwritten by one of the next A
allocations. Then the probability of this object being intact after A
allocations, assuming A≤ F/S and k6= 2, is:

P(Overwrites = 0) ≥ 1−
(

A
F/S

)k

.

Proof. The prematurely freed object is indexed by one of theQ =
F/S bits in the allocation bitmap for its size class. The odds of a
new allocation not overwriting that object are thus(Q−1)/Q. As-
sume that after each allocation, we do not free an object, which
is the worst case. After the second allocation, the odds are(Q−
1)/Q∗ (Q− 2)/(Q− 1) = (Q− 2)/Q. In general, afterA alloca-
tions, the probability of not having overwritten a particular slot is
(Q−A)/Q.

The probability that no replica has overwritten a particular ob-
ject afterA allocations is then one minus the odds of all of the
replicas overwriting that object, or 1− (1− (Q−A)/Q)k = 1−
(A/(F/S))k.

This result shows that DieHard is robust against dangling
pointer errors, especially for small objects. Using the default con-
figuration, the stand-alone version of DieHard has greater than a
99.5% chance of masking an 8-byte object that was freed 10,000
allocations too soon. Figure4(b) shows the probabilities of avoid-
ing dangling pointer errors for different object sizes and numbers
of intervening allocations.

6.3 Detecting uninitialized reads

We say that DieHard detects an uninitialized read when it causes all
of the replicas to differ on their output, leading to termination. An
uninitialized read is a use of memory obtained from an allocation
before it has been initialized. If an application relies on values read
from this memory, then its behavior will eventually reflect this use.
We assume that uninitialized memory reads are either benign or
propagate to output.

The odds of detecting such a read thus depend both on how
much use the application makes of the uninitialized memory, and
its resulting impact on the output. An application couldwiden the
uninitialized data arbitarily, outputting the data in an infinite loop.
On the other end of the spectrum, an application mightnarrow the
data by outputting just one bit based on the contents of the entire
uninitialized region. For example, it could output an ‘A’ if the first
bit in the region was a 0, and ‘a’ if it was 1.

If we assume that the application generates just one bit of output
based on every bit in the uninitialized area of memory, we get the
following result:

Theorem 3. The probability of detecting an uninitialized read
of B bits in k replicas (k> 2) in a non-narrowing, non-widening
computation is:

P(Detect uninitialized read) =
2B!

(2B−k)!2Bk .

Proof. For DieHard to detect an uninitialized read, all replicas must
disagree on the result stemming from the read. In other words,
all replicas must have filled in the uninitialized region of length
B with a differentB-bit number. There are 2B numbers of lengthB,
andk replicas yields 2Bk possible combinations of these numbers.
There are(2B)!/(2B−k)! ways of selecting differentB-bit numbers
across the replicas (assuming 2B > k). We thus have a likelihood of
detecting an uninitialized read of(2B!)/(2B−k)!2Bk.

Interestingly, in this case, replicas lower the likelihood of mem-
ory safety. For example, the probability of detecting an uninitial-
ized read of four bits across three replicas is 82%, while for four
replicas, it drops to 66.7%. However, this drop has little practical
impact for reads of more data. The odds of detecting an unini-
tialized read of 16 bits drops from 99.995% for three replicas to
99.99% for four replicas.

DieHard’s effectiveness at finding uninitialized reads makes it
useful as an error-detecting tool during development. During ex-
periments for this paper, we discovered uninitialized reads in sev-
eral benchmarks. The replicated version of DieHard typically ter-
minated in several seconds. We verified these uninitialized read er-
rors with Valgrind, which ran approximately two orders of magni-
tude slower.

7. Experimental Results
We first measure the runtime impact of the DieHard memory man-
ager on a suite of benchmark applications. We then empirically
evaluate its effectiveness at avoiding both injected faults and actual
bugs.

7.1 Benchmarks

We evaluate DieHard’s performance with both the full SPECint2000
suite [37] running reference workloads, as well as a suite of
allocation-intensive benchmarks. These benchmarks perform be-
tween 100,000 and 1,700,000 memory operations per second (see
Berger, Zorn and McKinley [6] for a detailed description). We
include these benchmarks both because they are widely used in
memory management studies [5, 17, 22] and because their unusu-
ally high allocation-intensity stresses memory management perfor-
mance.

In all of our experiments, we set the default heap size for Die-
Hard to 384MB, where up to 1/2 is available for allocation. This
is larger than necessary for nearly all of the applications we mea-
sure here, but ensures consistency in our results. We also disable

the replacement of unsafe library functions (see Section4.4) for
these experiments to isolate the protection that randomization and
replication provide.

7.2 Overhead

We run our benchmarks on three different platforms: Linux, Win-
dows XP, and Solaris. The Linux platform is a dual-processor Intel
Xeon system with each 3.06GHz processor (hyperthreading active)
equipped with 512K L2 caches and with 3 gigabytes of RAM. All
code on Linux is compiled with g++ version 4.0.2. The Windows
XP platform is a Pentium 4 system running at 3.20GHz with a 512K
L2 cache and 2 gigabytes of RAM. All code on Windows is com-
piled using Visual Studio 7. The Solaris platform is a Sun SunFire
6800 server, with 16 900MHz UltraSparc v9 processors and 16 gi-
gabytes of RAM; code there is compiled with g++ 3.2. All code is
compiled at the highest optimization level on all platforms. Tim-
ings are performed while the systems are quiescent. We report the
average of five runs after one warm-up run; observed variances are
below 1%.

7.2.1 Linux

On Linux, we compare both DieHard and the Boehm-Demers-
Weiser collector to the default GNU libc allocator, a variant of the
Lea allocator [25]. The Boehm-Demers-Weiser collector is used
for comparison because it represents an alternative trade-off in the
design space between space, execution time, and safety guarantees.
Figure 5(a) shows that, for the allocation-intensive benchmarks,
DieHard suffers a performance penalty ranging from 16.5% to
63% (geometric mean: 40%). Its overhead is thus somewhat higher
than that suffered by the Boehm-Demers-Weiser collector (2% to
59.7%, geometric mean 25.8%).

However, DieHard’s runtime overhead is substantially lower for
most of the SPECint2000 benchmarks. The geometric mean of Die-
Hard’s overhead is 12%. DieHard degrades performance substan-
tially for two applications:253.perlbmk (48.8%) and300.twolf
(109%). The 253.perlbmk benchmark is allocation-intensive,
spending around 12.5% of its execution doing memory operations,
highlighting both DieHard’s and Boehm-Demers-Weiser’s runtime
overhead (13.4%). However, the300.twolf overhead is due not to
the cost of allocation but to TLB misses.300.twolf uses a wide
range of object sizes. In DieHard, accesses to these objects are
spread over many size class partitions.

7.2.2 Windows

To evaluate the effect of different default allocators and compil-
ers on DieHard’s overhead, we ran the allocation-intensive bench-
marks on Windows XP. Figure5(b)presents execution time results
for these benchmarks.

The results on Windows XP are far different than for Linux:
the geometric mean of performance for these allocation-intensive
benchmarks with DieHard is effectively the same as with the de-
fault allocator. DieHardimprovesruntime performance forroboop
by 19%,espresso by 8.2%, andcfrac by 6.4%. Onlylindsay and
p2c perform slower, by 13.6% and 22.5% respectively.

We attribute these results to two factors: first, the default Win-
dows XP allocator is substantially slower than the Lea allocator.
Second, Visual Studio produces much faster code for DieHard than
g++ does. DieHard is written in modular C++ code with many
small methods, and Visual Studio’s better inlining heuristics and
backend code generator combine to substantially improve Die-
Hard’s performance.

7.2.3 Solaris: Replicated Experiments

To quantify the overhead of the replicated framework and verify
its scalability, we measure running time with sixteen replicas on a

Runtime on Linux

0

0.5

1

1.5

2

2.5

cf
ra

c

es
p

re
ss

o

lin
d

sa
y

p
2c

ro
b

o
o

p

G
eo

. M
ea

n

16
4.

g
zi

p

17
5.

vp
r

17
6.

g
cc

18
1.

m
cf

18
6.

cr
af

ty

19
7.

p
ar

se
r

25
2.

eo
n

25
3.

p
er

lb
m

k

25
4.

g
ap

25
5.

vo
rt

ex

25
6.

b
zi

p
2

30
0.

tw
o

lf

G
eo

. M
ea

n

N
o

rm
al

iz
ed

 r
u

n
ti

m
e

malloc GC DieHard

alloc-intensive general-purpose

(a) Linux: Performance of the defaultmalloc , the Boehm-Demers-
Weiser garbage collector, and DieHard (stand-alone version), across a
range of allocation-intensive and general-purpose benchmark applications.

Runtime on Windows

0

0.5

1

1.5

2

2.5

cfrac espresso lindsay p2c roboop Geo. Mean

N
o

rm
al

iz
ed

 r
u

n
ti

m
e

malloc DieHard

(b) Windows XP: Performance of the defaultmalloc and DieHard
(stand-alone version), across a range of allocation-intensive benchmark
applications.

Figure 5. Runtime performance on Linux and Windows XP.

16-way Sun server. We ran these experiments with the allocation-
intensive benchmark suite, except forlindsay, which has an unini-
tialized read error that DieHard detects and terminates. Running 16
replicas simultaneously increases runtime by approximately 50%
versus running a single replica with the replicated version of the
runtime (libdiehard r.so). Part of this cost is due to process
creation, which longer-running benchmarks would amortize. This
result shows that while voting and interprocess communication im-
pose some overhead, the replicated framework scales to a large
number of processors.

7.3 Error Avoidance

We evaluate DieHard’s effectiveness at avoiding both artificially-
injected bugs and actual bugs in a real application, the Squid web
caching server.

7.3.1 Fault Injection

We implement two libraries that inject memory errors into unal-
tered applications running on UNIX platforms to explore the re-
silience of different runtime systems to memory errors including
buffer overflows and dangling pointers.

We first run the application with a tracing allocator that gen-
erates an allocation log. Whenever an object is freed, the library
outputs a pair, indicating when the object was allocated and when
it was freed (in allocation time). We then sort the log by allocation
time and use a fault-injection library that sits between the appli-
cation and the memory allocator. The fault injector triggers errors
probabilistically, based on the requested frequencies. To trigger an
underflow, it requests less memory from the underlying allocator
than was requested by the application. To trigger a dangling pointer
error, it uses the log to invokefree on an object before it is ac-
tually freed by the application, and ignores the subsequent (actual)
call to free this object. The fault injector only inserts dangling
pointer errors for small object requests (< 16K).

We verified DieHard’s resilience by injecting errors in the
espresso benchmark, and running it ten times with the default
allocator and with DieHard. We first introduced dangling pointers
of frequency of 50% with distance 10: one out of every two ob-
jects is freed ten allocations too early. This high error rate prevents
espresso from running to completion with the default allocator in
all runs. However, with DieHard,espresso runs correctly in 9 out
of 10 runs.

We then injected buffer overflow errors at a 1% rate (1 out of
every 100 allocations), under-allocating object requests of 32 bytes
or more by 4 bytes. With the default allocator,espresso crashes
in 9 out of 10 runs and enters an infinite loop in the tenth. With
DieHard, it runs successfully in all 10 of 10 runs.

Real Faults

We also tested DieHard on an actual buggy application. Version
2.3s5 of the Squid web cache server has a buffer overflow error
that can be triggered by an ill-formed input. When faced with this
input and running with either the GNU libc allocator or the Boehm-
Demers-Weiser collector, Squid crashes with a segmentation fault.
Using DieHard in stand-alone mode, the overflow has no effect.

8. Related Work
This section describes related work in software engineering, fault
tolerance, memory management, approaches to address security
vulnerabilities, failure masking, fail-stop, debugging and testing.
Table1 summarizes how DieHard and the systems described here
handle memory safety errors.

Our approach is inspired byN-version programming, in which
independent programmers produce variants of a desired pro-
gram [2]. WhereasN-version programming relies on a conjecture
of independence across programmers to reduce the likelihood of
errors, DieHard provides hard analytical guarantees.

Fault tolerance:DieHard’s use of replicas with a voter process
is closely related to Bressoud and Schneider’s hypervisor-based
system, which provides fault tolerance in the face of fail-stop exe-
cutions [10]. In addition to supporting replication and voting, their
hypervisor eliminates all non-determinism. This approach requires
hardware support or code rewriting, while DieHard’s voter is less
general but lighter weight.

Memory management approaches:Typical runtime systems
sacrific robustness in favor of providing fast allocation with low
fragmentation. Most implementations ofmalloc are susceptible
to both double frees and heap corruption caused by buffer over-
flows. However, some recent memory managers detect heap cor-
ruption, including version 2.8 of the Lea allocator [25, 33], while
others (Rockall [4], dnmalloc [43]) fully segregate metadata from
the heap like DieHard, preventing heap corruption.

Garbage collection avoids dangling pointer errors but requires
a significant amount of space to achieve reasonable performance

Error GNU libc [25] BDW GC [9] CCured [27] Rx [30] Failure-oblivious [32] DieHard
heap metadata overwrites undefined undefined abort X undefined X
invalid frees undefined X X undefined undefined X
double frees undefined X X X undefined X
dangling pointers undefined X X undefined undefined X∗

buffer overflows undefined undefined abort undefined undefined X∗

uninitialized reads undefined undefined abort undefined undefined abort ∗

Table 1. This table compares how various systems handle memory safety errors:Xdenotes correct execution,undefined denotes an
undefined result, andabort means the program terminates abnormally. See Section8 for a detailed explanation of each system. The
DieHard results for the last three errors (marked with asterisks) are probabilistic; see Section6 for exact formulae.

(3X-5X more thanmalloc /free) [20, 38, 44]. DieHard ignores
double and invalid frees and segregates metadata from the heap to
avoid overwrites, but unlike the Boehm-Demers-Weiser collector,
its avoidance of dangling pointers is probabilistic rather than ab-
solute. Unlike previous memory managers, DieHard provides pro-
tection of heap data (not just metadata) from buffer overflows, and
can detect uninitialized reads.

Security vulnerabilities:Previous efforts to reduce vulnerabil-
ity to heap-based security attacks randomize the base address of the
heap [7, 29] or randomly pad allocation requests [8]. Base address
randomization provides little protection from heap-based attacks on
32-bit platforms [36]. Although protection from security vulnera-
bilities is not its intended goal, DieHard makes it difficult for an
attacker to predict the layout or adjacency of objects in any replica.

Failure masking: Several researchers have proposed unsound
techniques that can prevent programs from crashing [13, 30, 32].
Automatic pool allocationsegregates objects into pools of the same
type, thus ensuring that dangling pointers are always overwrit-
ten only by objects of the same type [13]. While this approach
yields type safety, the resulting program behavior is unpredictable.
Failure-oblivious systemscontinue running programs by ignoring
illegal writes and manufacturing values for reads of uninitialized ar-
eas [32]. These actions impose as high as 8X performance overhead
and can lead to incorrect program execution. Rx uses checkpoint-
ing and logging in conjunction with a versioning file system to re-
cover fromdetectableerrors, such as crashes. After a crash, Rx rolls
back the application and restarts with an allocator that selectively
ignores double frees, zero-fills buffers, pads object requests, and
defers frees [30]. Because Rx relies on checkpointing and rollback-
based recovery, it is not suitable for applications whose effects can-
not be rolled back. It is also unsound: Rx cannot detectlatenterrors
that lead to incorrect program execution rather than crashes.

Fail-stop approaches:A number of approaches that attempt
to provide type and memory safety for C (or C-like) programs
are fail-stop, aborting program execution upon detecting an er-
ror [1, 3, 27, 41, 42]. We discuss two representative examples:
Cyclone and CCured. Cyclone augments C with an advanced type
system that allows programmers direct but safe control over mem-
ory [21]. CCured instruments code with runtime checks that dy-
namically ensure memory safety and uses static analysis to remove
checks from places where memory errors cannot occur [27]. While
Cyclone uses region-based memory management and safe explicit
deallocation [16, 38], CCured relies on the BDW garbage collec-
tor to protect against double frees and dangling pointers. Unlike
DieHard, which works with binaries and supports any language
using explicit allocation, both Cyclone and CCured operate on an
extended version of C source code that typically requires manual
programmer intervention. Both abort program execution when de-
tecting buffer overflows or other errors, while DieHard can often
avoid them.

Debugging and testing:Tools like Purify [18] and Valgrind [28]
use binary rewriting or emulation to dynamically detect memory
errors in unaltered programs. However, these often impose pro-

hibitive runtime overheads (2-25X) and space costs (around 10X)
and are thus only suitable during testing. SWAT [19] uses sampling
to detect memory leaks at runtime with little overhead (around 5%),
and could be employed in conjunction with DieHard.

9. Conclusion
DieHard is a runtime system that effectively tolerates memory er-
rors and provides probabilistic memory safety. DieHard uses ran-
domized allocation to give the application an approximation of an
infinite-sized heap, and uses replication to further increase error tol-
erance and detect uninitialized memory reads that propagate to pro-
gram output. DieHard allows an explicit trade-off between mem-
ory usage and error tolerance, and is useful for programs in which
memory footprint is less important that reliability and security. We
show that on Linux DieHard, adds little CPU overhead to many of
the SPECint2000 benchmark programs, while the CPU overhead in
allocation-intensive programs is larger. On Windows, the overhead
of DieHard is reduced, and programs with DieHard occasionally
run faster than when running with the default allocator.

We show analytically that DieHard increases error tolerance,
and reaffirm our analytic results by demonstrating that DieHard sig-
nificantly increases the error tolerance of an application in which
faults are artifically injected. We also describe an experiment in
which DieHard successfully tolerates a known buffer-overflow er-
ror in the Squid web cache server.

The DieHard runtime system tolerates heap errors but does not
prevent safety errors based on stack corruption. We believe that
with compiler support, the ideas proven successful in DieHard
could be used to improve error tolerance on the stack and also in
object field references. We plan to investigate the effectiveness of
this approach in future work.

The current implementation of DieHard has limitations that we
believe can be overcome. The DieHard algorithm as implemented
initializes the heap based on the maximum size the heap will even-
tually grow to. We plan to investigate an adaptive version of Die-
Hard that grows memory regions dynamically as objects are allo-
cated. Other ways of reducing the memory requirements of Die-
Hard include selectively applying the technique to particular size
classes, allocation pools, object types, and/or object instances.

One limitation of the replicated form of DieHard is its inabil-
ity to work with programs that generate non-deterministic output
or output related to environmental factors (e.g., time-of-day, per-
formance counters, interactive events, etc.) In the future, we hope
to better characterize program output so that these kinds of irrepro-
ducible results can be recognized and factored.

Beyond error tolerance, DieHard also can be used to debug
memory corruption. By differencing the heaps of correct and in-
correct executions of applications, it may be possible to pinpoint
the exact locations of memory errors and report these as part of a
crash dump without the crash.

Improving the security and reliability of programs written in C
and C++ is recognized by the research community as an important

priority and many approaches have been suggested. In this paper,
we present a unique and effective approach to soundly tolerating
memory errors in unsafe programs without requiring the programs
be rewritten or even recompiled. Like garbage collection, DieHard
represents a new and interesting alternative in the broad design
space that trades off CPU performance, memory utilization, and
program correctness.

Acknowledgments
The authors would like to thank Mike Barnett, Mike Bond, Mark
Corner, Trishul Chilimbi, Mike Hicks, Daniel Jiḿenez, David
Jensen, Scott Kaplan, Brian Levine, Andrew McCallum, David
Notkin, and Gene Novark for their helpful comments. Thanks also
to Shan Lu and Yuanyuan Zhou for providing us the buggy inputs
for Squid.

This material is based upon work supported by the National
Science Foundation under CAREER Award CNS-0347339. Any
opinions, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

DieHard is publicly available athttp://www.cs.umass.edu/∼emery/
diehard/.

References
[1] T. M. Austin, S. E. Breach, and G. S. Sohi. Efficient detection of

all pointer and array access errors. InPLDI ’94: Proceedings of the
ACM SIGPLAN 1994 conference on Programming language design
and implementation, pages 290–301, New York, NY, USA, 1994.
ACM Press.

[2] A. Avizienis. The N-version approach to fault-tolerant systems.
IEEE Transactions on Software Engineering, 11(12):1491–1501,
Dec. 1985.

[3] D. Avots, M. Dalton, V. B. Livshits, and M. S. Lam. Improving
software security with a C pointer analysis. InICSE ’05: Proceedings
of the 27th international conference on Software engineering, pages
332–341, New York, NY, USA, 2005. ACM Press.

[4] T. Ball, S. Chaki, and S. K. Rajamani. Parameterized verification
of multithreaded software libraries. In7th International Conference
on Proceedings of Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), volume 2031 ofLecture Notes in
Computer Science, pages 158–173, 2001.

[5] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R. Wilson.
Hoard: A scalable memory allocator for multithreaded applications.
In ASPLOS-IX: Ninth International Conference on Architectural
Support for Programming Languages and Operating Systems, pages
117–128, Cambridge, MA, Nov. 2000.

[6] E. D. Berger, B. G. Zorn, and K. S. McKinley. Composing high-
performance memory allocators. InProceedings of the 2001 ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), Snowbird, Utah, June 2001.

[7] S. Bhatkar, D. C. DuVarney, and R. Sekar. Address obfuscation:
An efficient approach to combat a broad range of memory error
exploits. InProceedings of the 12th USENIX Security Symposium,
pages 105–120. USENIX, Aug. 2003.

[8] S. Bhatkar, R. Sekar, and D. C. DuVarney. Efficient techniques
for comprehensive protection from memory error exploits. In
Proceedings of the 14th USENIX Security Symposium, pages 271–
286. USENIX, Aug. 2005.

[9] H.-J. Boehm and M. Weiser. Garbage collection in an uncooperative
environment. Software Practice and Experience, 18(9):807–820,
1988.

[10] T. C. Bressoud and F. B. Schneider. Hypervisor-based fault tolerance.
In SOSP ’95: Proceedings of the fifteenth ACM symposium on
Operating systems principles, pages 1–11, New York, NY, USA,
1995. ACM Press.

[11] T. M. Chilimbi, M. D. Hill, and J. R. Larus. Cache-conscious structure
layout. InProceedings of SIGPLAN’99 Conference on Programming
Languages Design and Implementation, ACM SIGPLAN Notices,
pages 1–12, Atlanta, May 1999. ACM Press.

[12] D. L. Detlefs. Empirical evidence for using garbage collection in C
and C++ programs. In E. Moss, P. R. Wilson, and B. Zorn, editors,
OOPSLA/ECOOP ’93 Workshop on Garbage Collection in Object-
Oriented Systems, Oct. 1993.

[13] D. Dhurjati, S. Kowshik, V. Adve, and C. Lattner. Memory safety
without runtime checks or garbage collection. InACM SIGPLAN
2003 Conference on Languages, Compilers, and Tools for Embedded
Systems (LCTES’2003), San Diego, CA, June 2003. ACM Press.

[14] Y. Feng and E. D. Berger. A locality-improving dynamic memory
allocator. InProceedings of the ACM SIGPLAN 2005 Workshop on
Memory System Performance (MSP), Chicago, IL, June 2005.

[15] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of
distributed consensus with one faulty process.J. ACM, 32(2):374–
382, 1985.

[16] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney.
Region-based memory management in Cyclone. InPLDI ’02:
Proceedings of the ACM SIGPLAN 2002 Conference on Programming
language design and implementation, pages 282–293, New York, NY,
USA, 2002. ACM Press.

[17] D. Grunwald, B. Zorn, and R. Henderson. Improving the cache local-
ity of memory allocation. InProceedings of SIGPLAN’93 Conference
on Programming Languages Design and Implementation, volume
28(6) ofACM SIGPLAN Notices, pages 177–186, Albuquerque, NM,
June 1993. ACM Press.

[18] R. Hastings and B. Joyce. Purify: Fast detection of memory leaks and
access errors. InProc. of the Winter 1992 USENIX Conference, pages
125–138, San Francisco, California, 1991.

[19] M. Hauswirth and T. M. Chilimbi. Low-overhead memory leak
detection using adaptive statistical profiling. InASPLOS-XI:
Proceedings of the 11th International Conference on Architectural
Support for Programming Languages and Operating Systems, pages
156–164, New York, NY, USA, 2004. ACM Press.

[20] M. Hertz and E. D. Berger. Quantifying the performance of garbage
collection vs. explicit memory management. InProceedings of
the 20th annual ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages, and Applications, San Diego,
CA, Oct. 2005.

[21] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney, and
Y. Wang. Cyclone: A safe dialect of C. InProceedings of the General
Track: 2002 USENIX Annual Technical Conference, pages 275–288,
Berkeley, CA, USA, 2002. USENIX Association.

[22] M. S. Johnstone and P. R. Wilson. The memory fragmentation
problem: Solved? In P. Dickman and P. R. Wilson, editors,OOPSLA
’97 Workshop on Garbage Collection and Memory Management, Oct.
1997.

[23] M. Kaempf. Vudo malloc tricks.Phrack Magazine, 57(8), Aug. 2001.

[24] P.-H. Kamp. Malloc(3) revisited.http://phk.freebsd.dk/pubs/malloc.
pdf.

[25] D. Lea. A memory allocator. http://gee.cs.oswego.edu/dl/html/malloc.html,
1997.

[26] G. Marsaglia. yet another RNG. posted to the electronic bulletin
board sci.stat.math, Aug. 1994.

[27] G. C. Necula, S. McPeak, and W. Weimer. Ccured: type-safe
retrofitting of legacy code. InPOPL ’02: Proceedings of the 29th
ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 128–139, New York, NY, USA, 2002. ACM Press.

[28] N. Nethercote and J. Fitzhardinge. Bounds-checking entire programs
without recompiling. InSPACE 2004, Venice, Italy, Jan. 2004.

[29] PaX Team. PaX address space layout randomization (ASLR).
http://pax.grsecurity.net/docs/aslr.txt.

http://www.cs.umass.edu/~emery/diehard/
http://www.cs.umass.edu/~emery/diehard/
http://phk.freebsd.dk/pubs/malloc.pdf
http://phk.freebsd.dk/pubs/malloc.pdf
http://pax.grsecurity.net/docs/aslr.txt

[30] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx: Treating bugs as
allergies: A safe method to survive software failures. InProceedings
of the Twentieth Symposium on Operating Systems Principles,
volume XX of Operating Systems Review, Brighton, UK, Oct. 2005.
ACM.

[31] M. Rinard, C. Cadar, D. Dumitran, D. M. Roy, and T. Leu. A dynamic
technique for eliminating buffer overflow vulnerabilities (and other
memory errors). InProceedings of the 2004 Annual Computer
Security Applications Conference, Dec. 2004.

[32] M. Rinard, C. Cadar, D. Dumitran, D. M. Roy, T. Leu, and J. William
S. Beebee. Enhancing server availability and security through failure-
oblivious computing. InSixth Symposium on Operating Systems
Design and Implementation, San Francisco, CA, Dec. 2004. USENIX.

[33] W. Robertson, C. Kruegel, D. Mutz, and F. Valeur. Run-time detection
of heap-based overflows. InLISA ’03: Proceedings of the 17th
Large Installation Systems Administration Conference, pages 51–60.
USENIX, 2003.

[34] J. M. Robson. Bounds for some functions concerning dynamic
storage allocation.Journal of the ACM, 21(3):419–499, July 1974.

[35] J. Seward and N. Nethercote. Using Valgrind to detect undefined
value errors with bit-precision. InProceedings of the USENIX’05
Annual Technical Conference, Anaheim, California, USA, Apr. 2005.

[36] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and
D. Boneh. On the effectiveness of address-space randomization.
In CCS ’04: Proceedings of the 11th ACM conference on Computer
and Communications Security, pages 298–307, New York, NY, USA,
2004. ACM Press.

[37] Standard Performance Evaluation Corporation. SPEC2000.
http://www.spec.org.

[38] N. Swamy, M. Hicks, G. Morrisett, D. Grossman, and T. Jim.
Experience with safe manual memory management in Cyclone.
Science of Computer Programming, 2006. Special issue on memory
management. Expands ISMM conference paper of the same name. To
appear.

[39] US-CERT. US-CERT vulnerability notes.http://www.kb.cert.org/
vuls/.

[40] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles. Dynamic
storage allocation: A survey and critical review. InProceedings of
the International Workshop on Memory Management, volume 986 of
Lecture Notes in Computer Science, pages 1–116, Kinross, Scotland,
Sept. 1995. Springer-Verlag.

[41] W. Xu, D. C. DuVarney, and R. Sekar. An efficient and backwards-
compatible transformation to ensure memory safety of C programs.
In SIGSOFT ’04/FSE-12: Proceedings of the 12th ACM SIGSOFT
twelfth international symposium on Foundations of software engi-
neering, pages 117–126, New York, NY, USA, 2004. ACM Press.

[42] S. H. Yong and S. Horwitz. Protecting C programs from attacks via
invalid pointer dereferences. InESEC/FSE-11: 11th ACM SIGSOFT
International Symposium on Foundations of Software Engineering,
pages 307–316, New York, NY, USA, 2003. ACM Press.

[43] Y. Younan, W. Joosen, F. Piessens, and H. V. den Eynden. Security
of memory allocators for C and C++. Technical Report CW 419,
Department of Computer Science, Katholieke Universiteit Leuven,
Belgium, July 2005. Available athttp://www.cs.kuleuven.ac.be/
publicaties/rapporten/cw/CW419.pdf.

[44] B. Zorn. The measured cost of conservative garbage collection.
Software Practice and Experience, 23:733–756, 1993.

http://www.kb.cert.org/vuls/
http://www.kb.cert.org/vuls/
http://www.cs.kuleuven.ac.be/publicaties/rapporten/cw/CW419.pdf
http://www.cs.kuleuven.ac.be/publicaties/rapporten/cw/CW419.pdf

	Introduction
	Overview
	Outline

	Probabilistic Memory Safety
	Approximating infinite heaps
	Detecting uninitialized reads

	Randomized Memory Management
	Initialization
	Object Allocation
	Object Deallocation
	Limiting Heap Buffer Overflows
	Discussion

	Replication
	Replicas and Input
	Voting
	Discussion

	Analysis
	Masking Buffer Overflows
	Masking Dangling Pointers
	Detecting uninitialized reads

	Experimental Results
	Benchmarks
	Overhead
	Linux
	Windows
	Solaris: Replicated Experiments

	Error Avoidance
	Fault Injection

	Related Work
	Conclusion

